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Abstract The original Leray’s problem concerns the well-posedness of weak solutions to the steady
incompressible Navier-Stokes equations in a distorted pipe, which approach the Poiseuille flow subject to the
no-slip boundary condition at spatial infinity. In this paper, the same problem with the Navier-slip boundary
condition instead of the no-slip boundary condition, is addressed. Due to the complexity of the boundary
condition, some new ideas, presented as follows, are introduced to handle the extra difficulties caused by
boundary terms. First, the Poiseuille flow in the semi-infinite straight pipe with the Navier-slip boundary
condition will be introduced, which will serve as the asymptotic profile of the solution to the generalized Leray’s
problem at spatial infinity. Second, a solenoidal vector function defined in the whole pipe, satisfying the Navier-
slip boundary condition, having the designated flux and equalling the Poiseuille flow at a large distance, will be
carefully constructed. This plays an important role in reformulating our problem. Third, the energy estimates

depend on a combined L2-estimate of the gradient and the stress tensor of the velocity.
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1 Introduction

The 3D stationary Navier-Stokes (NS) equations which describe the motion of stationary viscous
incompressible fluids are as follows:

u-Vu+ Vp— Au =0,

in D C R, (1.1)
V-u=0,
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Here, u(x) € R and p(x) € R represent the velocity and the scalar pressure, respectively. In this paper,
we consider the smooth domain D to be an infinitely long pipe with two straight “outlets”, the left and
the right, and a compact distortion, a bubble or a bulge, in the middle. We define it as follows:

D =Dy, UDy UDg, (1.2)

where Dy, and Dp are semi-infinite smooth straight pipes with their cross sections ¥; and X being
perpendicular to the xz-axis, i.e.,

DLZELX(—OO,—Z/Q] and DR:ERX[Z/Q,—FOO).

Here, X1, Yz C R? are smooth bounded domains. The distortion part Dy C R? x (—Z, Z) is a compact
smooth domain in R? (see Figure 1).

Moreover, technically we assume that there exists an infinitely long smooth straight pipe getting
through D, which means that there exists a ¥’ CC ¥ N X g such that ¥’ x R C D. This will be applied
in the construction of the profile vector in Subsection 3.2.

In the current paper, the Navier-Stokes equations (1.1) will be equipped with the following boundary
condition, i.e., the Navier-slip boundary condition:

2(Su - an T an — 07
{ (Su-n). e on 0D. (1.3)

u-n =0,

Here, Su = %(Vu + VTu) is the stress tensor, where VTu stands for the transpose of the Jacobian
matrix Vu, and n is the unit outer normal vector of 9D. For a vector field v, we denote by via, its
tangential part, i.e., Vtan := v — (v - m)n. @ > 0 stands for the friction constant which may depend on
various elements such as the property of the boundary and the viscosity of the fluid. When oo — 0., the
boundary condition (1.3) turns to be the total Navier-slip boundary condition, while when a — oo, the
boundary condition (1.3) degenerates into the no-slip boundary condition © = 0 on the boundary. In this
paper, we assume 0 < a < 400.

Throughout this paper, Cq ... denotes a positive constant depending on a,b,c,..., which may be
different from line to line. For a vector & = (x1,22,73) € R3, we define xj, := (x1,22). For a two-
dimensional scalar function f or a vector-valued function f := (f1, f2), we define

vhf = (aﬁlf’aizf)v Ahf = 831f+8§2fa dthf = awlfl +aac2f2~

Meanwhile, for any ¢ > 1, we define

De:={zeD:—(<z3<(}

______ @L

S

Figure 1 (Color online) Infinite pipe D, with a bubble and an obstacle in the middle
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the truncated pipe with the length of 2(. Meanwhile, the notations QCi are denoted by
QEL = (DC —'Dcfl) N {SE €D: z3> 0}, QE = (DC —Dgfl) N {(E €D: x5 <0},

respectively. We also apply A < B to stating A < C'B. Moreover, A ~ B means both A < B and B < A.
For 1 < p < ooand k € N, LP denotes the usual Lebesgue space with the norm

1/p
(/ |f<x>|pdx> L 1<p<oo,
Hf”LP(D) = D

esssup,cplf(z)], p= o0,

while W"? denotes the usual Sobolev space with its norm

I fllww» Dy := Z IVE fll Lo (D),

0<|LI<k

where L = (I1,1l2,13) is a multi-index. We also simply denote W*» by H* provided that p = 2. Finally,
D denotes the closure of a domain D. A function g € Wlﬁf(D) orge W/IIZf(D) means g € W*P(D) for
any D compactly contained in D or D.

For the 3D vector-valued function, we define

H(D) :={p € H'(D;R?) : - nop = 0},
Ho(D) = {p € H'(D;R*): V- =0, - nlypp = 0}
and
Hotoe(D) :={p € Hioo(D; R?): V- =0, ¢ -nlop = 0}.
We also define
X ={peC®D;R*:V-¢=0,¢ -nlsp =0}

Clearly, X is dense in H, in the H'(D)-norm. For matrices I' = (7ij)1<ij<s and K = (K4j)1<i,j<3, We

define
3

T:K =) vjkij

ij=1

Next, we state the main problem of the paper.
1.1 Leray’s problem with the Navier-slip boundary condition

For a given flux ® which is supposed to be nonnegative without loss of generality, if we consider the
Poiseuille flow, g&, of (1.1) with the boundary condition (1.3) in D; (i denotes L or R), then it satisfies

g5 = go(zn)es,
—Apgs(zn) =C; in X,

995
o

/ gy (e )dzy, = @,
P

= —agh on 9%,

where the constant C; is uniquely related to ®, while 7 is the unit outer normal vector on 0%;. We can
see that g is a solution of (1.1) with the Navier-slip boundary (1.3) in 3; x R.

The main objective of this paper is to study the solvability of the following generalized Leray’s problem:
for a given flux ®, find a pair (u, p) such that

u-Vu+Vp—Au=0, V.-u=0, inD,
(1.4)

2(Su - n)tan + @Utan =0, w-n =0, on dD
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with
/ uz(xp, x3)de, = @ for |xg| > Z/2 (1.5)
E.

and
u— gh as|z| — oo in D;. (1.6)

To prove the existence of the above generalized Leray’s problem, we first introduce a weak formulation.
Multiplying (1.4); with ¢ € X and integrating by parts, by the boundary condition (1.4)2, we can obtain

Q/Su:Scpdera/ utan~aptand5+/u~V<p~udx:O for all p € X. (1.7)
D oD D

Now we define the weak solution of the generalized Leray’s problem.

Definition 1.1. A vector u : D — R3 is a called a weak solution of the generalized Leray’s problem
(1.4)—(1.6) if and only if

(i) w € Hotoe(D);

(ii) w satisfies (1.7);

(iil) w satisfies (1.5) in the trace sense;

(iv) u — gt € HY(D;) for i = L, R.
Remark 1.2. The weak solution also satisfies a generalized version of (1.6). Actually, it follows from
the trace inequality (see [8, Theorem II.4.1]) that for any x3 > Z,

[ ) = g @l den < Clu= g8l mpressocn
R
where the constant C' is independent of x3. This implies that
/ |w(xy, z3) — gl (x)|?dz, — 0 as x3 — oo,
3R

The case of x3 < —Z is similar.

The following result shows that for each weak solution, we can associate a corresponding pressure field
with it (see the proof in Subsection 3.3.2 below).

Lemma 1.3. Let u be a weak solution to the generalized Leray’s problem defined above. Then there

ezists a scalar function p € L2 (D) such that

loc

/ VUZV’l/Jdl‘—‘r/ u-Vu-i/)dm:/pV“(/Jdm
D D D
holds for any ¥ € C°(D;R3).

1.2 Main results

Now we are ready to state the main theorems of this paper. The first one is the existence of weak
solutions, the second one addresses the uniqueness of the weak solution, and the third one concerns the
regularity and decay estimates of the weak solution.

Theorem 1.4.  Assume that D is the aforementioned smoothness domain in (1.2). Then there exists
a positive constant ®q depending only on o and D such that for any ® < ®g, the generalized Leray’s
problem (1.4)~(1.6) has a weak solution (u,p) € H, 1,5 ¥ L% (D) satisfying

Z Ju — gfb”Hl(Di) < Cop?, (1.8)
i=L,R

where C,, p depends only on o and D.
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Theorem 1.4 only states the existence of a weak solution, which has the finite energy property after
the background Poiseuille flows are subtracted. However, the uniqueness of the solution is not shown.
Actually, the estimate (1.8) is enough for us to deduce the following uniqueness theorem, which allows
the energy of the weak solution in D, to satisfy 3/2-order growth with respect to ¢. The achievement of
this relaxation is due to the application of a key lemma in [15], which will be presented in Section 2.

Theorem 1.5.  Let (u,p) be a weak solution to (1.4)—(1.6). Suppose that for any { > Z,
IVl 2, = o(¢¥?). (1.9)

Then the weak solution is unique) provided that the fluz ® is sufficiently small.

The following theorem gives the smoothness and the asymptotic behavior of (u,p), which decays
exponentially to the Poiseuille flow g% at each outlet D; as 3 tends to infinity.

Theorem 1.6.  Let u be the weak solution in Theorem 1.4 and p be the corresponding pressure. Then
(u,p) € C=(D) such that for any m = |B| =0,

i=L,R

Meanwhile, the following pointwise decay estimates hold:

|Vﬁ(u — gé)(m)\ < Crap®exp{—omanlrs|} forallzs < -2 -1,
<

VP (u - g5) ()] (1)

Cm.apPexp{—0om.aplrs|} forallzs>Z+1.

Here, Cyy o0 and op o p are positive constants depending on m, o and D.

Remark 1.7. For the pressure p which is generated in Lemma 1.3, there exist two constants Cp,
Cpr > 0 (see (3.3)) and a smooth cut-off function n with

1 for z3 > Z,
n(zs) =
0 foraxsz < Z/2

(which is given in (3.6)) such that for any m = || > 0,

D[ pis)ds @[ "n(s)ds
Hvﬁv(p+ Joon(s)ds @ 7 7 n(s) )
Cpr Cp,L

< Cm,a,D¢-
L*(D)

Meanwhile, the following pointwise decay estimate holds: for all |x3| > Z + 1,

O [ n(s)ds @ [Z 7 n(s)ds
Cpr CprL

’V5V<p+ )(x)‘ < Crap®exp{—om.anlzsl},

where (), o p and oy, o p are positive constants depending on m, a and D. The subtracted term

@ [ n(s)ds @ [Z 7 n(s)ds
= +
Cpr CprL

Pg =

is set to balance the pressure of the Poiseuille flows.

1.3 Main difficulties, strategies and outline of the proof

Difficulties. = Compared with the no-slip boundary condition, the main difficulties of the problem with
the Navier-slip boundary condition lie in

1 The pressure p is unique up to subtracting an arbitrary constant.
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(i) the absence of the Korn-type inequality (the L2-norm equivalence between Vv and Sv) on D with
a noncompact boundary;

(ii) the construction of a smooth solenoidal vector field a satisfying the Navier-slip boundary condition
and equalling the Poiseuille flow at a large distance for a given flux;

(iii) achieving Poincaré-type inequalities under the Navier-slip boundary condition;

(iv) derivation of the global H?-estimate of the H!-weak solution.

Strategies. To overcome the difficulties listed above, our main strategies are as follows:

(i) During the proof of both existence and uniqueness, an H!-estimate of the solution is required.
Owing to the boundary condition, we only have the L2-estimate of the stress tensor Sv. However, the
Korn-type inequality is not applicable to our domain considered here with a noncompact boundary.
Fortunately, the energy estimate of the stress tensor Sv will produce a boundary integration with a good
sign, which can be used to control the bad terms coming from the energy estimate of the gradient of the
velocity. At last, by combining the uniform energy estimates of the stress tensor with the L2?-estimate of
the gradient of the velocity, we can achieve the H!-estimate of v.

(ii) Our main idea in constructing a is to smoothly connect Poiseuille flows in gk and g& with a
compactly supported divergence-free vector (0,0, h(xy)) in Djs. In the intermediate parts, we glue them
by solving a 2D divergence equation in the cross section with the 2D Navier-slip boundary condition.

(iii) For the no-slip boundary condition, the Poincaré inequality can be applied directly. However, in
the case of the Navier-slip boundary condition, the Poincaré inequality is not obvious in both straight
pipes Dy, Dgr and the truncated pipe D¢. To handle the case in Dr or Dg, we divide a vector-valued
function into the xj-direction part and the x3-direction part. The first part follows from a 2D Payne’s
identity (2.5) and the impermeable boundary condition, while the second part is achieved by subtracting
the constant flux so that vs has zero mean value in any cross section of Dy, or Dg (see Lemma 2.5).
Based on the result of the straight pipe, we derive the Poincaré inequality in D¢ by the trace theorem
and a 3D Payne’s identity (2.11) (see Lemma 2.6).

(iv) Our idea of obtaining the global H?-estimate is to decompose D into a series of bounded smooth
domains Dy which only have three shapes so that the related estimate constant in D}, could be uniform
with k. In each © i, we establish the H2-estimate of the solution via the known conclusions for the linear
Stokes system with the Navier-slip boundary condition in [21]. Then we achieve the global H?-estimate
by summarizing those estimates in Dp.

Outline of the proof. The existence of the solution will be given in Section 3. First, the Poiseuille
flows in D; (i = L, R) with their fluxes being ® and satisfying the Navier-slip boundary condition will
be constructed. Then a smooth divergence-free vector field in D subject to the Navier-slip boundary
condition and equalling the Poiseuille flows at the far left and the far right will be introduced. In this
way, we can reduce the existence problem to a related one in which the solution approaches zero at spatial
infinity. Then this problem can be handled by the standard Galerkin method.

The proof of the uniqueness is derived in Section 4. The main idea is applying Lemma 2.7, which was
originally announced in [15] as far as the authors know. If (u, p) and (@, p) are two distinct solutions, we
define the energy integral in terms of w := w — u as follows:

K
Y(K) := 2dzdc.
(K) /1<1/D<'V“"“

An ordinary differential inequality of Y (K), which satisfies the assumption in Lemma 2.7, will be derived.
The derivation of this inequality involves a series of estimates, two terms of which are especially different
from the previous literature, i.e., ch pvsdr and fD v - Avdz. The estimate of the first term involves an
application of the partial Poincaré inequality in Lemma 2.4 and a divergence-gradient operator estimate
in Lemma 4.1. The estimate of the second term is derived by combining the L?-norms of both the stress
tensor and the gradient of the velocity. At last, the vanishing of Y(K) will be proved, which indicates
the uniqueness of the solution.

Proofs of the smoothness and exponential decay of the solution to the Poiseuille flow at a large spatial
distance are given in Section 5. By the “decomposing-summarizing” technique in the strategy (iv),
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W13 and then H? global estimates will be derived. By the bootstrapping argument, higher-order global
estimates will follow. For the exponential decay estimates, here goes the idea: by defining the following
energy for ¢ > Z 4 1:

G(0) = / V(u — g&)Pde + / IV (u — g)2de,
S x(—00,—C) BrX(¢,+00)

then we can derive a first-order ordinary differential inequality, which will result in the exponential decay
of G(¢). Finally, higher-order estimates of the solution in D — D, the Sobolev embedding, and the
exponential decay of G(¢) will validate the pointwise decay of the solution in (1.11).

1.4 Related works

Before ending Section 1, we review some works related to the solvability of Leray’s problem in (1.4)—(1.6).
The original Leray’s problem concerns the existence, uniqueness, regularity, and asymptotic behavior of
the system (1.4)—(1.6) with the no-slip boundary condition (corresponding to a@ = +oo in (1.4)3). See
the description in [14, p.77] and [13, p.551]. Amick [2,3] contributed the first remarkable work on the
solvability of Leray’s problem with a small flux and the no-slip boundary condition, which reduced the
solvability problem to the resolution of a variational problem. However, the uniqueness is left open. A
detailed analysis of the existence, uniqueness, and asymptotic behavior of small-flux solutions is given
by Ladyzenskaya and Solonnikov [15]. More details on well-posedness, decay, and far-field asymptotic
analysis of solutions for Leray’s problem with the no-slip boundary condition and related topics can be
found in [1,11,20] and the references therein. Readers can trace to [8, Chapter XIII] for a systematic
review and study of Leray’s problem with the no-slip boundary condition. Recently, Yang and Yin [27]
studied the well-posedness of weak solutions to the steady non-Newtonian fluids in pipe-like domains.
Wang and Xie [23,24] studied the existence, uniqueness, and uniform structural stability of Poiseuille
flows for the 3D axially symmetric inhomogeneous Navier-Stokes equations in the 3D pipe.

Compared with the no-slip boundary condition, Leray’s problem with the Navier-slip boundary
condition, which also has different physical interpretations and mathematical properties, seems to be much
more complicated. Konieczny [12] and Mucha [18,19] studied the solvability of the steady Navier-Stokes
equations with the perfect Navier-slip condition (« = 0), where they employed a constant vector field as
its asymptotic profile at the spatial infinity. Only the existence, regularity, and asymptotic behavior of
weak solutions were addressed there. The uniqueness was left open, and the asymptotic behavior at far
fields was not given there. The problem raised there could be recognized as Leray’s problem with the
complete Navier-slip boundary condition in a two-dimensional strip, where the asymptotic profile is a
constant vector. Our problem raised in (1.4)—(1.6) is a perfect extension of the original Leray’s problem
with the no-slip boundary condition. The background Poiseuille flows considered here tend to Leray’s
Poiseuille flows with the no-slip boundary condition as o« — +o0o. As far as the authors know, there is
little literature concerning the solvability of the generalized Leray’s problem (1.4)—(1.6), which settles
the well-posedness issue on the steady Navier-Stokes equations subject to the Navier-slip boundary in
an unbounded domain with an unbounded boundary, while for the well-posedness of the solutions to the
steady Navier-Stokes equations with the Navier-slip boundary in bounded domains, there have already
been many works that we can refer to (see [4,9,21] and the references therein). Recently, Wang and
Xie [25] gave the uniqueness and uniform structural stability of Poiseuille flows in an infinitely long
pipe with the Navier-slip boundary condition for the inhomogeneous axially symmetric Navier-Stokes
equations. Their primary strategy is a delicate decomposition in the 2D plane for the slip coefficient
and the frequency corresponding to the Fourier variable in the axial direction and energy estimates are
performed on the stream function, which are essentially different from ours as shown in Subsection 1.3.
Li et al. [16] gave the characterization of bounded smooth solutions for the axially symmetric Navier-
Stokes equations with the perfect Navier-slip boundary condition (corresponding to o = 0 in (1.3)1) in
the infinitely long cylinder, mainly with the aid of the Moser iteration technique and an energy estimate
solely for the stress tensor, which is different from the compound energy estimates in this paper.
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The rest of this paper is organized as follows. Section 2 contains the preliminary work of the proof, in
which the Navier-slip boundary condition will be written under the “natural” moving frame of 0D, and
some useful lemmas will be presented. Section 3 is devoted to the proof of existence results. In Section 4,
we finish the proof of the uniqueness of the solution. Finally, we focus on the higher-order regularity and
exponential decay properties of the solution in Section 5.

At last, we emphasize that the domain considered in this paper is a 3D distorted pipe, while if the
domain is a two-dimensional distorted strip, similar results as stated in Theorems 1.4-1.6 will also be
obtained. More precisely, if we consider the Navier-Stokes equation (1.1) with the Navier-slip boundary
condition (1.3) in the strip [0, 1] x R, the following two-dimensional Poiseuille flow will be obtained by a
direct calculation:

6aP 69
=0, — (=22 +z1)+ — ). 1.12

ge ( 6ol O G (1.12)
After a compact perturbation of the domain R x [0, 1], the existence, uniqueness, and regularity of the
solutions, which approach gg in (1.12) at spatial infinity will be presented in our forthcoming paper,

where the flux at the cross section ® can be relatively large.

2 Preliminaries

2.1 Reformulation of the boundary condition in the local orthogonal curvilinear coordi-
nates

First, we rewrite the boundary condition (1.3) in the locally moving coordinate framework.

Regarding the smoothness of the pipe D, for any given point on 9D, we define (y1,72,7v3) to be a system
of orthogonal curvilinear coordinates in U C R3, where U is a neighborhood of the aforementioned point.
The surface v3 = 0 represents a portion of the surface D, and the surfaces 3 = constant are parallel to
this portion with ~3 increasing towards the outside of D. On each surface 3 = constant, two families
of curves, the ~1-curve and the ~s-curve, are lines of the curvature of the surface. Their unit tangent
vectors 7 and T2 and the normal vector n form an orthogonal basis at each point of the neighborhood
U with the Lamé coefficients Hy, Hy, H3 > 0 such that

Oy, x = Hymy fori=1,2,
O0y,x = H3n

(see Figure 2). Under these (local) curvilinear coordinates, one can write
U =Ur T + U, T2+ UM

Then (1.3) enjoys the following simplified expression:

Ontr, = ("‘51 (SL') - a)uﬁ?
Ontr, = (ka(z) — a)ur,, onUNID (2.1)

u, = 0,
(see [26, Proposition 2.1 and Corollary 2.2]). Here, for i = 1,2,

n 0T
H; 0

ki(z) = (2.2)
are the principal curvatures of 9D corresponding to the v;-curves, respectively.

Note that 0D can be divided into two parts. The part 0D N 0D, is a compact manifold, and thus
one can deduce the uniform boundedness of k; (i = 1,2) there. The other part 9D N d(Dy U Dg) is
a combination of two semi-infinite smooth straight pipes, whose curvature depends only on the scalar
curvatures of smooth Jordan curves 0¥, and 0¥ g, which is clearly uniformly bounded. More details on
the locally natural moving frame on 0D N (0Dr U dDy,) is shown in the following remark.
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FaJnily QD s

Figure 3 (Color online) The orthogonal curvilinear coordinates on 8D N (8D U dDy)

Remark 2.1. In the “straight” part of the pipe (i.e., D, UDpg), one can always choose T2 = eg, which
is a constant vector. Meanwhile, 73 and n are the unit tangent vector and the unit outer normal vector
of the cross section X, respectively (see Figure 3).

In this case, we find 73 and n, which are perpendicular to the xs-axis and depend only on (x1,x2).
From (2.2), the principal curvature ko is identically zero. By writing

U = U, T1 +usesz + u,n,
we see that (2.1) is simplified to
Ontir, = (k1(2) — @)y,
anu;g = —Qusg, on 9D N (3DR U 6DL) (23)
up, =0,
Since 9%; (i = L or R) is smooth and compact, the principal curvature k1 must be uniformly bounded
on 0D N (0Dr UIDy).
Thus one deduces the following result at the end of this subsection.

Proposition 2.2.  The principal curvature k; (i =1 ori = 2) is uniformly bounded on OD.
2.2 Useful lemmas

In this subsection, we give some useful lemmas which will be frequently used throughout the rest of
this paper. Lemmas 2.3-2.6 concern the Poincaré inequalities of the solution w in a part of the straight
pipe ¥ x R and the truncated finite pipe D¢ with only the impermeable condition (1.3)2. Lemma 2.7 is
introduced to show the uniqueness of the solution. Lemmas 2.8 and 2.9 are regularity results of linear
Stokes systems on a bounded domain, which will be applied in the bootstrapping argument in Section 5.

In the standard Euclidean coordinate frameworks e, ez and es, let u = ujeq + ugses + uses. ¥ C R?
is a smooth bounded domain in the z;, directions and I C R is an (infinite or finite) interval in the x3
direction. We set n = (n1,ns,0) to be the unit outer normal vector on 9% x I, where n = (ny,ns) is the
unit outer normal vector on 9.

Lemma 2.3. Let ¥ C R? be a compact domain with a C' boundary, and f = fieq + faea be a two-
dimensional vector function with components in H(X), and f -7 =0 on 0%, where 71 is the unit outer
normal vector of 0%. Then the following Poincaré inequality holds:

[flle2s) < CellVaflias), (2.4)
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where Vy, = (Og,, Ox,) is the gradient operator on the x1 and x4 directions and Csx, = Cds;, where C is a
constant and ds; := maxy, y, es{|xn — yn|} is the diameter of 3.

Proof.  See the hint in [8, Exercise 11.5.6, p. 71]. Here, we give the proof for completeness. First, we
choose a fixed point xg = (0,1, %0,2) € £, and then it is easy to check the following equality:

2

Z [ ml(fz( xOJ)fj) o fl( 3’50]) J ‘f|2 - fl(mj - m07j)8a:ifj] = 0. (25)
Q=1

Integrating the above equality on ¥, one deduces

JERES 3 [ 0titas =01 - Z/afl — o) fyden

1,7=1 7,7=1

I
- Z / filw; — x0.5)0; fidxp. (2.6)
3,j=1

Using the divergence theorem and the boundary condition f -7 = 0, we can obtain

2
Il :Z/ ﬁf(x] —xo’j)fde:O.
o)
Thus by (2.6) and the Cauchy-Schwarz inequality, we arrive at

[ 1o < 5 [ (o, + € [ 198Pdan,

which indicates (2.4). O
If we choose f = uje; + useq as in Lemma 2.3, we deduce the following lemma.
Lemma 2.4 (Partial Poincaré inequality in a straight pipe). Let u = uje; + uzes + uzes be an H!
vector field in X x I. If w satisfies the boundary condition w-n = 0, then the following Poincaré inequality
holds:
|urer + uzez||L2(sxr) < C||Vi(urer + uzez)||L2=x1), (2.7)
where C' is a positive constant.

Proof.  For any = = (zp,z3) € ¥ X I, by the impermeable condition u - n = 0, one sees that
(urer +usez)(xp,z3) - n=u-n=0 forany x; € 0%.
Then Lemma 2.3 indicates
[(mer +uses) (- 23) o) < C2[ Vit + usea)(,5)[3a(sy.

Integrating with x3 over I on both sides, respectively, one concludes (2.7). O

We notice that the Poincaré inequality could not hold for ug, due to the existence of the parallel flow
(see, e.g., (3.1) below). Nevertheless, the mean value of ug through the cross section X is conserved for
xg € I if u is a divergence-free vector field. The reason is that denoting the flux flowing across ¥ by

O(x3) = / w(xp, r3) - ezdxy,
5

and then applying the divergence-free property of w and the impermeable condition u - n = 0, we have

d
dTr;g,(I) x3) / Opyus(xp, x3)dry

= — / (Bmlul + 8952’&2)(1'}1,%3)613611
P

= —/ (u-n)(xp,x3)dS(xp) = 0.
%
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This implies the constancy of the flux ®. Then we have the following lemma.

Lemma 2.5. Let u = uje; + uses +uses be an H' vector field in ¥ x I, which is divergence-free and
satisfies the boundary condition u-n = 0. Set g(xy,) € H*(X) satisfying

/ g(xp)dxy = @,
b
and define v := u — g(zp,)es. Then we have

[vllz2exn) < ClIViv|2sxn), (2.8)

where C' is a positive constant.

Proof.  Notice that v3 has a vanishing mean value on the cross section ¥, and therefore it enjoys the
following 2D Poincaré inequality:

/\vg(xh,x3)|2d:ch:/
2 2

This indicates the 3D Poincaré inequality

2
dap < 02/ Vhoa(en, w3)daey. (2.9)
>

1
vg(Th, x3) — |§]|/ v3(zp, v3)dx)
5

lvsll2(ex1) < ClIVavsllz2exr)

if one integrates (2.9) with x5 on the interval I. Combining the result in Lemma 2.4, we can
obtain (2.8). O

Based on Lemma 2.5, one has the following Poincaré-type inequality in the truncated distorted pipe
De={xeD:—-(<x3<(}
Lemma 2.6. Given ¢ > Z, let w = (wy,wa,w3) € H(D¢) with zero fluz in D¢, i.e.,

/ w(xh,Z/2) ~63d£€h =0.
2R

If we suppose w-n =0 on 0D NID¢, where nv is the unit outer normal vector on 0D, then the following
Poincaré inequality holds:
|wllL2(p.) < Cpl|VwlL2(p,)- (2.10)

Here, Cp > 0 is a constant which is uniform with C.
Proof.  Integrating the following identity on Dy = {z € D: —=Z/2 < 23 < Z/2}:

3
Z [0, (wimjw;) — O, wizjwj — |W|* — w;x;05,w;] = 0, (2.11)

i,7=1

and using an approach similar to our estimation of the terms on the right-hand side of (2.6), one derives

1
/ w[2dz < f/ |w|2dx+C’D/ Vew|2dz
D[\/[ 2 DM DM

v [ L<w3<x~w>><xh,2/2>ds] #] [ wale - w))an, 272005,

R

which indicates
/ |w|2dx<CD</ |Vw\2d:c+/ |w(xh,fZ/2)|2dS+/ |w(xh,Z/2)2dS). (2.12)
D Dy XL SR

Meanwhile, using the trace theorem in ¥, x [-Z, —Z/2] and Lemma 2.5, one derives

/ w(zn, —Z/2)2dS < CD(/ |w\2d:v—|—/ |Vw|2dx)
EL ELX[—Z,—Z/Q] ELX[—Z,—Z/Q]
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< CD/ |Vw|*dz. (2.13)
S x[-2,—-7Z/2
Similarly, one derives that
/ lw(zn, Z/2))%dS < CD/ |Vaw|?dz. (2.14)
Yr YrX[Z/2,Z]

Substituting (2.13) and (2.14) into the right-hand side of (2.12), one deduces

/ lw|?dz < CD/ |Vw|*dz.
Dy DC

This finishes the estimate in Djys. Noting that the remaining parts of the domain D. are a union of two
straight truncated pipes, we see that the estimates in D — Dy are direct conclusions of Lemma 2.5. We
conclude the proof of (2.10). O

The following asymptotic estimate of a function that satisfies an ordinary differential inequality will
be useful in our further proof. To the best of the authors’ knowledge, it was originally derived by
Ladyzenskaya and Solonnikov [15].

Lemma 2.7. Let Y(¢) # 0 be a nondecreasing nonnegative differentiable function satisfying
Y(Q) <TY'(Q), Vv¢>o0. (2.15)

Here, ¥ : [0,00) — [0,00) 4s a monotonically increasing function with ¥(0) = 0, and there exist C, 13 >0
and m > 1 such that

U(r)<Crt™, V71> (2.16)
Then
liminf (" m=1Y(¢) > 0. (2.17)
(—+oo

Proof. Since Y is not identically zero, there exists a (y > 0 such that Y({y) =: Yo > 0. Using the
monotonicity of ¥, one knows that

Y'(Go) = ¥ (Yo) =:mo > 0.

Therefore, we have
Y(¢) = Yo +mo(¢ —C) for ¢ = Co.

From (2.15), we see that
YO 2w (Y (0) = ¥ (Yo +m(C = Go)) for €= Go.

When ¢ — +o0, we can deduce that W=1(Yy + n9(¢ — (o)) — +00, otherwise if ¥~(Yy + 10(¢ — (o))
— A < 400,

Yo +10(¢ = Co) =TT (Yo +m0(¢ — o)) < V(A) < 400,

which is invalid as ( — +o0.
So we see that there exists a (1 > (p such that Y'(¢) > 7 for any ¢ > (3. Then from (2.15) and (2.16),
we have that for ¢ > (y,

Y(¢) < CY'(¢)™.
Integrating the above inequality on [(1, 00), one concludes the proof of (2.17). O

At the end of this subsection, we introduce the following results which focus on the W3-weak solution
and the H™-strong solution of the linear Stokes equations on bounded domains with the Navier-slip
boundary condition.
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Lemma 2.8 (See [21, Corollary 5.7]).  Let Q be a bounded smooth domain, f € L2(Q), F € L3(Q) and
h € W~=33(0Q). Then the Stokes problem

—Av+VP=divF+f, V-v=0, inQ,
2(Sv - n)gan + QVan = h, v-n=0, ondQ

has a unique solution (v, P) € W13(Q) x L3(Q), which satisfies the estimate

[vllwrs@) + [Pllzs) < Caallf + [|1F[| L3 @) + 1R, (2.18)

L3 () _%‘3(69))'

Lemma 2.9 (See [21, Theorem 4.5] and [9, Theorem 2.5.10]).  Let Q be a bounded smooth domain,
meN, f e H™Q) and h € H™ 2 (9Q). Then the solution of the Stokes problem

—Av+VP=f V-v=0, inf,
2(Sv - n)gan + QVgan = h, v-n=0, ondQ

satisfies (v, P) € H™T2(Q) x H™TY(Q). Also, it enjoys the following estimate:

vl gm+2() + |Pllam+r@) < Cal fllzm@) + |k (2.19)

o™ (aﬂ))'

3 Existence

3.1 On Poiseuille flows in pipes Dy and Dgr

In this subsection, we introduce Poiseuille flows in pipes Dy and Dpg, which are solutions of the
system (1.4) in ¥; x R (¢ = L or i = R). We drop the index i for convenience in this subsection.
To find a Poiseuille flow g¢ in 3 x R with a given flux ®, one needs to find a function g : ¥ — R such
that

gdo = goe€s,
— Apgs(zp) = constant in X,
0
i_q) = —age on 0%, (3.1)
on
/ gq>($h)d$h = .
)

Here and below, we assume ® > 0 without loss of generality (see Figure 4).

Remark 3.1. If ¥ is the unit disk in R?, one has the following exact formula of ge:

2(a+2)® a
(a+4)7 (1 B o’

8ad
—
(a+4)m >

gs(z) = >€3 with its pressure pg(z) = —

which could be considered as a generalization of the Hagen-Poiseuille flow under the no-slip boundary
condition (o — 400).

Figure 4 (Color online) A straight infinite pipe ¥ x R
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The existence and uniqueness of go in (3.1) could be derived by routine methods of elliptic equations
in a bounded smooth domain with the Robin boundary condition. Here, we omit the details. We only
derive an H™-estimate of g¢ in terms of ® by the scaling technique.

By the linearity of the problem (3.1), one considers the classical Poisson equation subject to the Robin
boundary condition

~Applan) =1 X,

Iy

- =0 0.

on + ap on
The existence and uniqueness of the problem (3.2) are classical. We refer the reader to [10] for details.
Moreover, the following estimate of ¢ can be derived by classical results:

(3.2)

lollam ) < Cam,=-

Multiplying (3.2)1 by ¢ and using integration by parts, we also note that

/gpdmh:—/ cpAhgod:L':/ \tho|2dx+/ alp|?dS), =: Cp > 0. (3.3)
b > > o))

Thus one concludes that

ga(n) = C%w(m

satisfies the problem (3.1). Then
d
lgellzn(m) = o lle(@n)llmn ) < Camo®  ¥meN, (3.4)

where Cp m y > 0 is a constant independent of ®. Later, for i = L or i = R, we denote by gi = gses
the Poiseuille flows in ¥; x R.

3.2 Construction of the profile vector

In this subsection, we focus on the construction of a smooth divergence-free vector a, which satisfies the
Navier-slip boundary condition (1.3). Meanwhile, the vector a equals g in the far left of D, and it is
identical to g& in the far right of D. Here is the result.

Proposition 3.2.  There exists a smooth vector field a(x) which enjoys the following properties:

(i) a € C*(D), and V-a =0 in D.

(ii) 2(Sa - n)tan + @@tan =0, and a-n =0 on ID.

(i) a=gL inDN{zeR®:23< -2}, anda=g inDN{x e R®: 23 > Z}.

(iv) ||a||Hm(DM) < Comp® for any m € N.
Proof. Recalling the assumption of the domain D, one notices that there exists a smooth domain
¥ C R? such that ¥/ x R CC D (which means that ¥’ x R C D and dist(¥’ x R,0D) > g > 0). Let
h = h(zp) be a smooth function supported on ', which satisfies

/ h(l‘h)dl‘h = o.
By a scaling, we can assume that
1Al rm(sy < Cn®,  Vm €N, (3.5)

Let n = n(x3) be a smooth cut-off function such that

1 for z3 > Z,
n(xs) = (3.6)
0 forxs < Z/2.
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Now we define the vector a by

—:L'3) B (37)
h(wn) + (95 — h(@n))n(zs) + (95 — h(zn))n(—s)

where the 2D vector function A' := (A}, AY) (i = L or i = R) satisfies the following partial differential
equation in 3;:
div, Al (zp,) = h(zp) — g (zp) in 3 (3.8)

subject to the two-dimensional Navier-slip boundary condition

2(SA" - n)ian + AL, =0,
{ ( ) ‘ on 0%, (3.9)

Al =0,

where 1 = (nq(zp), n2(xp)) is the unit outward normal vector on 0%;.

Now let us verify the validity of the above construction.

First, combining (3.7) and (3.8), we see that direct computation shows the divergence-free property of
a. The smoothness of a follows from the smoothness of h, 1, gk, and gZ, which are provided in their
definitions, together with the smoothness of A* and A¥ which will be derived below.

Second, concerning the validity of the boundary condition (ii) in Proposition 3.2, we first see that

gi(xp)es inDN{zx:xz3< -7},
a=q9s( > 7},
h(zn)es in DN{zx:|zs| < Z/2}.

L
o
E(zn)es imnDN{z:ax3

Due to the fact that gses (i = L, R) is the Poiseuille flow in (3.1) which satisfies the same Navier-slip
boundary condition, and the auxiliary function h(zy) is compactly supported in each cross section of D,
we see that a satisfies the Navier-slip boundary condition on 0D N {x : |z3| < Z/2 or |x3| > Z}. For the
remaining part 0D N{x : Z/2 < |z3] < Z}, the unit outer normal vector enjoys the following form:

n = (n,0) = (n1(x),n2(xy),0) on dDN{x: Z/2 < |x3] < 7},

which is independent of the x3 variable. Recalling (2.3), we see that the Navier-slip boundary condition

on 0DN{zx: Z/2 < |zs| < Z}

Q(Sa' : n)tan + QQtan = 07
a-n=0,

enjoys the following form in the orthogonal curvilinear coordinates on the boundary:
Onar, = (k1(x) — a)a,,,
Onas = —aas, on 0DN{z:Z/2 < |zs| < Z}. (3.10)
an =0,

Therefore, noting that the cut-off function 7 depends only on the z3 variable, we see that (3.10);
and (3.10)3 are guaranteed by (3.9); and (3.9)2, respectively. Moreover, by direct calculations,

Onas = 0(23)0n g + n(—23)0n gk
= —an(z3)gs — an(—z3)g5
=—aaz ondDN{zx:7Z/2 < |z3| < Z},

and one proves (3.10)2. Thus we finish the proof of Proposition 3.2(ii).
Third, the property (iii) in this proposition follows directly from the definition of @ in (3.7).
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Finally, we derive the H™-estimate on a in D). Using (3.7), we see that

lalgm@ay S D NA gny + bl + Y lgslans,)
i=L,R i=L,R

Samp @+ D A s, (3.11)
i=L,R

where the last inequality follows from the estimates in (3.4) and (3.5). Now we only need to show the
H™-estimate of 2D vectors A’ (i = L, R), by solving the boundary value problem (3.8)—(3.9), which is
derived in the following lemma.

Lemma 3.3.  Problem (3.8)—(3.9) has a smooth solution A* € C*(X) satisfying
“Ai||H’"(E7¢) < Ca,m,Ei(I)a Vm € N. (312)

Proof.  For the simplicity of notation, we omit the index L or R in the following proof if no ambiguity
is caused. Using the Helmholtz-Weyl decomposition, we can split A into

A=V,0+G. (3.13)

Here, ¢ = ¢(xp,) is a scalar function, which satisfies

Ah¢ = h(l‘h) — gq>(xh) in E,

9o
on " on 9%, (3.14)
/ (bdl‘h =0.

p

By the definition of the auxiliary function h(x},), one sees that h — ge satisfies the following compatibility
condition:

/E(h(fh) — ga(xp))dz, = 0.

Thus, the classical theory of Poisson equations indicates the solvability and regularity ¢ € C*°(X) of the
problem (3.14). In addition, ¢ satisfies

H¢||H’"+2(Z) < Cm’z]Hh — gq:-”Hm(E) < Cm’g(I), Vm S N. (3.15)

It remains to construct the smooth vector G in (3.13). Notice that G should satisfy

divy,G = 0 in 3,
2<SG . ﬁ)tan + OéGtan - 2(8(V¢) . ﬁ)tan + a(Vd))tan on 827 (316)
G-n=0 on 0%.

There is too much space for us to construct a solution G satisfying (3.16) such that ||G||gm sy < Ca,m x®.
For example, we can choose (G, ) to be the pair of solutions to the following linear Stokes equations
with the Navier-slip boundary condition:

-AG+V7r =0, divy,G=0, in X,
2(SG . ﬁ)tan + aGtan = 2(S(V¢) . ﬁ)tan + a(VqS)tan on 32,
G-n=0 on 0X.

From [21, Theorem 4.5] or [9, Theorem 2.5.10]%), we have the following estimate of G:

||GHH’”+2(E) < Ca,m’ZHQ(S(V(b) ’ ﬁ)tan + a(v¢)tan||Hm+1/2(82)

2) Strictly speaking, the theorems in [9,21] are derived for 3D linear Stokes systems. However, their methods are also
valid for related 2D problems (see the introduction part of [9]).
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< Comsll@llam+ss) < Camx®, (3.17)

where on the last line, we have used the trace theorem and (3.15). Then (3.12) is proved by combining

(3.15) and (3.17). O

Remark 3.4. Combining the estimates (3.4), (3.11) and (3.17) above, we see that the following global
Wl _estimate of a is a direct conclusion of the Sobolev embedding:

lallw1.=p) < Ca,p®. (3.18)

This completes the proof of Proposition 3.2 O

3.3 The proof of the existence

In this subsection, we study the solvability of the generalized Leray’s problem subject to the Navier-
slip boundary condition. Considering the asymptotic behavior of the prescribed weak solution in
Definition 1.1, we write

u=v+a, (3.19)

where a is constructed in the previous subsection. Therefore, the generalized Leray’s problem (1.4)—(1.6)
has the following equivalent form in the viewpoint of v.

Problem 3.5 (Modified problem).  Find (v,p) such that

v-Vv+a-Vv+v-Va+Vp—Av=Aa—-a-Va,
in D (3.20)
V-v=0,
subject to the Navier-slip boundary condition
2(Sv - n)tan + QVan = 0,
{ ( ) ’ on D (3.21)
v-n =0,
with the asymptotic behavior as
v(z) = 0 as|xg| — oo. (3.22)

Substituting the expression (3.19) into the weak formulation (1.7), we arrive at the following weak
formulation of v.

Definition 3.6. Let a be a smooth vector satisfying the properties stated in Proposition 3.2. We say
that v € H,(D) is a weak solution of Problem 3.5, if

2/Sv:S<pdx+a/ vtan-gatandS—i—/v-Vv-godx—i—/v~Va~<pdx—|—/a~Vv-godx
D oD D D D

= / (Aa —a-Va) - pdz (3.23)

holds for any vector-valued function ¢ € H, (D).

To establish the existence of the weak solution defined in Definition 3.6, we first introduce the following
Brouwer’s fixed point theorem. It could be found in [17] (see also [8, Lemma IX.3.1]).

Lemma 3.7.  Let P be a continuous operator which maps RY into itself such that for some p > 0,
P&)-£€>20 forall§ € R" with |£] = p.

Then there exists a & € RN with €| < p such that P(&) = 0.

Now, we go to the existence theorem.
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Theorem 3.8.  There is a constant &g > 0 depending on « and the curvature of 0D such that if
D < Dy, then Problem 3.5 admits at least one weak solution

(v,p) € Ho(D) % Lie(D)

with
vl (p) < Ca,p®. (3.24)

Remark 3.9. The weak solution satisfies a generalized version of (3.22). Actually, it follows from the
trace inequality (see [8, Theorem II.4.1]) that

/ |v(2n, x3)2dz), < C/ / (Jv? + |Vv|*)(2n, 2)dzndz,
YR z>z3 JXR

where the constant C' is independent of the z3 variable. This implies
/ |v(2n, x3)|2dzy, — 0 as x3 — +oo.
YR

The case r3 — —o0 is similar.

Now we are ready to provide the proof of Theorem 3.8.

3.3.1 Constructing the velocity field by the Galerkin method

Using the Galerkin method, we first construct an approximate solution and then pass to the limit by
compactness arguments. Recall

X = C,(D; B%) = {9 € C(D, B) : V- 9 = 0, 0 1o = O},
and {pr}72,; C X is an unit orthonormal basis of H, (D), i.e.,

1, ifi=j,

Vi, j eN.
0, ifi#j,

<§0i7(Pj>H1(D) = {
Now we construct an approximation of v of the form

N
=> N ei(x)
=1

To determine vy, one tests the weak formulation (3.23) by ; with ¢ = 1,2,..., N. This indicates

QZC /S% Scpjda:—i-az:c / ‘Pz tan(‘P])tdndSJF Z C; Ck / ‘Pi'V‘Pk'ondx
oD

i,k=1
—I—Z/ cpi~Va~<pjdx+ZcZN/ a- -V, p;dr
i=17D i=1 D
:/(Aa—a~Va)~<,ajdx, Vi=1,2,...,N.
D
As we see, this is a system of nonlinear algebraic equations of the N-dimensional vector

= (e ey o).
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We solve the above system by Lemma 3.7 (Brouwer’s fixed point theorem). To this end, we define
P :RY — RY such that

N N
(P(c™)); =2 Zcfv /DScpi 1 Sepjde + aZcﬁv/ ®i)tan - (j)tandS
i=1 i=1

(
oD

N
+ Z cfvc,lcv/ @i Vi - p;dr
ik=1 D

N N
+Z/ goi-Va-cpjdx—l—Zcfv/ a- -V pdr
i=17D i=1 P
—/(Aa—a~Va)~ijdx, Vi=1,2,...,N.
D
Clearly, one observes that P is continuous. Then we can obtain that

PNy eV :2/ \SUN|2d$+04/ (v )tan| *dS
D oD

I

+ /D((vN +a)-V(vy +a)) - voydr — /D'UN - Aadz.

Ig IS

First, we estimate the term ;. We show that there exists a constant C p depending on a and D such
that

I1 2 Ca’p/ ‘VUNPCZ.’E. (325)
D

By the definition of the stress tensor and integration by parts, one notices that

3
1 1
/D|SUN‘2dx:§/D|V'uN|2dm+§ Z/D@mi(v]v)j@mj(vmidm

ij=1
1 1 o
== Voy|2de + = / vN '3m,~ vy )indS
5 [ 1vox] PO RBEICY
Ill
1 .
— 7/ vy - Vdiv (vy)dz. (3.26)
2Jp

Iy2

Here, the term 15 vanishes due to the fact that vy is divergence-free. Noting that vy -1 =0 on 0D, we
have

3
I, = / vy - (V(vy -n) —vy -Vn)dS = — Z / (vn);j0z,mi(vN);dS.
oD 5=y op
Thus, 111 can be bounded by
| < Cp / (03 )ean 205,
oD

where Cp > 0 is a universal constant depending only on 0D. Inserting the above calculations for I1;
and I3 in (3.26), one arrives at

L 2/ |S'UN|2da:>/ |VvN|2dx—C,§/ (v )ran]2dS,
D D oD

ie.,
@

«
—5L > — Vv 2dw—a/ N )tan|*dS.
Zon> & [ 1VonPds—a [ jon)il



20 LiZ J et al. Sci China Math

Hence, we deduce that

« [0
L+—I1>— [ |Voy|?de.
1+OD1 CD/D| vy | dx

This indicates (3.25).
Next, we turn to the estimate of I5. Using integration by parts, together with the divergence-free
property of vy and a, one knows that

12:/vN~Va-de9:+/a~Va~dex.
D D

121 I22

Noting that vy - = 0 on 9D, and using integration by parts, one finds

3 3
Iy = Z /(’UN)kaa:kal(vN)jdm - Z /(”N)kalazk(UN)ldf-
ki=1"P ki=1"P
Using Holder’s inequality, we have

In1 < Cllal| Lo (o) [on |31 (py-

For the term I3, one notices that a equals the Poiseuille flow g or gff in D — Dz, and thus a- Va =0
in D — Dy . This indicates

|T22] = ‘/ a-Va-vydr
Dz

< llalls,IVal L2, llon | 20y < Opllallin o, llon]m (D)-

Finally, it remains to estimate I3. Similar to Is2, we also claim that

|I5| = ‘/ vy - Aadx
Dz

Here goes the proof of the claim: by the construction of the Poiseuille flow gk, one knows

/ 'uN-Aadx:C/ / (’UN)3dl‘=0.
L x(—00,—2Z) —Z XL

Actually, we can show that

< Czllal|l gz v || a1 (D)

/ (UN)3(.%‘h7$3)d$h
P

is independent of x3 by using div vy = 0 and vy - n = 0. Then using the compact support of vy, we
can get the above equality.

Substituting the above estimates for I;—I3, and applying the Poincaré inequalities in Lemmas 2.5
and 2.6, one derives

P(c™) eV = |onllm o) (Cap — Ca®)llon | m1(p) — Cap(® + 02)),

which guarantees
provided that

and



LiZ J et al. Sci China Math 21

Using Lemma 3.7, we see that there exists v} € span{e1, ¢2,...,¢n} such that

* OOZ,D((I) + (1)2)
lonllar D) < 7(7&@ 0.0 (3.27)
and
2/ Svy : Spndr + a/ (VN )tan * (N )tandS
D oD
+/ v}kv~ij‘V~¢Ndx+/ v}‘\,'Va~¢Ndx+/ a-Vvuy - ¢ndx
D D D
= / (Aa—a-Va)-¢ydr, Ve¢n €span{p1,p2,...,oN}. (3.28)
D

The above bound (3.27) and the Rellich-Kondrachov embedding theorem imply the existence of a field
v € Ho(D) and a subsequence, which we always denote by v}, such that

vy — v weakly in H, (D)

and
vy — v strongly in L?(D’) for all bounded D’ C D.

Therefore, we can pass to the limit in (3.28) and obtain

2/SU:S<pd$C+a/ 'Utan-gotands—l—/v-V'u-tpdm—i—/v~Va~<pdw—|—/a~Vv-<pdx
D oD D D D

= / (Aa—a-Va)-@dr for any ¢ € H,(D). (3.29)
D

Finally, the H'-estimate of v:
vl () < Cap®

follows from (3.27) and the Fatou lemma for weakly convergent sequences. This completes the
construction of v.

3.3.2  Creating the pressure field

While processing the Galerkin method in the previous subsection, we did nothing with the pressure. This
is because all the test functions are divergence-free. To find the pressure, we introduce the following
lemma, which is a special case of [7, Theorem 17] by de Rham (see also [22, Proposition 1.1]).

Lemma 3.10.  For a given open set Q C R3, let F be a distribution in (C2°(;R3)) which satisfies
(F,p)=0 forall ¢ € {gec CF(uR3) :divg = 0}.
Then there exists a distribution ¢ € (C°(;R))" such that
F =Vaq.

Let v be a weak solution of (3.23) constructed in the previous subsection. Using (3.29), one finds that
u = v + a satisfies

/ Vu~Vq,’)dx+/ w-Vu-¢pdr =0 forall ¢ c{gecCF(D;R?) :divg =0}.
D D
Thus by Lemma 3.10, there exists a p € (C°(D;R))" such that
Au—u-Vu=Vp (3.30)

in the sense of distribution.
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To derive the regularity of the pressure, one first notices that (3.30) is equivalent to

n(ws) , n(=ws)

div(Vvv@va@vv@a)+Aa+( B E—
Cpr Cpr

)(1)63 —a-Va=VII (3.31)

with

@7 ns)ds @[T ns)ds

H=p+
Cpr Cpr

(3.32)

Here, Cp; (i = L, R) are Poiseuille constants defined in (3.3), where we have dropped indexes L and R
there. In addition, 7 is the cut-off function which is given in (3.6). By the definition of a in (3.7), both

n(x3) 77(173)>
Aa + ( + de
Cpr Cpr 3

and a - Va are smooth and have compact support. Meanwhile, since v € H!(D) and a is uniformly
bounded, one deduces

Vo -v®v—-—a®v—v®ac L*(D)
directly by the Sobolev embedding and Hélder’s inequality. Therefore, one concludes that the left-hand
side of (3.31) belongs to H~ (D). Then the following lemma implies Il € L2 (D), which leads to

loc

pe L2 (D) by (3.32).

loc
Lemma 3.11 (See [22, Proposition 1.2]).  Let Q2 be a bounded Lipschitz open set in R3. If a distribution
q has all its first derivatives 9,,q (1 <i < 3) in H-Y(Q), then ¢ € L*(Q2) and
lg = Gallz2 @) < CallVallu-1o), (3.33)

where Go = ITll\ Jq adx. Moreover, if Q is any Lipschitz open set in R?, then q € LY ().

loc

This completes the proof of Theorem 3.8.

4 Uniqueness of the weak solution

Recall the solution (u,p) we constructed in the last section with its flux being ®. In this section, we
show it is unique if ® is sufficiently small.

4.1 Estimate of the pressure

The following lemma shows the existence of the solution to the problem V-V = f in a truncated pipe.
Lemma 4.1. Let D =X x [0,1], f € L*(D) with

| saz=o.

Then there exists a vector-valued function V : D — R? belonging to H}(D) such that
VV:f cmd ||VV||L2(D) <C||fHL2(D) (41)

Here, C > 0 is a constant.

See [5,6] and [8, Chapter III] for the detailed proof of this lemma.
Below, the proposition shows that an L2-estimate related to the pressure in the truncated pipe Q}’ or
Q, could be bounded by the L?-norm of Vu.

Proposition 4.2. Let (u,p) be an alternative weak solution of (1.1) in the pipe D subject to the
Navier-slip boundary condition (1.3). If the total flur satisfies

/ u(xp, z) - egdry, = O = / u(zp, 2) - esdxy,  for any |z| = Z,
Dn{zz==z} Dn{xz=z}
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then the following estimate of w := w — w and the pressure holds:

‘ /Qi (p — p)wsdx

where Cp > 0 is a constant independent of K.

< CD(HUHL4(Q§)”vw”iQ(QIi() + vaHi2(Q}t{) + ||Vw||i2(9}i())a VK > Z+ 1,

Proof.  During the proof, we cancel the upper index “+” of the domain for simplicity. Noticing

/ ws(zp, z)dxp, =0, Y|z| > Z
D{zz==z}

we deduce that
/ wyder =0, VK >Z+1.
Qx

23

Using Lemma 4.1, one derives the existence of a vector field V' satisfying (4.1) with f = ws. Applying

the equation (1.1)1, one arrives
/ (p— p)wsdx = — V(ﬁ—p)-Vda::/ (w-Vw+u-Vw+w-Vu— Aw) - Vdz.

Using integration by parts, one deduces

/ (p — p)wsdx = Z/ (Ow; — wiw; — ww; — wjw;)0;V;de.
Qx

7,7=1

By applying Holder’s inequality and (4.1) in Lemma 4.1, one deduces that

’ /QK (P — p)wsdz

Since v3 has a zero mean value on each cross section X, and (w — wseg) satisfies

(w—wsez) - n=0 forany x € 9D NIk,

the vector w enjoys the Poincaré inequality

< C(IVwl e i) + wllZs ) + Il s lwll @) Twsl 22 - (4.2)

lwllz2(0x) < Opl|Vawl|r2(o)- (4.3)

Substituting (4.3) into (4.2) and also noting the Gagliardo-Nirenberg inequality

1/2 3/2
w10,y < Collwl g, IVwliaa,, + [w]3@.0),

one concludes

’/QK@ — p)wsdx

< Op(lulls i IVl om0 + IV@IL ) + IVWIZ2(04))-

This completes the proof. O
4.2 Main estimates
Subtracting the equation of w from the equation of u, one finds
w-Vw+u Vw+w- -Vu+V((p—p) —Aw =0. (4.4)
Multiplying w on both sides of (4.4), and integrating on D, one derives
w - Awdr = ww-Vw+u-Vw+w- -Vu+ V(p—p))de. (4.5)

D¢ D¢
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Using the divergence-free property and the Navier-slip boundary condition of w and u, one deduces

w - Awdx
D¢

Dc

_Z 6 Wi (O, wi + O, w5) dm+2/ win; (Oz, w; + Oy, wj)dxw

i,j=1 i,j=1 9D¢

9 / Swlds - a / (It |? + |0, P)dS
D¢ D NOD

3 3
+ / W; (Ozywi + O, w3)dx), — / W; (Ogs Wi + O, w3)dxp,. (4.6)
Z Srx{zs=C} Z Zpx{zz=—C(}

Here, n = (n1,n2,n3) is the unit outer normal vector on 9D.
On the other hand, using integration by parts, we may alternatively derive

1
w - Awdzr = —/ |Vw|*dz 4+ = V|w|? - ndS, (4.7)
D¢ D¢ 2 Jop,

Ty

where

1 1 1
7 :7/ V|w|2-ndS+f/ V\w|2-nd5+f/ V]wl? - ndS
2 BDCHBDM 2 3'D<ﬂaDL 2 aDgﬂaDR

Ti1 YD T3

1
+ 2(/ O, |w[2(n, C)dan — / O, |02 (2, —C)dxh)
Dn{xs=(} Dn{xs=—(}

To bound the term 777, we apply the local orthogonal curvilinear coordinates on 0D. Thus, we split

0D N ID); into finitely many pieces, i.e.,

N
0D N oDy = | Vi,

i=1

and in each piece V;, there exists an orthogonal curvilinear frame {7{,74,n’} such that
VIw|* = 0, |w|*r) + 0, |w|*T4 + Opi|w[*n®  on V;
- Y7y 1 T 2 n' N

Using (2.1), one derives

N
|T11] < Z/ [wes (a
i=17Vi

< Ca,D / ‘wtan‘gds- (48)
BDC NOD s

Here, Cy,p > 0 is a constant depending only on the friction ratio o and the domain D. The existence
of this constant C, p follows from the boundedness of the principal curvature of 9D (see Proposition 2.2
for details).

Noting that Dy, is a straight pipe, one can find the global natural coordinates {71, es,n} of 9DNIDy,
where 7 and n are the unit tangent vector and the unit outer normal vector of 931 in the x1Oxy plane,

as

Ry () )w.g

while eg is the Euclidean coordinate vector in the x3-direction. In this case, one writes

V|wl|? = 0, |w|*T1 + 0uy|w|*es + On|w|?n  on 0D N ID.
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Using (2.3), one finds that 712 satisfies

|Th2| < ‘/ (wr(o — K1 (x))wr + a|w3|2)d5’ < C’aj)/ |Wian|2dS. (4.9)
QDCHB’DL B'DCQB’DL
Similar to (4.9), one derives
[Tl < Cop [ i 205, (4.10)
3D<ﬂaDR
Substituting (4.8)—(4.10) into (4.7), one concludes that
w - Awdx < 7/ |Vw|*dz + C'Q,D/ |Wian|2dS + C |lw||Vw|dxp,. (4.11)
D¢ D¢ OD:NOD Dn{zz==(}

Now we focus on the right-hand side of (4.5). Applying integration by parts, one derives

ww Vo + VG- [ (Gl + =)o

DN{z3=(}

1 -
—/ w3 <2|'w2 + (p—p))dw. (4.12)
Dn{zz=—(}

Applying Holder’s inequality, and noting that w = v + a, where a is the profile vector defined in
Subsection 3.2, while v is the H'-weak solution constructed in Subsection 3.3, one has

D¢

\ /D (w- V- w+u- V- w)de| < Vo]l g2, ] 3oy + [0l o0 [Vl 200 0]l 4oy
<

+ ||Va||L°<>(D<)Hw||2L2(D<) + lallLe oo IVl 2 (o) Wl L2 (D, )

< Co(lollmpo + lallwe o) /D Vw|de
[
< Ca,pfb/ |Vw|*dz. (4.13)
D¢

Here in the second inequality, we have applied the Gagliardo-Nirenberg inequality and the Poincaré
inequality (2.10) in Lemma 2.6, which indicate

1/2
1/4 3/4
fwllsscoy < Collwl i, ITwlidpg + lwlwy) < Cof [ [FuPas)
q

Meanwhile, the third inequality in (4.13) is guaranteed by (3.24) and (3.18).
Therefore, by calculating
(4.6) x Coqp + (4.11) X a,

we derive

w - Awdz < _2ca,p/ (Sew|?dz — a/ Vw|?ds + C w||Vwldz,,  (4.14)
D¢

D¢ D DN{ws=+¢}

Substituting (4.12)—(4.14) into (4.5), one arrives
(1— ca,ﬂ»)/ |Vw|?dx

D¢
Oa,D

< ( / (Vo] + ) — | ws(p )i + [ wsus—p)da:h).
« DN{zs=+(} DN{zs=C} DN{zs=—(}

Now one concludes that if ® < 1 being small enough such that C, p® < %,

C
szdx<a</ |w|(|Vw| + |w|*)dz),
/D Vel e ([ iVl )

- / w3(ﬁ - p)dxh + / wg(ﬁ — p)dl‘h).
D{zs=C} DN{zs=—C}
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Therefore, one derives the following estimate by integrating with ¢ on [K — 1, K], where K > Z + 1:

K
/ / |Vw|?dzd¢ < Cw(/ lw|(|Vw| + |w|?)dz + ’ / ws(p — p)da
K—1JD; Qluag QluQy

Here, Cop > 0 is a constant. Now we only handle integrations on Q;r( since the case of €1 is similar.

). (4.15)

Using the Cauchy-Schwarz inequality and the Poincaré inequality in Lemma 2.5, one has
L Vol < ol 190l < CIVI (4.10)
Moreover, by Holder’s inequality and the Gagliardo-Nirenberg inequality, one writes

3/2 3/2
[ wlds < Colwli o IVwl ) + 0oz )
K

It follows from the Poincaré inequality that

L2(Q%)"

/ wl3dz < C|[Vuw|f?
Qt

K

Recalling Proposition 4.2, one arrives at

‘/ ws(p —p)dz| < C
2k

Substituting (4.16) and (4.17), together with their related inequality on the domain Q, into (4.15), one
concludes

(all o |90 B ) + V012 ) + V003 0e ). (417)

[ vl < ConI9wlEs g 0 + 190 ) (4.18)
K—-1JD,
4.3 End of the proof

Finally, by defining

K
- / / Ve 2dzdc,
K-1JD,

Y(K) < Cop(Y(K)+ (Y'(K))*?), VK>Z+1.

we see that (4.18) indicates

By Lemma 2.7, we derive
liminf K%Y (K) > 0,
({—o0

i.e., there exists a Cy > 0 such that

K
/ / |Vw|?dzd¢ > CoK>®.
K-1.JD,

However, this leads to a paradox to the condition (1.9). Thus, Y(K) =0 for all K > Z + 1, which proves
uU="u.
5 Regularity and decay estimates of the weak solution

In this section, we show that the weak solution, which is proved to be unique in Section 4, is smooth,
and it decays exponentially to Poiseuille flows g% and g% as 3 — Fo0, respectively. Recall

O [T n(s)ds @ [~ n(s)ds

— 5.1
Cpr Cpr (5:1)

v=u—a, l=p+
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The route of the proof is as follows:
(i) the global W3- and HZ-estimates of v, together with the global L?-estimate of V1I;
(ii) the higher-order regularity of (v, II);
(iii) the H!'-exponential decay estimate of v;
(iv) the exponential decay for higher-order norms of (v, II).

5.1 The global H2-estimate of the solution

In this subsection, we show that the weak solution constructed in Section 3 is strong. Our strategy is
treating the Navier-Stokes system (3.20) as the following linear Stokes equations:

{—Av+VH—divF+f, V.v=0, inD, 52)

2(Sv - N)gan + AVan =0, v-m =0, on ID,
where

F:=—v®uv—a®v—vR®a,

n(xs) 77(1?3))
:Aa+<1>(+ es —a-Va,
! Cpr Cpr 3
and then applying the bootstrapping method. Noting that v € H!(D), we see that the Sobolev embedding
indicates v € L?(D) N L5(D), which indicates v ® v € L3(D). Moreover, noting that a is smooth and
uniformly bounded in D, and both

n(zs) | n(—w3)
A P
a + (CP,R + Crs es

and a - Va have compact support, one concludes
FcI*(D), fecC>xD). (5.3)

Here is the main result of this subsection.

Proposition 5.1.  Let (u,p) be the weak solution to (1.4)-(1.6), and (v,II) be defined as in (5.1).
Then
(v, VII) € H*(D) x L*(D), (5.4)
which satisfies
vl &2y + IVIL]|L2(p) < Ca,p®. (5.5)

Proof.  The proof consists of two parts. First, we show v € W13(D) by applying the regularity results
in (5.3). This leads to
div F € L*(D). (5.6)

Then based on (5.6), we can obtain (5.4).
Now we split the problem (5.2) into a sequence of problems on bounded domains so that Lemmas 2.8
and 2.9 are valid for each one of them. To do this, we define

k k
D= U@k, where D, :Dﬁ{x€R3: (321>Z<x3< <32+1>Z},
keZ

and the related cut-off function

wk_¢<x3—3];z)7

supp ¥ C [—97/10,97/10],

which satisfies

P=1 in [-47/5,47 /5],
0<y <1 in -2, 7],
lpm| < C/Zm < C form=1,2.
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Remark 5.2. According to the splitting and construction above, one notices that the “bubble part”
in D is totally contained in Dy, and 9}, for each k € Z, is totally supported away from the “bubble part”
of D. Moreover, any point in D is contained in at most two neighboring ®j, while the union of sets

ko= A{z3s €DpYu(z3) =1}, keZ

covers D (see Figure 5).

Multiply the linearized equation (5.2); with ¢y, and then we convert the problem (5.2) to a related
problem in the domain ®j with k € Z, i.e.,

(WU) + V(¢ (I -1, ))

div (Y F) + i f + (1L — Ip, )} es3 — 200,05,0 — Yjv — P, F -es  in Dy, (5.7)
V. ( k) = U3y, in Oy, .
2(S(¥rv) - N)tan + ¥(Vi)tan =0,  (Yrv) -m =0, on 09, NID,

Here, the first two lines in (5.7) follow from direct calculations, and thus we only give some explanation
for the boundary condition in (5.7)s. According to the construction of the cut-off function vy, one knows
that for any k € Z, 1, is supported away from the “bubble part” of D. This indicates that the Navier-
slip boundary condition (5.2)2 enjoys the following form in the orthogonal curvilinear coordinates on the

boundary:
anvﬁ = (Kl(m) - a)vﬁa
Onvs = —Qus, on 9D N (0Dr U ODy) (5.8)
n — 07

(see Remark 2.1 for details). Noting that the normal vector n depends only on zj, in the “straight part”
of D, while ¢, depends only on x3, one deduces that the boundary condition of ¥,v shares the form
as (5.8). This indicates the validity of (5.7)s.

However, Lemma 2.8 is not legal for ¥,v at the moment, because ¥,v is not divergence-free, and it
also does not lie on a smooth domain. Nevertheless, let D}, be a bounded smooth domain, which contains
D, with its boundary 9D, D 0D, N ID. Guaranteed by the definition of @y, one chooses each D), with
k > 0 to be congruent with ’}51, and every D}, with k& < 0 to be congruent with D_1.

In order to eliminate the divergence part of 1,v, we introduce auxiliary functions &, which satisfy

A&, = vz, in Dy,

9 _

on
&r(x)dx = 0.

s

0 on 635k, (5.9)

Below, we define
uy 1= v — VEi

gD e —>| ~<<supp ¥ —>|

| : supp ¥ — — |
| |
I D k 1

Figure 5 (Color online) A truncated smooth capsule Dy,
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for convenience. From (5.7) and (5.9), we know that u;, satisfies

—Aw, + V(e (I - 1o, ) = div Fj, + fi in D,
Voup =0 in Dy, (5.10)

Q(Suk . n)tan + a(uk)tan = hk, U -nN = 07 on 8@k
Here,

F, .= F + V3¢,
fe = f + (H - ﬁgk)¢;€e3 - 2w;€aﬂfsv - wgv - ¢;€F " €3,
hi, == —2((SV&) - n)an — a(VEk)tan-

Now we are ready to show the regularity estimate of the quantities F}, fir and hj above.

Lemma 5.3.  The following estimate of Fj, fi and hy holds:

1Flscn + 1kl 3 0, + 1l s, < Collvli oo (1 + [0l o) + CoXp<r. (G:11)

L%(f)k)

Here, the constant Cp is uniform with k, and x| <1 is the characteristic function defined by

1, ke fo,1,-13,
XHSYZ Y0, ifkez—{0,1,-1}.

Proof.  Noting that the support of ¢, is uniformly bounded, we see that the estimates of Fj and hy
in (5.11) follow directly from the classical elliptic estimate of the system (5.9), which is

[1€kllw28(5,) < OpllvllLe(oy) < Collvllmi (o) (5.12)

The trace theorem of Sobolev functions indicates that
HthW—%,?,(a,bk) < Ca,D||€k||w2,3(35k)- (5.13)

For the term fi, we only derive the estimate of the pressure term since the rest are transparent. Using
Lemma 3.11 and Hélder’s inequality, one deduces

|~ oo, )41l 3 g, < CII = Tn,llz2(o,) < CLIVI 4 o1m,). (5.14)

L%(f)k)
Notice that by the definitions of ®j and Dy, each Dy (k € Z) is congruent with an element in
{D_1,90,D1}, while every Dy (k € Z) is congruent with an element in {D_;,D¢,D1}. Thus, the
constants in the estimates (5.12)—(5.14) above could be chosen uniformly with respect to k € Z. Finally,
by the equation

VH:diV(Vv—v®U—a®v—v®a)—|—Aa+(n(xs)—&—n(_m?’))fbeg—a-Va
Cpr Cpr

with both

n(rs3) 77($3)>
Aa + < + ——— | de
Cpr CpL 3

and a - Va vanishing in @, with |k| > 2, one concludes from (5.14) that

[[(T1 =TI, )4 | CIVollL2@,) + 10l + PlvllL2@,)) + CPX ki<

N
L2(Dy)
< Coplvlaion)( +vlla(o,) + COXk<1- (5.15)

Here, we have applied the Sobolev embedding theorem and interpolations of LP spaces. This completes
the proof of Lemma 5.3. O
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Therefore, one concludes the following intermediate W 13-estimate of v:
[vllwispy < Cap® (5.16)

by combining (2.18) in Lemma 2.8 and (5.11) in Lemma 5.3, and then summing up with k¥ € Z. The
details are as follows:

||vH:Ig/V1‘3(D) < CZ Hwkv”?/vla(@k)

keZ
< CZ(”ukH?/Vls(@k) + ka”f’/{,—z,s(@k))
kEZ
< Cap Y (Il (0, X+ [0l (0,)) + 2*xpp1<1)-
keZ

Here, we have applied the fact that any point in D is contained in at most two neighboring ©;. Noting
that ® < &g = Pg(, D), we see that

ooy < ca,o(@ 129 S ol + @3) < Copd®
k€EZ

Moreover, (5.16) and Holder’s inequality indicate that
[v- Vol L2 () < [[vllo(p) IVl 3 (p) < oo,

which further implies
divF + f € L*(D).

Similar to (5.11), now we can deduce

[|div F}, + kaL2(35,€) + ”h’“”H%(aék) < Coplvlm @)+ [vla (0,)) + CPX k<1 (5.17)

From now on, Lemma 2.9 with m = 0 is valid for the system (5.10). Combining (5.17) above and (2.19)
in Lemma 2.9, one arrives at

el gz, + 1€kl a2,
Cop||vl 1 (2,) (L + [[v]|51(2,)) + COX k<1 (5.18)

vl 520, <
<

Now summing over k € Z, one proves (5.4) and (5.5) by an approach similar to the proof of (5.16). The
estimate of VII in (5.5) follows directly from the equations (5.2); and (5.18) above. This completes the
proof of Proposition 5.1. O

Remark 5.4. In the proof of Proposition 5.1, one notices that (5.14) and (5.15) can lead to the
following uniform estimate of the pressure by summing over k € Z:

D M - To, [[72(0,) < Cap®® < 0. (5.19)
keZ

Moreover, since (5.19) is derived in the framework of the H!'-weak solution, it is valid for the case where
0D is less regular.

5.2 Higher-order regularity and related estimates

Following the route of obtaining H? regularity of the solution, now we are ready to derive higher-order
regularity of (u,p) via bootstrapping.
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Proposition 5.5.  Let (u,p) be the weak solution to the problem (1.4)—(1.6). Then

(u,p) € C=(D).

Meanwhile,
v—u-a T—p+ ® [*2 n(s)ds B ® [ n(s)ds
’ Cpr CpL
satisfies
vl gm+2 0y + [[VH| gm0y < Cya, @ (5.20)

Proof.  The proof follows from an induction argument. First, the case of m = 0 is already shown in
Proposition 5.1. Once the regularity estimate (5.20) is achieved with the order m > 0, one deduces that

IV (v - Vo)l 22y < o, ([0]| e () [V 20| 220y + 0[5y ms1.4()) < Conp 0] Frms2(py- (5:21)

Therefore, the Navier-Stokes system (1.1)—(1.3) is equivalent to

—Av+VIl=g, V-v=0, in D,
(5.22)
2(Sv - n)tan + AVt =0, v-n =0, on JdD,
where
g=—-(v-Vv+v-Va+a-Vv+a-Va) +Aa+<1><n(x3) + 77(—963)>e3
Cpr Cpr
enjoys
||g||H’"+1(D) < Cm,aJD(I) < 00
by direct calculations. Meanwhile, the problem (5.9)
A&, = vsiy,  in Dy,
0 ~
ﬁ =0 on 09y,
on
Ep(z)dr =0
Dy
now admits a unique solution in H™+4(9D;) that satisfies
||§kHHm+4(z")k) < Cmplvlamezo,)- (5.23)

Here, the constant C,, p is independent of k, because every Dy, is congruent with an element in
{D_1,90,D1}. Recalling the construction of (5.10), we conclude that uy := v — V& satisfies

—Auk + V((ﬂk(ﬂ — ﬁ@k)) = gk in @k,
V-u, =0 in Dy,
2(Sug - n)tan + (g )tan = hg, ur-m =0, on 0Dy

with

gi = div (0 F + V7E0) + i f + (1~ Tlo, Jujes — 204050 — vivses — ULF - e,
hi i= —2((SVEK)  )ran — A(VEk)tan-

By induction, together with (5.21) and (5.23), one deduces that

1gill prmr 2,y F 1Bl i3 55,y S Cmaplvlamz@y) @+ [vllamiz @) + Culxina (5.24)
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by the approach in the proof of Lemma 5.3. Using the higher-order regularity for linear Stokes equations
in Lemma 2.9, together with the estimates (5.23) and (5.24), one proves the following H™*3-estimate
in ® ke

[l m+s(o4) ||ukHHm+3(z”)k) + ka”HM-M(@k)

<
< Comap|vlamez@,) (1 + V] gmi20,)) + Cn®X k<1

Summing over k € Z, one concludes
vl gm+s(py < Coym,p®.

Finally, the estimate of VII in (5.20) follows directly from the equation (5.22); and the estimate above.
This completes the proof of Proposition 5.5, which indicates the validity of (1.10) in Theorem 1.6. O

5.3 Exponential decay of the weak solution

In this subsection, we show the H'-norm exponential decay property of the solution. Qur proof is carried
out under the framework of the H'-weak solution, which means that we only assume the solution satisfies
the estimate in Theorem 3.8. However, with the help of the higher-order uniform estimates of the solution
in Proposition 5.5, the proof of the exponential decay property would be much simpler. Nevertheless,
our proof in this subsection is also valid for the stationary Navier-Stokes problem on domains which are
less regular, i.e., an infinite pipe only with a C''! boundary.

Proposition 5.6.  Let the conditions of Theorem 1.4 be satisfied and (v,1I) is given in (5.1). Then
there exist positive constants C' and o depending only on « and D such that

lw = gl sy x(—o0—0)) + 1t = & |11 (Srx(c,00)) < Cllvll a1 (D) exp(—0¢) (5.25)

forany ¢ > Z + 1.

Proof. ~ We only prove the estimate of the term ||u — gZ|| H'(Srx(¢,00)) Since the remaining term is
essentially identical. In Yz X (Z,00), the equation of v =u — a is

v-Vv+a-Vv+v-Va+ VII-Av =0. (5.26)

This is because

Aa + <M+M>®e3—a~Va: (Ag§+®>e3:0 in ¥p x (Z,00).
Cpr Cp,r Cpr

)

In the following proof, we drop (upper or lower) indexes “R” for convenience. For any Z < ¢ < (' < (1,
taking the inner product with v on both sides of (5.26) and integrating on ¥ x (¢, (1), one has

/ v-Avdx:/ (v-Vv+a-Vv+v-Va+ VII) - vdz. (5.27)
Tx(¢’5¢1) Tx(¢’¢1)

left-hand side (LHS) right-hand side (RHS)

To handle the left-hand side of (5.27), one first recalls the derivation of (4.6), which indicates that

/ v - Avdz
Ex(¢’,¢1)

= —2/ |Sv|*dz — a/ |Vgan|?dS
2x(¢"C1) 9L x(¢",¢1)

3

3
_ Z/ 0; (025 i + Op,v3)dap + Z/ Vi (Ogs Vi + Og,v3)dxp,. (5.28)
i—1 Ex{xz=('} i—1 Yx{xzz=C(1}
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On the other hand, one can derive the following inequality similar to (4.11):

/ v - Avdr < 7/ |V 2de + ca,D/ |Van|2dS
=x(¢6) Ex (') ITX (¢ C1)

3 3

— Z/ 0; Oy vid ), + Z/ VO Ui dTp,. (5.29)
i=1 Y EZx{zz=¢'} Ex{zz=(1}

i=1

Therefore, by calculating
(5.28) x Cop +(5.29) X «,

one deduces that the left-hand side of (5.27) satisfies

3 3
LHS < —a/ |V'u‘2da: + Ca,D(Z/ 0; Oy, v3dTp, — Z/ vi&civgdxh>
Ex(¢,¢1) i—1 7/ Ex{zs=C1} i—1 7Y Ex{r3=¢"}
3 3
+ (a+ Ca,p)< / ;0p. V;dx), — / ;0. vidach) (5.30)
; ZX{Igzcl} ? ; ZX{aZg:C/} ?

Using integration by parts on the right-hand side of (5.27), one arrives at

1
RHS = / (2(v3 + gq>)|'v|2 + 3l + g@(vg)Q) dxp,
Ex{zz=C1}

1
*/ <2(U3+g<1>)|v2+’U3H+g<1>(7)3)2>d$h
EX{:U;:,:C'}
- / v- Vv - adz. (5.31)
Ex(¢',¢1)

Now we are ready to perform (; — oo. To do this, one must be careful with the integrations on
Y x{x3 = (1} in both (5.30) and (5.31). Recalling the estimates of (v,II) in Theorem 3.8 and Remark 5.4,

one derives

1011 oy + [0l 7y + Y T = o, [|72(0,) < Cayp®® < o0 (5.32)
kez
Choosing
Cop®?
M = 2
Z )

one concludes that for any k > 1, there exists a slice ¥ x {x3 = (3 1} which satisfies

1 1
Ex{x3:g‘17k}CDﬁ{xER3:(3:—2>Z<xg<<32]€+2>Z}C©k,

and it holds that
/ (|IVo)? + [v|* + T — TIp, |*)dzy < M.
Ex{x3=C1x}

Otherwise, one has
[ol3r 0 + 10 7a, + T = To, 72(0,) > ZM = Co,p®?,
which creates a paradox to (5.32). Choosing ko > 0 being sufficiently large such that the sequence satisfies

{Cl,k}g‘;ko C [¢’, 00), clearly one has (1 " 00 as k — oo. Moreover, using the trace theorem of functions
in the Sobolev space H!, one has

/ |v(zp, 23)[2day, < C/ /(|v|2 + |V} (zh, 2)depdz — 0 as x3 — oo.
b z2>z3 J 8
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Noting that fo{we,:Cl o} vsdzxy = 0 for k > kg, we deduce the following by the Poincaré inequality:

‘ / valldxy,
Ix{zs=C1rn}

= ‘/ U3(H—ﬁ©k)d$h
Ex{z3=Ci,x}

1/2 B 1/2
< </ |v|2dxh> </ III — H@k|2dxh> —0 ask — oo
Ex{xs=C1,x} Ex{xs=C1x}

Meanwhile, one finds

/ [ol([Vo] + o) da,
Ex{zz=(1 k
1/2 1/2
</ (|Vo|* + |v|4)dxh> (/ |v|2dach) —0 ask — o0
Sx{xz=C1k} Ex{xz=C1k}

/ |gq>||v|2dxh < ||gq>||Loo(’DR)/ |'u\2dmh —0 ask — oo.
ESx{zz=(1k Sx{xz=C1,k}

N

and

Choosing ¢1 = (1,5 (k > ko) in (5.30) and (5.31), respectively, and performing k — oo, one can deduce
that

a/ |Vo|*dz
X (¢’,00)

< / v-Vv-adr+ Cop (|'u\(|11|2+|gq>||v|—|—|Vv|)+1)3H)d:vh.
£x (¢’ ,00) Sx{zz=¢’}

Ry

Using the Cauchy-Schwarz inequality, the Poincaré inequality in Lemma 2.5 and the construction of the
profile vector a, one derives

1/2 1/2
B < ||a||L°°<D></ IVdew> (/ |v|2d:r> < Cocb/ Vol’da,
3% (¢’,00) $x(¢!,00) Sx(¢7,00)

which indicates the following estimate provided & is small enough such that Cy® < a:

/ Vol?dz < Cop / (10](1]? + [gallv] + [Vo]) + vsID)day. (5.33)
$x(¢!,00) Ex{xz3=C"}
Denoting
G(¢) = / |Vo|de, (5.34)
£x(¢’,00)

and integrating (5.33) with ¢’ on (¢, 00), one arrives at

/g<<’>d¢’<ca,p( / <|v|(v|2+|gq>|v|+Vv|>>dm+] / vyTldz
¢ Ex(¢,00) Ex(¢,00)

). (5.35)

Applying the Poincaré inequality in Lemma 2.5, one deduces
[ lef + lgwliel + [Veldo < Cop [ Vol (5:30
2% (¢,00 X (¢,00)

Moreover, using a similar approach as in the proof of Proposition 4.2, one notices that

‘/ v3lldz| < Z / vs3lldz
Ex(¢,00) m=1 Q_c'—er
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<O (lgollpmqer, IVoBags )+ IV0Rage +190l%0r )
1 ¢+m C+m C+m
<C Vo |?da. (5.37)
2% (¢,00)

Substituting (5.36) and (5.37) into (5.35), one arrives at
/ G(¢"Hd¢' < CopG(¢) for any ¢ > Z.
¢

This implies that .
N©= [ g
is well-defined for all { > Z, and
N() < —CopN'(¢) for any ¢ > Z. (5.38)
Multiplying the factor eCa.2¢ on both sides of (5.38) and integrating on [Z,(], one deduces
N() <Cuanp exp(—C’;é)() for any ¢ > Z.

According to the definition (5.34), one knows that G is both non-negative and non-increasing. Thus,

¢
GO < [ G <N(C—1) < Coxp(~Coh¢) forany > Z +1.
¢c—1

We complete the proof of (5.25) by choosing o = C;%). O
5.4 On the exponential decay for higher-order derivatives

In this subsection, we focus on the higher-order asymptotic behavior of the aforementioned unique smooth
solution to the problem. One sees that the solution u converges to the Poiseuille flow at the far field
with an exponential speed. Based on the H' decay property in Proposition 5.6, we finish the proof of
the estimate (1.11) in Theorem 1.6.

Using Sobolev embedding, we first need to show the following decay of the solution in the H™-norms
with m > 2:

vl (51 % (~00,~¢)) T 1Vl Em™ (2R % (¢,00))

< Crna, D[V 51 (51 x (—00,—c+22)) T V1 (5Rx(c—22,00))) for all { > 3Z.

This is derived by using the method in the proof of Proposition 5.5, but summing over k € Z such that

supp ¥x, N ((—00, —¢) U (¢, 00)) # 0.
Then the proof is completed by the H! decay estimate (5.25).
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