
SCIENCE CHINA
Mathematics

https://doi.org/10.1007/s11425-022-2129-y

c© Science China Press 2024 math.scichina.com link.springer.com

. ARTICLES .

On Leray’s problem in an infinitely long pipe
with the Navier-slip boundary condition

Zijin Li1 , Xinghong Pan2,∗ & Jiaqi Yang3

1School of Mathematics and Statistics, Nanjing University of Information Science and Technology,
Nanjing 210044, China;

2School of Mathematics and Key Laboratory of Ministry of Industry and Information Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;

3School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, China

Email: zijinli@nuist.edu.cn, xinghong 87@nuaa.edu.cn, yjqmath@nwpu.edu.cn

Received September 7, 2022; accepted March 13, 2023; published online February 6, 2024

Abstract The original Leray’s problem concerns the well-posedness of weak solutions to the steady

incompressible Navier-Stokes equations in a distorted pipe, which approach the Poiseuille flow subject to the

no-slip boundary condition at spatial infinity. In this paper, the same problem with the Navier-slip boundary

condition instead of the no-slip boundary condition, is addressed. Due to the complexity of the boundary

condition, some new ideas, presented as follows, are introduced to handle the extra difficulties caused by

boundary terms. First, the Poiseuille flow in the semi-infinite straight pipe with the Navier-slip boundary

condition will be introduced, which will serve as the asymptotic profile of the solution to the generalized Leray’s

problem at spatial infinity. Second, a solenoidal vector function defined in the whole pipe, satisfying the Navier-

slip boundary condition, having the designated flux and equalling the Poiseuille flow at a large distance, will be

carefully constructed. This plays an important role in reformulating our problem. Third, the energy estimates

depend on a combined L2-estimate of the gradient and the stress tensor of the velocity.
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1 Introduction

The 3D stationary Navier-Stokes (NS) equations which describe the motion of stationary viscous

incompressible fluids are as follows:{
u · ∇u+∇p−Δu = 0,

∇ · u = 0,
in D ⊂ R

3. (1.1)
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Here, u(x) ∈ R
3 and p(x) ∈ R represent the velocity and the scalar pressure, respectively. In this paper,

we consider the smooth domain D to be an infinitely long pipe with two straight “outlets”, the left and

the right, and a compact distortion, a bubble or a bulge, in the middle. We define it as follows:

D = DL ∪ DM ∪ DR, (1.2)

where DL and DR are semi-infinite smooth straight pipes with their cross sections ΣL and ΣR being

perpendicular to the x3-axis, i.e.,

DL = ΣL × (−∞,−Z/2] and DR = ΣR × [Z/2,+∞).

Here, ΣL,ΣR ⊂ R
2 are smooth bounded domains. The distortion part DM ⊂ R

2 × (−Z,Z) is a compact

smooth domain in R
3 (see Figure 1).

Moreover, technically we assume that there exists an infinitely long smooth straight pipe getting

through D, which means that there exists a Σ′ ⊂⊂ ΣL ∩ΣR such that Σ′ ×R ⊂ D. This will be applied

in the construction of the profile vector in Subsection 3.2.

In the current paper, the Navier-Stokes equations (1.1) will be equipped with the following boundary

condition, i.e., the Navier-slip boundary condition:{
2(Su · n)tan + αutan = 0,

u · n = 0,
on ∂D. (1.3)

Here, Su = 1
2 (∇u + ∇Tu) is the stress tensor, where ∇Tu stands for the transpose of the Jacobian

matrix ∇u, and n is the unit outer normal vector of ∂D. For a vector field v, we denote by vtan its

tangential part, i.e., vtan := v − (v · n)n. α > 0 stands for the friction constant which may depend on

various elements such as the property of the boundary and the viscosity of the fluid. When α → 0+, the

boundary condition (1.3) turns to be the total Navier-slip boundary condition, while when α → ∞, the

boundary condition (1.3) degenerates into the no-slip boundary condition u ≡ 0 on the boundary. In this

paper, we assume 0 < α < +∞.

Throughout this paper, Ca,b,c,... denotes a positive constant depending on a, b, c, . . . , which may be

different from line to line. For a vector x = (x1, x2, x3) ∈ R
3, we define xh := (x1, x2). For a two-

dimensional scalar function f or a vector-valued function f := (f1, f2), we define

∇hf = (∂x1f, ∂x2f), Δhf = ∂2
x1
f + ∂2

x2
f, divhf := ∂x1f1 + ∂x2f2.

Meanwhile, for any ζ > 1, we define

Dζ := {x ∈ D : −ζ < x3 < ζ},

Figure 1 (Color online) Infinite pipe D, with a bubble and an obstacle in the middle
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the truncated pipe with the length of 2ζ. Meanwhile, the notations Ω±
ζ are denoted by

Ω+
ζ := (Dζ −Dζ−1) ∩ {x ∈ D : x3 > 0}, Ω−

ζ := (Dζ −Dζ−1) ∩ {x ∈ D : x3 < 0},

respectively. We also apply A � B to stating A � CB. Moreover, A 
 B means both A � B and B � A.

For 1 � p � ∞ and k ∈ N, Lp denotes the usual Lebesgue space with the norm

‖f‖Lp(D) :=

⎧⎪⎨
⎪⎩
(∫

D

|f(x)|pdx
)1/p

, 1 � p < ∞,

esssupx∈D|f(x)|, p = ∞,

while W k,p denotes the usual Sobolev space with its norm

‖f‖Wk,p(D) :=
∑

0�|L|�k

‖∇Lf‖Lp(D),

where L = (l1, l2, l3) is a multi-index. We also simply denote W k,p by Hk provided that p = 2. Finally,

D̄ denotes the closure of a domain D. A function g ∈ W k,p
loc (D) or g ∈ W k,p

loc (D̄) means g ∈ W k,p(D̃) for

any D̃ compactly contained in D or D̄.

For the 3D vector-valued function, we define

H(D) := {ϕ ∈ H1(D;R3) : ϕ · n |∂D = 0},
Hσ(D) := {ϕ ∈ H1(D; R3) : ∇ ·ϕ = 0, ϕ · n |∂D = 0}

and

Hσ,loc(D) := {ϕ ∈ H1
loc(D; R3) : ∇ ·ϕ = 0, ϕ · n |∂D = 0}.

We also define

X := {ϕ ∈ C∞
c (D;R3) : ∇ ·ϕ = 0, ϕ · n |∂D = 0}.

Clearly, X is dense in Hσ in the H1(D)-norm. For matrices Γ = (γij)1�i,j�3 and K = (κij)1�i,j�3, we

define

Γ : K =

3∑
i,j=1

γijκij .

Next, we state the main problem of the paper.

1.1 Leray’s problem with the Navier-slip boundary condition

For a given flux Φ which is supposed to be nonnegative without loss of generality, if we consider the

Poiseuille flow, gi
Φ, of (1.1) with the boundary condition (1.3) in Di (i denotes L or R), then it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi
Φ = giΦ(xh)e3,

−Δhg
i
Φ(xh) = Ci in Σi,

∂giΦ
∂n̄

= −αgiΦ on ∂Σi,∫
Σi

giΦ(xh)dxh = Φ,

where the constant Ci is uniquely related to Φ, while n̄ is the unit outer normal vector on ∂Σi. We can

see that gi
Φ is a solution of (1.1) with the Navier-slip boundary (1.3) in Σi × R.

The main objective of this paper is to study the solvability of the following generalized Leray’s problem:

for a given flux Φ, find a pair (u, p) such that{
u · ∇u+∇p−Δu = 0, ∇ · u = 0, in D,

2(Su · n)tan + αutan = 0, u · n = 0, on ∂D (1.4)
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with ∫
Σi

u3(xh, x3)dxh = Φ for |x3| > Z/2 (1.5)

and

u → gi
Φ as |x| → ∞ in Di. (1.6)

To prove the existence of the above generalized Leray’s problem, we first introduce a weak formulation.

Multiplying (1.4)1 with ϕ ∈ X and integrating by parts, by the boundary condition (1.4)2, we can obtain

2

∫
D
Su : Sϕdx+ α

∫
∂D

utan ·ϕtandS +

∫
D
u · ∇ϕ · udx = 0 for all ϕ ∈ X. (1.7)

Now we define the weak solution of the generalized Leray’s problem.

Definition 1.1. A vector u : D → R
3 is a called a weak solution of the generalized Leray’s problem

(1.4)–(1.6) if and only if

(i) u ∈ Hσ,loc(D);

(ii) u satisfies (1.7);

(iii) u satisfies (1.5) in the trace sense;

(iv) u− gi
Φ ∈ H1(Di) for i = L,R.

Remark 1.2. The weak solution also satisfies a generalized version of (1.6). Actually, it follows from

the trace inequality (see [8, Theorem II.4.1]) that for any x3 > Z,∫
ΣR

|u(xh, x3)− gR
Φ (xh)|2dxh � C‖u− gR

Φ‖2H1(ΣR×(x3,+∞)),

where the constant C is independent of x3. This implies that∫
ΣR

|u(xh, x3)− gR
Φ (x)|2dxh → 0 as x3 → ∞.

The case of x3 < −Z is similar.

The following result shows that for each weak solution, we can associate a corresponding pressure field

with it (see the proof in Subsection 3.3.2 below).

Lemma 1.3. Let u be a weak solution to the generalized Leray’s problem defined above. Then there

exists a scalar function p ∈ L2
loc(D) such that∫
D
∇u : ∇ψdx+

∫
D
u · ∇u ·ψdx =

∫
D
p∇ ·ψdx

holds for any ψ ∈ C∞
c (D;R3).

1.2 Main results

Now we are ready to state the main theorems of this paper. The first one is the existence of weak

solutions, the second one addresses the uniqueness of the weak solution, and the third one concerns the

regularity and decay estimates of the weak solution.

Theorem 1.4. Assume that D is the aforementioned smoothness domain in (1.2). Then there exists

a positive constant Φ0 depending only on α and D such that for any Φ � Φ0, the generalized Leray’s

problem (1.4)–(1.6) has a weak solution (u, p) ∈ Hσ,loc(D) × L2
loc(D) satisfying

∑
i=L,R

‖u− gi
Φ‖H1(Di) � Cα,DΦ, (1.8)

where Cα,D depends only on α and D.
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Theorem 1.4 only states the existence of a weak solution, which has the finite energy property after

the background Poiseuille flows are subtracted. However, the uniqueness of the solution is not shown.

Actually, the estimate (1.8) is enough for us to deduce the following uniqueness theorem, which allows

the energy of the weak solution in Dζ to satisfy 3/2-order growth with respect to ζ. The achievement of

this relaxation is due to the application of a key lemma in [15], which will be presented in Section 2.

Theorem 1.5. Let (u, p) be a weak solution to (1.4)–(1.6). Suppose that for any ζ > Z,

‖∇u‖L2(Dζ) = o(ζ3/2). (1.9)

Then the weak solution is unique1) provided that the flux Φ is sufficiently small.

The following theorem gives the smoothness and the asymptotic behavior of (u, p), which decays

exponentially to the Poiseuille flow gi
Φ at each outlet Di as x3 tends to infinity.

Theorem 1.6. Let u be the weak solution in Theorem 1.4 and p be the corresponding pressure. Then

(u, p) ∈ C∞(D) such that for any m = |β| � 0,∑
i=L,R

‖∇β(u− gi
Φ)‖L2(Di) + ‖∇βu‖L2(DM ) � Cm,α,DΦ. (1.10)

Meanwhile, the following pointwise decay estimates hold:

|∇β(u− gL
Φ)(x)| � Cm,α,DΦexp{−σm,α,D|x3|} for all x3 < −Z − 1,

|∇β(u− gR
Φ )(x)| � Cm,α,DΦexp{−σm,α,D|x3|} for all x3 > Z + 1.

(1.11)

Here, Cm,α,D and σm,α,D are positive constants depending on m, α and D.

Remark 1.7. For the pressure p which is generated in Lemma 1.3, there exist two constants CP,L,

CP,R > 0 (see (3.3)) and a smooth cut-off function η with

η(x3) =

{
1 for x3 > Z,

0 for x3 < Z/2

(which is given in (3.6)) such that for any m = |β| � 0,

∥∥∥∥∇β∇
(
p+

Φ
∫ x3

−∞ η(s)ds

CP,R
− Φ

∫ −x3

−∞ η(s)ds

CP,L

)∥∥∥∥
L2(D)

� Cm,α,DΦ.

Meanwhile, the following pointwise decay estimate holds: for all |x3| > Z + 1,

∣∣∣∣∇β∇
(
p+

Φ
∫ x3

−∞ η(s)ds

CP,R
− Φ

∫ −x3

−∞ η(s)ds

CP,L

)
(x)

∣∣∣∣ � Cm,α,DΦexp{−σm,α,D|x3|},

where Cm,α,D and σm,α,D are positive constants depending on m, α and D. The subtracted term

pg := −Φ
∫ x3

−∞ η(s)ds

CP,R
+

Φ
∫ −x3

−∞ η(s)ds

CP,L

is set to balance the pressure of the Poiseuille flows.

1.3 Main difficulties, strategies and outline of the proof

Difficulties. Compared with the no-slip boundary condition, the main difficulties of the problem with

the Navier-slip boundary condition lie in

1) The pressure p is unique up to subtracting an arbitrary constant.
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(i) the absence of the Korn-type inequality (the L2-norm equivalence between ∇v and Sv) on D with

a noncompact boundary;

(ii) the construction of a smooth solenoidal vector field a satisfying the Navier-slip boundary condition

and equalling the Poiseuille flow at a large distance for a given flux;

(iii) achieving Poincaré-type inequalities under the Navier-slip boundary condition;

(iv) derivation of the global H2-estimate of the H1-weak solution.

Strategies. To overcome the difficulties listed above, our main strategies are as follows:

(i) During the proof of both existence and uniqueness, an H1-estimate of the solution is required.

Owing to the boundary condition, we only have the L2-estimate of the stress tensor Sv. However, the

Korn-type inequality is not applicable to our domain considered here with a noncompact boundary.

Fortunately, the energy estimate of the stress tensor Sv will produce a boundary integration with a good

sign, which can be used to control the bad terms coming from the energy estimate of the gradient of the

velocity. At last, by combining the uniform energy estimates of the stress tensor with the L2-estimate of

the gradient of the velocity, we can achieve the H1-estimate of v.

(ii) Our main idea in constructing a is to smoothly connect Poiseuille flows in gL
Φ and gR

Φ with a

compactly supported divergence-free vector (0, 0, h(xh)) in DM . In the intermediate parts, we glue them

by solving a 2D divergence equation in the cross section with the 2D Navier-slip boundary condition.

(iii) For the no-slip boundary condition, the Poincaré inequality can be applied directly. However, in

the case of the Navier-slip boundary condition, the Poincaré inequality is not obvious in both straight

pipes DL, DR and the truncated pipe Dζ . To handle the case in DL or DR, we divide a vector-valued

function into the xh-direction part and the x3-direction part. The first part follows from a 2D Payne’s

identity (2.5) and the impermeable boundary condition, while the second part is achieved by subtracting

the constant flux so that v3 has zero mean value in any cross section of DL or DR (see Lemma 2.5).

Based on the result of the straight pipe, we derive the Poincaré inequality in Dζ by the trace theorem

and a 3D Payne’s identity (2.11) (see Lemma 2.6).

(iv) Our idea of obtaining the global H2-estimate is to decompose D into a series of bounded smooth

domains D̃k which only have three shapes so that the related estimate constant in D̃k could be uniform

with k. In each D̃k, we establish the H2-estimate of the solution via the known conclusions for the linear

Stokes system with the Navier-slip boundary condition in [21]. Then we achieve the global H2-estimate

by summarizing those estimates in D̃k.

Outline of the proof. The existence of the solution will be given in Section 3. First, the Poiseuille

flows in Di (i = L,R) with their fluxes being Φ and satisfying the Navier-slip boundary condition will

be constructed. Then a smooth divergence-free vector field in D subject to the Navier-slip boundary

condition and equalling the Poiseuille flows at the far left and the far right will be introduced. In this

way, we can reduce the existence problem to a related one in which the solution approaches zero at spatial

infinity. Then this problem can be handled by the standard Galerkin method.

The proof of the uniqueness is derived in Section 4. The main idea is applying Lemma 2.7, which was

originally announced in [15] as far as the authors know. If (u, p) and (ũ, p̃) are two distinct solutions, we

define the energy integral in terms of w := ũ− u as follows:

Y (K) :=

∫ K

K−1

∫
Dζ

|∇w|2dxdζ.

An ordinary differential inequality of Y (K), which satisfies the assumption in Lemma 2.7, will be derived.

The derivation of this inequality involves a series of estimates, two terms of which are especially different

from the previous literature, i.e.,
∫
Ωζ

pv3dx and
∫
Dζ

v ·Δvdx. The estimate of the first term involves an

application of the partial Poincaré inequality in Lemma 2.4 and a divergence-gradient operator estimate

in Lemma 4.1. The estimate of the second term is derived by combining the L2-norms of both the stress

tensor and the gradient of the velocity. At last, the vanishing of Y (K) will be proved, which indicates

the uniqueness of the solution.

Proofs of the smoothness and exponential decay of the solution to the Poiseuille flow at a large spatial

distance are given in Section 5. By the “decomposing-summarizing” technique in the strategy (iv),
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W 1,3 and then H2 global estimates will be derived. By the bootstrapping argument, higher-order global

estimates will follow. For the exponential decay estimates, here goes the idea: by defining the following

energy for ζ > Z + 1:

G(ζ) :=
∫
ΣL×(−∞,−ζ)

|∇(u− gL
Φ)|2dx+

∫
ΣR×(ζ,+∞)

|∇(u− gR
Φ )|2dx,

then we can derive a first-order ordinary differential inequality, which will result in the exponential decay

of G(ζ). Finally, higher-order estimates of the solution in D − Dζ , the Sobolev embedding, and the

exponential decay of G(ζ) will validate the pointwise decay of the solution in (1.11).

1.4 Related works

Before ending Section 1, we review some works related to the solvability of Leray’s problem in (1.4)–(1.6).

The original Leray’s problem concerns the existence, uniqueness, regularity, and asymptotic behavior of

the system (1.4)–(1.6) with the no-slip boundary condition (corresponding to α = +∞ in (1.4)2). See

the description in [14, p. 77] and [13, p. 551]. Amick [2, 3] contributed the first remarkable work on the

solvability of Leray’s problem with a small flux and the no-slip boundary condition, which reduced the

solvability problem to the resolution of a variational problem. However, the uniqueness is left open. A

detailed analysis of the existence, uniqueness, and asymptotic behavior of small-flux solutions is given

by Ladyženskaya and Solonnikov [15]. More details on well-posedness, decay, and far-field asymptotic

analysis of solutions for Leray’s problem with the no-slip boundary condition and related topics can be

found in [1, 11, 20] and the references therein. Readers can trace to [8, Chapter XIII] for a systematic

review and study of Leray’s problem with the no-slip boundary condition. Recently, Yang and Yin [27]

studied the well-posedness of weak solutions to the steady non-Newtonian fluids in pipe-like domains.

Wang and Xie [23, 24] studied the existence, uniqueness, and uniform structural stability of Poiseuille

flows for the 3D axially symmetric inhomogeneous Navier-Stokes equations in the 3D pipe.

Compared with the no-slip boundary condition, Leray’s problem with the Navier-slip boundary

condition, which also has different physical interpretations and mathematical properties, seems to be much

more complicated. Konieczny [12] and Mucha [18,19] studied the solvability of the steady Navier-Stokes

equations with the perfect Navier-slip condition (α = 0), where they employed a constant vector field as

its asymptotic profile at the spatial infinity. Only the existence, regularity, and asymptotic behavior of

weak solutions were addressed there. The uniqueness was left open, and the asymptotic behavior at far

fields was not given there. The problem raised there could be recognized as Leray’s problem with the

complete Navier-slip boundary condition in a two-dimensional strip, where the asymptotic profile is a

constant vector. Our problem raised in (1.4)–(1.6) is a perfect extension of the original Leray’s problem

with the no-slip boundary condition. The background Poiseuille flows considered here tend to Leray’s

Poiseuille flows with the no-slip boundary condition as α → +∞. As far as the authors know, there is

little literature concerning the solvability of the generalized Leray’s problem (1.4)–(1.6), which settles

the well-posedness issue on the steady Navier-Stokes equations subject to the Navier-slip boundary in

an unbounded domain with an unbounded boundary, while for the well-posedness of the solutions to the

steady Navier-Stokes equations with the Navier-slip boundary in bounded domains, there have already

been many works that we can refer to (see [4, 9, 21] and the references therein). Recently, Wang and

Xie [25] gave the uniqueness and uniform structural stability of Poiseuille flows in an infinitely long

pipe with the Navier-slip boundary condition for the inhomogeneous axially symmetric Navier-Stokes

equations. Their primary strategy is a delicate decomposition in the 2D plane for the slip coefficient

and the frequency corresponding to the Fourier variable in the axial direction and energy estimates are

performed on the stream function, which are essentially different from ours as shown in Subsection 1.3.

Li et al. [16] gave the characterization of bounded smooth solutions for the axially symmetric Navier-

Stokes equations with the perfect Navier-slip boundary condition (corresponding to α = 0 in (1.3)1) in

the infinitely long cylinder, mainly with the aid of the Moser iteration technique and an energy estimate

solely for the stress tensor, which is different from the compound energy estimates in this paper.



8 Li Z J et al. Sci China Math

The rest of this paper is organized as follows. Section 2 contains the preliminary work of the proof, in

which the Navier-slip boundary condition will be written under the “natural” moving frame of ∂D, and

some useful lemmas will be presented. Section 3 is devoted to the proof of existence results. In Section 4,

we finish the proof of the uniqueness of the solution. Finally, we focus on the higher-order regularity and

exponential decay properties of the solution in Section 5.

At last, we emphasize that the domain considered in this paper is a 3D distorted pipe, while if the

domain is a two-dimensional distorted strip, similar results as stated in Theorems 1.4–1.6 will also be

obtained. More precisely, if we consider the Navier-Stokes equation (1.1) with the Navier-slip boundary

condition (1.3) in the strip [0, 1]×R, the following two-dimensional Poiseuille flow will be obtained by a

direct calculation:

gΦ =

(
0,

6αΦ

6 + α
(−x2

1 + x1) +
6Φ

6 + α

)
. (1.12)

After a compact perturbation of the domain R × [0, 1], the existence, uniqueness, and regularity of the

solutions, which approach gΦ in (1.12) at spatial infinity will be presented in our forthcoming paper,

where the flux at the cross section Φ can be relatively large.

2 Preliminaries

2.1 Reformulation of the boundary condition in the local orthogonal curvilinear coordi-

nates

First, we rewrite the boundary condition (1.3) in the locally moving coordinate framework.

Regarding the smoothness of the pipe D, for any given point on ∂D, we define (γ1, γ2, γ3) to be a system

of orthogonal curvilinear coordinates in U ⊂ R
3, where U is a neighborhood of the aforementioned point.

The surface γ3 = 0 represents a portion of the surface D, and the surfaces γ3 = constant are parallel to

this portion with γ3 increasing towards the outside of D. On each surface γ3 = constant, two families

of curves, the γ1-curve and the γ2-curve, are lines of the curvature of the surface. Their unit tangent

vectors τ1 and τ2 and the normal vector n form an orthogonal basis at each point of the neighborhood

U with the Lamé coefficients H1, H2, H3 > 0 such that{
∂γix = Hiτi for i = 1, 2,

∂γ3x = H3n

(see Figure 2). Under these (local) curvilinear coordinates, one can write

u = uτ1τ1 + uτ2τ2 + unn.

Then (1.3) enjoys the following simplified expression:⎧⎪⎨
⎪⎩
∂nuτ1 = (κ1(x)− α)uτ1 ,

∂nuτ2 = (κ2(x)− α)uτ2 ,

un = 0,

on U ∩ ∂D (2.1)

(see [26, Proposition 2.1 and Corollary 2.2]). Here, for i = 1, 2,

κi(x) = − n

Hi
· ∂τi
∂γi

(2.2)

are the principal curvatures of ∂D corresponding to the γi-curves, respectively.

Note that ∂D can be divided into two parts. The part ∂D ∩ ∂DM is a compact manifold, and thus

one can deduce the uniform boundedness of κi (i = 1, 2) there. The other part ∂D ∩ ∂(DL ∪ DR) is

a combination of two semi-infinite smooth straight pipes, whose curvature depends only on the scalar

curvatures of smooth Jordan curves ∂ΣL and ∂ΣR, which is clearly uniformly bounded. More details on

the locally natural moving frame on ∂D ∩ (∂DR ∪ ∂DL) is shown in the following remark.
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Figure 2 (Color online) The local orthogonal curvilinear coordinates on ∂D

Figure 3 (Color online) The orthogonal curvilinear coordinates on ∂D ∩ (∂DR ∪ ∂DL)

Remark 2.1. In the “straight” part of the pipe (i.e., DL∪DR), one can always choose τ2 = e3, which

is a constant vector. Meanwhile, τ1 and n are the unit tangent vector and the unit outer normal vector

of the cross section Σ, respectively (see Figure 3).

In this case, we find τ1 and n, which are perpendicular to the x3-axis and depend only on (x1, x2).

From (2.2), the principal curvature κ2 is identically zero. By writing

u = uτ1τ1 + u3e3 + unn,

we see that (2.1) is simplified to⎧⎪⎨
⎪⎩
∂nuτ1 = (κ1(x)− α)uτ1 ,

∂nu3 = −αu3,

un = 0,

on ∂D ∩ (∂DR ∪ ∂DL). (2.3)

Since ∂Σi (i = L or R) is smooth and compact, the principal curvature κ1 must be uniformly bounded

on ∂D ∩ (∂DR ∪ ∂DL).

Thus one deduces the following result at the end of this subsection.

Proposition 2.2. The principal curvature κi (i = 1 or i = 2) is uniformly bounded on ∂D.

2.2 Useful lemmas

In this subsection, we give some useful lemmas which will be frequently used throughout the rest of

this paper. Lemmas 2.3–2.6 concern the Poincaré inequalities of the solution u in a part of the straight

pipe Σ× R and the truncated finite pipe Dζ with only the impermeable condition (1.3)2. Lemma 2.7 is

introduced to show the uniqueness of the solution. Lemmas 2.8 and 2.9 are regularity results of linear

Stokes systems on a bounded domain, which will be applied in the bootstrapping argument in Section 5.

In the standard Euclidean coordinate frameworks e1, e2 and e3, let u = u1e1 + u2e2 + u3e3. Σ ⊂ R
2

is a smooth bounded domain in the xh directions and I ⊂ R is an (infinite or finite) interval in the x3

direction. We set n = (n1, n2, 0) to be the unit outer normal vector on ∂Σ× I, where n̄ = (n1, n2) is the

unit outer normal vector on ∂Σ.

Lemma 2.3. Let Σ ⊂ R
2 be a compact domain with a C1 boundary, and f = f1e1 + f2e2 be a two-

dimensional vector function with components in H1(Σ), and f · n̄ = 0 on ∂Σ, where n̄ is the unit outer

normal vector of ∂Σ. Then the following Poincaré inequality holds:

‖f‖L2(Σ) � CΣ‖∇hf‖L2(Σ), (2.4)
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where ∇h = (∂x1 , ∂x2) is the gradient operator on the x1 and x2 directions and CΣ = CdΣ, where C is a

constant and dΣ := maxxh,yh∈Σ{|xh − yh|} is the diameter of Σ.

Proof. See the hint in [8, Exercise II.5.6, p. 71]. Here, we give the proof for completeness. First, we

choose a fixed point x0 = (x0,1, x0,2) ∈ Σ, and then it is easy to check the following equality:

2∑
i,j=1

[∂xi(fi(xj − x0,j)fj)− ∂xifi(xj − x0,j)fj − |f |2 − fi(xj − x0,j)∂xifj ] = 0. (2.5)

Integrating the above equality on Σ, one deduces∫
Σ

|f |2dxh =
2∑

i,j=1

∫
Σ

∂i(fi(xj − x0,j)fj)dxh

︸ ︷︷ ︸
I1

−
2∑

i,j=1

∫
Σ

∂ifi(xj − x0,j)fjdxh

−
2∑

i,j=1

∫
Σ

fi(xj − x0,j)∂ifjdxh. (2.6)

Using the divergence theorem and the boundary condition f · n̄ = 0, we can obtain

I1 =
2∑

j=1

∫
∂Σ

n̄ · f(xj − x0,j)fjdS = 0.

Thus by (2.6) and the Cauchy-Schwarz inequality, we arrive at∫
Σ

|f |2dxh � 1

2

∫
Σ

|f |2dxh + Cd2Σ

∫
Σ

|∇hf |2dxh,

which indicates (2.4).

If we choose f = u1e1 + u2e2 as in Lemma 2.3, we deduce the following lemma.

Lemma 2.4 (Partial Poincaré inequality in a straight pipe). Let u = u1e1 + u2e2 + u3e3 be an H1

vector field in Σ×I. If u satisfies the boundary condition u ·n = 0, then the following Poincaré inequality

holds:

‖u1e1 + u2e2‖L2(Σ×I) � C‖∇h(u1e1 + u2e2)‖L2(Σ×I), (2.7)

where C is a positive constant.

Proof. For any x = (xh, x3) ∈ Σ× I, by the impermeable condition u · n = 0, one sees that

(u1e1 + u2e2)(xh, x3) · n̄ = u · n = 0 for any xh ∈ ∂Σ.

Then Lemma 2.3 indicates

‖(u1e1 + u2e2)(·, x3)‖2L2(Σ) � C2‖∇h(u1e1 + u2e2)(·, x3)‖2L2(Σ).

Integrating with x3 over I on both sides, respectively, one concludes (2.7).

We notice that the Poincaré inequality could not hold for u3, due to the existence of the parallel flow

(see, e.g., (3.1) below). Nevertheless, the mean value of u3 through the cross section Σ is conserved for

x3 ∈ I if u is a divergence-free vector field. The reason is that denoting the flux flowing across Σ by

Φ(x3) =

∫
Σ

u(xh, x3) · e3dxh,

and then applying the divergence-free property of u and the impermeable condition u · n = 0, we have

d

dx3
Φ(x3) =

∫
Σ

∂x3u3(xh, x3)dxh

= −
∫
Σ

(∂x1u1 + ∂x2u2)(xh, x3)dxh

= −
∫
∂Σ

(u · n)(xh, x3)dS(xh) = 0.
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This implies the constancy of the flux Φ. Then we have the following lemma.

Lemma 2.5. Let u = u1e1 + u2e2 + u3e3 be an H1 vector field in Σ× I, which is divergence-free and

satisfies the boundary condition u · n = 0. Set g(xh) ∈ H1(Σ) satisfying∫
Σ

g(xh)dxh = Φ,

and define v := u− g(xh)e3. Then we have

‖v‖L2(Σ×I) � C‖∇hv‖L2(Σ×I), (2.8)

where C is a positive constant.

Proof. Notice that v3 has a vanishing mean value on the cross section Σ, and therefore it enjoys the

following 2D Poincaré inequality:∫
Σ

|v3(xh, x3)|2dxh =

∫
Σ

∣∣∣∣v3(xh, x3)− 1

|Σ|
∫
Σ

v3(xh, x3)dxh

∣∣∣∣2dxh � C2

∫
Σ

|∇hv3(xh, x3)|2dxh. (2.9)

This indicates the 3D Poincaré inequality

‖v3‖L2(Σ×I) � C‖∇hv3‖L2(Σ×I)

if one integrates (2.9) with x3 on the interval I. Combining the result in Lemma 2.4, we can

obtain (2.8).

Based on Lemma 2.5, one has the following Poincaré-type inequality in the truncated distorted pipe

Dζ = {x ∈ D : −ζ � x3 � ζ}.
Lemma 2.6. Given ζ � Z, let w = (w1, w2, w3) ∈ H1(Dζ) with zero flux in Dζ , i.e.,∫

ΣR

w(xh, Z/2) · e3dxh = 0.

If we suppose w ·n ≡ 0 on ∂D∩ ∂Dζ , where n is the unit outer normal vector on ∂D, then the following

Poincaré inequality holds:

‖w‖L2(Dζ) � CD‖∇w‖L2(Dζ). (2.10)

Here, CD > 0 is a constant which is uniform with ζ.

Proof. Integrating the following identity on DM = {x ∈ D : −Z/2 � x3 � Z/2}:
3∑

i,j=1

[∂xi(wixjwj)− ∂xiwixjwj − |w|2 − wixj∂xiwj ] = 0, (2.11)

and using an approach similar to our estimation of the terms on the right-hand side of (2.6), one derives∫
DM

|w|2dx � 1

2

∫
DM

|w|2dx+ CD
∫
DM

|∇w|2dx

+

∣∣∣∣
∫
ΣL

(w3(x ·w))(xh,−Z/2)dS

∣∣∣∣+
∣∣∣∣
∫
ΣR

(w3(x ·w))(xh, Z/2)dS

∣∣∣∣,
which indicates∫

DM

|w|2dx � CD

(∫
DM

|∇w|2dx+

∫
ΣL

|w(xh,−Z/2)|2dS +

∫
ΣR

|w(xh, Z/2)|2dS
)
. (2.12)

Meanwhile, using the trace theorem in ΣL × [−Z,−Z/2] and Lemma 2.5, one derives∫
ΣL

|w(xh,−Z/2)|2dS � CD

(∫
ΣL×[−Z,−Z/2]

|w|2dx+

∫
ΣL×[−Z,−Z/2]

|∇w|2dx
)
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� CD
∫
ΣL×[−Z,−Z/2]

|∇w|2dx. (2.13)

Similarly, one derives that ∫
ΣR

|w(xh, Z/2)|2dS � CD
∫
ΣR×[Z/2,Z]

|∇w|2dx. (2.14)

Substituting (2.13) and (2.14) into the right-hand side of (2.12), one deduces∫
DM

|w|2dx � CD
∫
Dζ

|∇w|2dx.

This finishes the estimate in DM . Noting that the remaining parts of the domain Dζ are a union of two

straight truncated pipes, we see that the estimates in Dζ −DM are direct conclusions of Lemma 2.5. We

conclude the proof of (2.10).

The following asymptotic estimate of a function that satisfies an ordinary differential inequality will

be useful in our further proof. To the best of the authors’ knowledge, it was originally derived by

Ladyženskaya and Solonnikov [15].

Lemma 2.7. Let Y (ζ) �≡ 0 be a nondecreasing nonnegative differentiable function satisfying

Y (ζ) � Ψ(Y ′(ζ)), ∀ ζ > 0. (2.15)

Here, Ψ : [0,∞) → [0,∞) is a monotonically increasing function with Ψ(0) = 0, and there exist C, τ1 > 0

and m > 1 such that

Ψ(τ) � Cτm, ∀ τ > τ1. (2.16)

Then

lim inf
ζ→+∞

ζ−
m

m−1Y (ζ) > 0. (2.17)

Proof. Since Y is not identically zero, there exists a ζ0 > 0 such that Y (ζ0) =: Y0 > 0. Using the

monotonicity of Ψ, one knows that

Y ′(ζ0) � Ψ−1(Y0) =: η0 > 0.

Therefore, we have

Y (ζ) � Y0 + η0(ζ − ζ0) for ζ � ζ0.

From (2.15), we see that

Y ′(ζ) � Ψ−1(Y (ζ)) � Ψ−1(Y0 + η0(ζ − ζ0)) for ζ � ζ0.

When ζ → +∞, we can deduce that Ψ−1(Y0 + η0(ζ − ζ0)) → +∞, otherwise if Ψ−1(Y0 + η0(ζ − ζ0))

→ A < +∞,

Y0 + η0(ζ − ζ0) = Ψ(Ψ−1(Y0 + η0(ζ − ζ0))) � Ψ(A) < +∞,

which is invalid as ζ → +∞.

So we see that there exists a ζ1 � ζ0 such that Y ′(ζ) � τ1 for any ζ � ζ1. Then from (2.15) and (2.16),

we have that for ζ � ζ1,

Y (ζ) � C(Y ′(ζ))m.

Integrating the above inequality on [ζ1,∞), one concludes the proof of (2.17).

At the end of this subsection, we introduce the following results which focus on the W 1,3-weak solution

and the Hm-strong solution of the linear Stokes equations on bounded domains with the Navier-slip

boundary condition.
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Lemma 2.8 (See [21, Corollary 5.7]). Let Ω be a bounded smooth domain, f ∈ L
3
2 (Ω),F ∈ L3(Ω) and

h ∈ W− 1
3 ,3(∂Ω). Then the Stokes problem{

−Δv +∇P = divF + f , ∇ · v = 0, in Ω,

2(Sv · n)tan + αvtan = h, v · n = 0, on ∂Ω

has a unique solution (v, P ) ∈ W 1,3(Ω)× L3(Ω), which satisfies the estimate

‖v‖W 1,3(Ω) + ‖P‖L3(Ω) � Cα,Ω(‖f‖
L

3
2 (Ω)

+ ‖F ‖L3(Ω) + ‖h‖
W− 1

3
,3(∂Ω)

). (2.18)

Lemma 2.9 (See [21, Theorem 4.5] and [9, Theorem 2.5.10]). Let Ω be a bounded smooth domain,

m ∈ N, f ∈ Hm(Ω) and h ∈ Hm+ 1
2 (∂Ω). Then the solution of the Stokes problem{

−Δv +∇P = f , ∇ · v = 0, in Ω,

2(Sv · n)tan + αvtan = h, v · n = 0, on ∂Ω

satisfies (v, P ) ∈ Hm+2(Ω)×Hm+1(Ω). Also, it enjoys the following estimate:

‖v‖Hm+2(Ω) + ‖P‖Hm+1(Ω) � Cα,Ω(‖f‖Hm(Ω) + ‖h‖
Hm+1

2 (∂Ω)
). (2.19)

3 Existence

3.1 On Poiseuille flows in pipes DL and DR

In this subsection, we introduce Poiseuille flows in pipes DL and DR, which are solutions of the

system (1.4) in Σi × R (i = L or i = R). We drop the index i for convenience in this subsection.

To find a Poiseuille flow gΦ in Σ× R with a given flux Φ, one needs to find a function gΦ : Σ → R such

that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gΦ = gΦe3,

−ΔhgΦ(xh) = constant in Σ,

∂gΦ
∂n̄

= −αgΦ on ∂Σ,∫
Σ

gΦ(xh)dxh = Φ.

(3.1)

Here and below, we assume Φ � 0 without loss of generality (see Figure 4).

Remark 3.1. If Σ is the unit disk in R
2, one has the following exact formula of gΦ:

gΦ(x) =
2(α+ 2)Φ

(α+ 4)π

(
1− α

α+ 2
|xh|2

)
e3 with its pressure pΦ(x) = − 8αΦ

(α+ 4)π
x3,

which could be considered as a generalization of the Hagen-Poiseuille flow under the no-slip boundary

condition (α → +∞).

Figure 4 (Color online) A straight infinite pipe Σ× R
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The existence and uniqueness of gΦ in (3.1) could be derived by routine methods of elliptic equations

in a bounded smooth domain with the Robin boundary condition. Here, we omit the details. We only

derive an Hm-estimate of gΦ in terms of Φ by the scaling technique.

By the linearity of the problem (3.1), one considers the classical Poisson equation subject to the Robin

boundary condition ⎧⎨
⎩

−Δhϕ(xh) = 1 in Σ,

∂ϕ

∂n̄
+ αϕ = 0 on ∂Σ.

(3.2)

The existence and uniqueness of the problem (3.2) are classical. We refer the reader to [10] for details.

Moreover, the following estimate of ϕ can be derived by classical results:

‖ϕ‖Hm(Σ) � Cα,m,Σ.

Multiplying (3.2)1 by ϕ and using integration by parts, we also note that∫
Σ

ϕdxh = −
∫
Σ

ϕΔhϕdx =

∫
Σ

|∇hϕ|2dx+

∫
∂Σ

α|ϕ|2dSh =: CP > 0. (3.3)

Thus one concludes that

gΦ(xh) =
Φ

CP
ϕ(xh)

satisfies the problem (3.1). Then

‖gΦ‖Hm(Σ) =
Φ

CP
‖ϕ(xh)‖Hm(Σ) � Cα,m,ΣΦ, ∀m ∈ N, (3.4)

where Cα,m,Σ > 0 is a constant independent of Φ. Later, for i = L or i = R, we denote by gi
Φ = giΦe3

the Poiseuille flows in Σi × R.

3.2 Construction of the profile vector

In this subsection, we focus on the construction of a smooth divergence-free vector a, which satisfies the

Navier-slip boundary condition (1.3). Meanwhile, the vector a equals gL
Φ in the far left of D, and it is

identical to gR
Φ in the far right of D. Here is the result.

Proposition 3.2. There exists a smooth vector field a(x) which enjoys the following properties:

(i) a ∈ C∞(D), and ∇ · a = 0 in D.

(ii) 2(Sa · n)tan + αatan = 0, and a · n = 0 on ∂D.

(iii) a = gL
Φ in D ∩ {x ∈ R

3 : x3 � −Z}, and a = gR
Φ in D ∩ {x ∈ R

3 : x3 � Z}.
(iv) ‖a‖Hm(DM ) � Cα,m,DΦ for any m ∈ N.

Proof. Recalling the assumption of the domain D, one notices that there exists a smooth domain

Σ′ ⊂ R
2 such that Σ′ × R ⊂⊂ D (which means that Σ′ × R ⊂ D and dist(Σ′ × R, ∂D) � ε0 > 0). Let

h = h(xh) be a smooth function supported on Σ′, which satisfies∫
Σ′

h(xh)dxh = Φ.

By a scaling, we can assume that

‖h‖Hm(Σ′) � CmΦ, ∀m ∈ N. (3.5)

Let η = η(x3) be a smooth cut-off function such that

η(x3) =

{
1 for x3 > Z,

0 for x3 < Z/2.
(3.6)
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Now we define the vector a by

a =

⎛
⎜⎜⎝

AR
1 (xh)η

′(x3)−AL
1 (xh)η

′(−x3)

AR
2 (xh)η

′(x3)−AL
2 (xh)η

′(−x3)

h(xh) + (gRΦ − h(xh))η(x3) + (gLΦ − h(xh))η(−x3)

⎞
⎟⎟⎠

T

, (3.7)

where the 2D vector function Ai := (Ai
1, A

i
2) (i = L or i = R) satisfies the following partial differential

equation in Σi:

divhA
i(xh) = h(xh)− giΦ(xh) in Σi (3.8)

subject to the two-dimensional Navier-slip boundary condition{
2(SAi · n̄)tan + αAi

tan = 0,

Ai · n̄ = 0,
on ∂Σi, (3.9)

where n̄ = (n1(xh), n2(xh)) is the unit outward normal vector on ∂Σi.

Now let us verify the validity of the above construction.

First, combining (3.7) and (3.8), we see that direct computation shows the divergence-free property of

a. The smoothness of a follows from the smoothness of h, η, gLΦ, and gRΦ , which are provided in their

definitions, together with the smoothness of AL and AR which will be derived below.

Second, concerning the validity of the boundary condition (ii) in Proposition 3.2, we first see that

a =

⎧⎪⎪⎨
⎪⎪⎩
gLΦ(xh)e3 in D ∩ {x : x3 � −Z},
gRΦ (xh)e3 in D ∩ {x : x3 � Z},
h(xh)e3 in D ∩ {x : |x3| � Z/2}.

Due to the fact that giΦe3 (i = L,R) is the Poiseuille flow in (3.1) which satisfies the same Navier-slip

boundary condition, and the auxiliary function h(xh) is compactly supported in each cross section of D,

we see that a satisfies the Navier-slip boundary condition on ∂D ∩ {x : |x3| � Z/2 or |x3| � Z}. For the
remaining part ∂D ∩ {x : Z/2 � |x3| � Z}, the unit outer normal vector enjoys the following form:

n = (n̄, 0) = (n1(xh), n2(xh), 0) on ∂D ∩ {x : Z/2 � |x3| � Z},

which is independent of the x3 variable. Recalling (2.3), we see that the Navier-slip boundary condition{
2(Sa · n)tan + αatan = 0,

a · n = 0,
on ∂D ∩ {x : Z/2 � |x3| � Z}

enjoys the following form in the orthogonal curvilinear coordinates on the boundary:⎧⎪⎨
⎪⎩
∂naτ1 = (κ1(x)− α)aτ1 ,

∂na3 = −αa3,

an = 0,

on ∂D ∩ {x : Z/2 � |x3| � Z}. (3.10)

Therefore, noting that the cut-off function η depends only on the x3 variable, we see that (3.10)1
and (3.10)3 are guaranteed by (3.9)1 and (3.9)2, respectively. Moreover, by direct calculations,

∂na3 = η(x3)∂ng
R
Φ + η(−x3)∂ng

L
Φ

= −αη(x3)g
R
Φ − αη(−x3)g

L
Φ

= −αa3 on ∂D ∩ {x : Z/2 � |x3| � Z},

and one proves (3.10)2. Thus we finish the proof of Proposition 3.2(ii).

Third, the property (iii) in this proposition follows directly from the definition of a in (3.7).
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Finally, we derive the Hm-estimate on a in DM . Using (3.7), we see that

‖a‖Hm(DM ) �
∑

i=L,R

‖Ai‖Hm(Σi) + ‖h‖Hm(Σ′) +
∑

i=L,R

‖giΦ‖Hm(Σi)

�α,m,D Φ+
∑

i=L,R

‖Ai‖Hm(Σi), (3.11)

where the last inequality follows from the estimates in (3.4) and (3.5). Now we only need to show the

Hm-estimate of 2D vectors Ai (i = L,R), by solving the boundary value problem (3.8)–(3.9), which is

derived in the following lemma.

Lemma 3.3. Problem (3.8)–(3.9) has a smooth solution Ai ∈ C∞(Σ) satisfying

‖Ai‖Hm(Σi) � Cα,m,ΣiΦ, ∀m ∈ N. (3.12)

Proof. For the simplicity of notation, we omit the index L or R in the following proof if no ambiguity

is caused. Using the Helmholtz-Weyl decomposition, we can split A into

A =: ∇hφ+G. (3.13)

Here, φ = φ(xh) is a scalar function, which satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δhφ = h(xh)− gΦ(xh) in Σ,

∂φ

∂n̄
= 0 on ∂Σ,∫

Σ

φdxh = 0.

(3.14)

By the definition of the auxiliary function h(xh), one sees that h−gΦ satisfies the following compatibility

condition: ∫
Σ

(h(xh)− gΦ(xh))dxh = 0.

Thus, the classical theory of Poisson equations indicates the solvability and regularity φ ∈ C∞(Σ) of the

problem (3.14). In addition, φ satisfies

‖φ‖Hm+2(Σ) � Cm,Σ‖h− gΦ‖Hm(Σ) � Cm,ΣΦ, ∀m ∈ N. (3.15)

It remains to construct the smooth vector G in (3.13). Notice that G should satisfy⎧⎪⎪⎨
⎪⎪⎩
divhG = 0 in Σ,

2(SG · n̄)tan + αGtan = 2(S(∇φ) · n̄)tan + α(∇φ)tan on ∂Σ,

G · n̄ = 0 on ∂Σ.

(3.16)

There is too much space for us to construct a solution G satisfying (3.16) such that ‖G‖Hm(Σ) � Cα,m,ΣΦ.

For example, we can choose (G, π) to be the pair of solutions to the following linear Stokes equations

with the Navier-slip boundary condition:⎧⎪⎪⎨
⎪⎪⎩
−ΔhG+∇π = 0, divhG = 0, in Σ,

2(SG · n̄)tan + αGtan = 2(S(∇φ) · n̄)tan + α(∇φ)tan on ∂Σ,

G · n̄ = 0 on ∂Σ.

From [21, Theorem 4.5] or [9, Theorem 2.5.10]2), we have the following estimate of G:

‖G‖Hm+2(Σ) � Cα,m,Σ‖2(S(∇φ) · n̄)tan + α(∇φ)tan‖Hm+1/2(∂Σ)

2) Strictly speaking, the theorems in [9, 21] are derived for 3D linear Stokes systems. However, their methods are also

valid for related 2D problems (see the introduction part of [9]).
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� Cα,m,Σ‖φ‖Hm+3(Σ) � Cα,m,ΣΦ, (3.17)

where on the last line, we have used the trace theorem and (3.15). Then (3.12) is proved by combining

(3.15) and (3.17).

Remark 3.4. Combining the estimates (3.4), (3.11) and (3.17) above, we see that the following global

W 1,∞-estimate of a is a direct conclusion of the Sobolev embedding:

‖a‖W 1,∞(D) � Cα,DΦ. (3.18)

This completes the proof of Proposition 3.2

3.3 The proof of the existence

In this subsection, we study the solvability of the generalized Leray’s problem subject to the Navier-

slip boundary condition. Considering the asymptotic behavior of the prescribed weak solution in

Definition 1.1, we write

u = v + a, (3.19)

where a is constructed in the previous subsection. Therefore, the generalized Leray’s problem (1.4)–(1.6)

has the following equivalent form in the viewpoint of v.

Problem 3.5 (Modified problem). Find (v, p) such that{
v · ∇v + a · ∇v + v · ∇a+∇p−Δv = Δa− a · ∇a,

∇ · v = 0,
in D (3.20)

subject to the Navier-slip boundary condition{
2(Sv · n)tan + αvtan = 0,

v · n = 0,
on D (3.21)

with the asymptotic behavior as

v(x) → 0 as |x3| → ∞. (3.22)

Substituting the expression (3.19) into the weak formulation (1.7), we arrive at the following weak

formulation of v.

Definition 3.6. Let a be a smooth vector satisfying the properties stated in Proposition 3.2. We say

that v ∈ Hσ(D) is a weak solution of Problem 3.5, if

2

∫
D
Sv : Sϕdx+ α

∫
∂D

vtan ·ϕtandS +

∫
D
v · ∇v ·ϕdx+

∫
D
v · ∇a ·ϕdx+

∫
D
a · ∇v ·ϕdx

=

∫
D
(Δa− a · ∇a) ·ϕdx (3.23)

holds for any vector-valued function ϕ ∈ Hσ(D).

To establish the existence of the weak solution defined in Definition 3.6, we first introduce the following

Brouwer’s fixed point theorem. It could be found in [17] (see also [8, Lemma IX.3.1]).

Lemma 3.7. Let P be a continuous operator which maps R
N into itself such that for some ρ > 0,

P (ξ) · ξ � 0 for all ξ ∈ R
n with |ξ| = ρ.

Then there exists a ξ0 ∈ R
N with |ξ0| � ρ such that P (ξ0) = 0.

Now, we go to the existence theorem.
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Theorem 3.8. There is a constant Φ0 > 0 depending on α and the curvature of ∂D such that if

Φ � Φ0, then Problem 3.5 admits at least one weak solution

(v, p) ∈ Hσ(D)× L2
loc(D)

with

‖v‖H1(D) � Cα,DΦ. (3.24)

Remark 3.9. The weak solution satisfies a generalized version of (3.22). Actually, it follows from the

trace inequality (see [8, Theorem II.4.1]) that∫
ΣR

|v(xh, x3)|2dxh � C

∫
z>x3

∫
ΣR

(|v|2 + |∇v|2)(xh, z)dxhdz,

where the constant C is independent of the x3 variable. This implies∫
ΣR

|v(xh, x3)|2dxh → 0 as x3 → +∞.

The case x3 → −∞ is similar.

Now we are ready to provide the proof of Theorem 3.8.

3.3.1 Constructing the velocity field by the Galerkin method

Using the Galerkin method, we first construct an approximate solution and then pass to the limit by

compactness arguments. Recall

X := C∞
σ,c(D; R3) = {ϕ ∈ C∞

c (D; R3) : ∇ ·ϕ = 0, ϕ · n |∂D = 0},

and {ϕk}∞k=1 ⊂ X is an unit orthonormal basis of Hσ(D), i.e.,

〈ϕi,ϕj〉H1(D) =

{
1, if i = j,

0, if i �= j,
∀ i, j ∈ N.

Now we construct an approximation of v of the form

vN (x) =

N∑
i=1

cNi ϕi(x).

To determine vN , one tests the weak formulation (3.23) by ϕi with i = 1, 2, . . . , N . This indicates

2
N∑
i=1

cNi

∫
D
Sϕi : Sϕjdx+ α

N∑
i=1

cNi

∫
∂D

(ϕi)tan(ϕj)tandS +
N∑

i,k=1

cNi cNk

∫
D
ϕi · ∇ϕk ·ϕjdx

+

N∑
i=1

∫
D
ϕi · ∇a ·ϕjdx+

N∑
i=1

cNi

∫
D
a · ∇ϕi ·ϕjdx

=

∫
D
(Δa− a · ∇a) ·ϕjdx, ∀ j = 1, 2, . . . , N.

As we see, this is a system of nonlinear algebraic equations of the N -dimensional vector

cN := (cN1 , cN2 , . . . , cNN ).
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We solve the above system by Lemma 3.7 (Brouwer’s fixed point theorem). To this end, we define

P : RN → R
N such that

(P (cN ))j = 2

N∑
i=1

cNi

∫
D
Sϕi : Sϕjdx+ α

N∑
i=1

cNi

∫
∂D

(ϕi)tan · (ϕj)tandS

+

N∑
i,k=1

cNi cNk

∫
D
ϕi · ∇ϕk ·ϕjdx

+

N∑
i=1

∫
D
ϕi · ∇a ·ϕjdx+

N∑
i=1

cNi

∫
D
a · ∇ϕi ·ϕjdx

−
∫
D
(Δa− a · ∇a) ·ϕjdx, ∀ j = 1, 2, . . . , N.

Clearly, one observes that P is continuous. Then we can obtain that

P (cN ) · cN = 2

∫
D
|SvN |2dx+ α

∫
∂D

|(vN )tan|2dS︸ ︷︷ ︸
I1

+

∫
D
((vN + a) · ∇(vN + a)) · vNdx︸ ︷︷ ︸

I2

−
∫
D
vN ·Δadx︸ ︷︷ ︸

I3

.

First, we estimate the term I1. We show that there exists a constant Cα,D depending on α and D such

that

I1 � Cα,D
∫
D
|∇vN |2dx. (3.25)

By the definition of the stress tensor and integration by parts, one notices that∫
D
|SvN |2dx =

1

2

∫
D
|∇vN |2dx+

1

2

3∑
i,j=1

∫
D
∂xi(vN )j∂xj (vN )idx

=
1

2

∫
D
|∇vN |2dx+

1

2

3∑
i,j=1

∫
∂D

(vN )j∂xj (vN )inidS

︸ ︷︷ ︸
I11

− 1

2

∫
D
vN · ∇div (vN )dx︸ ︷︷ ︸

I12

. (3.26)

Here, the term I12 vanishes due to the fact that vN is divergence-free. Noting that vN ·n ≡ 0 on ∂D, we

have

I11 =

∫
∂D

vN · (∇(vN · n)− vN · ∇n)dS = −
3∑

i,j=1

∫
∂D

(vN )j∂xjni(vN )jdS.

Thus, I11 can be bounded by

|I11| � CD
∫
∂D

|(vN )tan|2dS,

where CD > 0 is a universal constant depending only on ∂D. Inserting the above calculations for I11
and I12 in (3.26), one arrives at

I1 � 2

∫
D
|SvN |2dx �

∫
D
|∇vN |2dx− Cκ

∫
∂D

|(vN )tan|2dS,

i.e.,
α

CD
I1 � α

CD

∫
D
|∇vN |2dx− α

∫
∂D

|(vN )tan|2dS.
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Hence, we deduce that

I1 +
α

CD
I1 � α

CD

∫
D
|∇vN |2dx.

This indicates (3.25).

Next, we turn to the estimate of I2. Using integration by parts, together with the divergence-free

property of vN and a, one knows that

I2 =

∫
D
vN · ∇a · vNdx︸ ︷︷ ︸

I21

+

∫
D
a · ∇a · vNdx︸ ︷︷ ︸

I22

.

Noting that vN · n = 0 on ∂D, and using integration by parts, one finds

I21 =
3∑

k,l=1

∫
D
(vN )k∂xk

al(vN )jdx = −
3∑

k,l=1

∫
D
(vN )kal∂xk

(vN )ldx.

Using Hölder’s inequality, we have

I21 � C‖a‖L∞(D)‖vN‖2H1(D).

For the term I22, one notices that a equals the Poiseuille flow gL
Φ or gR

Φ in D −DZ , and thus a · ∇a ≡ 0

in D −DZ . This indicates

|I22| =
∣∣∣∣
∫
DZ

a · ∇a · vNdx

∣∣∣∣ � ‖a‖L3(DZ)‖∇a‖L2(DZ)‖vN‖L2(D) � CD‖a‖2H1(DZ)‖vN‖H1(D).

Finally, it remains to estimate I3. Similar to I22, we also claim that

|I3| =
∣∣∣∣
∫
DZ

vN ·Δadx

∣∣∣∣ � CZ‖a‖H2(DZ)‖vN‖H1(D).

Here goes the proof of the claim: by the construction of the Poiseuille flow gL
Φ, one knows∫

ΣL×(−∞,−Z)

vN ·Δadx = C

∫ −∞

−Z

∫
ΣL

(vN )3dx = 0.

Actually, we can show that ∫
ΣL

(vN )3(xh, x3)dxh

is independent of x3 by using div vN = 0 and vN · n = 0. Then using the compact support of vN , we

can get the above equality.

Substituting the above estimates for I1–I3, and applying the Poincaré inequalities in Lemmas 2.5

and 2.6, one derives

P (cN ) · cN � ‖vN‖H1(D)((Cα,D − CαΦ)‖vN‖H1(D) − C̃α,D(Φ + Φ2)),

which guarantees

P (cN ) · cN � 0,

provided that

Φ � Φ0 := C−1
α Cα,D

and

|cN | = ‖vN‖H1(D) �
C̃α,D(Φ + Φ2)

Cα,D − CαΦ
=: ρ.
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Using Lemma 3.7, we see that there exists v∗
N ∈ span{ϕ1,ϕ2, . . . ,ϕN} such that

‖v∗
N‖H1(D) �

C̃α,D(Φ + Φ2)

Cα,D − CαΦ
(3.27)

and

2

∫
D
Sv∗

N : SφNdx+ α

∫
∂D

(v∗
N )tan · (φN )tandS

+

∫
D
v∗
N · ∇v∗

N · φNdx+

∫
D
v∗
N · ∇a · φNdx+

∫
D
a · ∇v∗

N · φNdx

=

∫
D
(Δa− a · ∇a) · φNdx, ∀φN ∈ span{ϕ1,ϕ2, . . . ,ϕN}. (3.28)

The above bound (3.27) and the Rellich-Kondrachov embedding theorem imply the existence of a field

v ∈ Hσ(D) and a subsequence, which we always denote by v∗
N , such that

v∗
N → v weakly in Hσ(D)

and

v∗
N → v strongly in L2(D′) for all bounded D′ ⊂ D.

Therefore, we can pass to the limit in (3.28) and obtain

2

∫
D
Sv : Sϕdx+ α

∫
∂D

vtan ·ϕtandS +

∫
D
v · ∇v ·ϕdx+

∫
D
v · ∇a ·ϕdx+

∫
D
a · ∇v ·ϕdx

=

∫
D
(Δa− a · ∇a) ·ϕdx for any ϕ ∈ Hσ(D). (3.29)

Finally, the H1-estimate of v:

‖v‖H1(D) � Cα,DΦ

follows from (3.27) and the Fatou lemma for weakly convergent sequences. This completes the

construction of v.

3.3.2 Creating the pressure field

While processing the Galerkin method in the previous subsection, we did nothing with the pressure. This

is because all the test functions are divergence-free. To find the pressure, we introduce the following

lemma, which is a special case of [7, Theorem 17] by de Rham (see also [22, Proposition 1.1]).

Lemma 3.10. For a given open set Ω ⊂ R
3, let F be a distribution in (C∞

c (Ω;R3))′ which satisfies

〈F ,φ〉 = 0 for all φ ∈ {g ∈ C∞
c (Ω;R3) : div g = 0}.

Then there exists a distribution q ∈ (C∞
c (Ω;R))′ such that

F = ∇q.

Let v be a weak solution of (3.23) constructed in the previous subsection. Using (3.29), one finds that

u = v + a satisfies∫
D
∇u · ∇φdx+

∫
D
u · ∇u · φdx = 0 for all φ ∈ {g ∈ C∞

c (D;R3) : div g = 0}.

Thus by Lemma 3.10, there exists a p ∈ (C∞
c (D;R))′ such that

Δu− u · ∇u = ∇p (3.30)

in the sense of distribution.
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To derive the regularity of the pressure, one first notices that (3.30) is equivalent to

div(∇v − v ⊗ v − a⊗ v − v ⊗ a) + Δa+

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
Φe3 − a · ∇a = ∇Π (3.31)

with

Π = p+
Φ
∫ x3

−∞ η(s)ds

CP,R
− Φ

∫ −x3

−∞ η(s)ds

CP,L
. (3.32)

Here, CP,i (i = L,R) are Poiseuille constants defined in (3.3), where we have dropped indexes L and R

there. In addition, η is the cut-off function which is given in (3.6). By the definition of a in (3.7), both

Δa+

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
Φe3

and a · ∇a are smooth and have compact support. Meanwhile, since v ∈ H1(D) and a is uniformly

bounded, one deduces

∇v − v ⊗ v − a⊗ v − v ⊗ a ∈ L2(D)

directly by the Sobolev embedding and Hölder’s inequality. Therefore, one concludes that the left-hand

side of (3.31) belongs to H−1(D). Then the following lemma implies Π ∈ L2
loc(D), which leads to

p ∈ L2
loc(D) by (3.32).

Lemma 3.11 (See [22, Proposition 1.2]). Let Ω be a bounded Lipschitz open set in R
3. If a distribution

q has all its first derivatives ∂xiq (1 � i � 3) in H−1(Ω), then q ∈ L2(Ω) and

‖q − q̄Ω‖L2(Ω) � CΩ‖∇q‖H−1(Ω), (3.33)

where q̄Ω = 1
|Ω|

∫
Ω
qdx. Moreover, if Ω is any Lipschitz open set in R

3, then q ∈ L2
loc(Ω).

This completes the proof of Theorem 3.8.

4 Uniqueness of the weak solution

Recall the solution (u, p) we constructed in the last section with its flux being Φ. In this section, we

show it is unique if Φ is sufficiently small.

4.1 Estimate of the pressure

The following lemma shows the existence of the solution to the problem ∇ · V = f in a truncated pipe.

Lemma 4.1. Let D = Σ× [0, 1], f ∈ L2(D) with∫
D

fdx = 0.

Then there exists a vector-valued function V : D → R
3 belonging to H1

0 (D) such that

∇ · V = f and ‖∇V ‖L2(D) � C‖f‖L2(D). (4.1)

Here, C > 0 is a constant.

See [5, 6] and [8, Chapter III] for the detailed proof of this lemma.

Below, the proposition shows that an L2-estimate related to the pressure in the truncated pipe Ω+
Z or

Ω−
Z could be bounded by the L2-norm of ∇u.

Proposition 4.2. Let (ũ, p̃) be an alternative weak solution of (1.1) in the pipe D subject to the

Navier-slip boundary condition (1.3). If the total flux satisfies∫
D∩{x3=z}

ũ(xh, z) · e3dxh = Φ =

∫
D∩{x3=z}

u(xh, z) · e3dxh for any |z| � Z,
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then the following estimate of w := ũ− u and the pressure holds:∣∣∣∣
∫
Ω±

K

(p̃− p)w3dx

∣∣∣∣ � CD(‖u‖L4(Ω±
K)‖∇w‖2

L2(Ω±
K)

+ ‖∇w‖2
L2(Ω±

K)
+ ‖∇w‖3

L2(Ω±
K)

), ∀K � Z + 1,

where CD > 0 is a constant independent of K.

Proof. During the proof, we cancel the upper index “±” of the domain for simplicity. Noticing∫
D∩{x3=z}

w3(xh, z)dxh ≡ 0, ∀ |z| � Z,

we deduce that ∫
ΩK

w3dx = 0, ∀K � Z + 1.

Using Lemma 4.1, one derives the existence of a vector field V satisfying (4.1) with f = w3. Applying

the equation (1.1)1, one arrives∫
ΩK

(p̃− p)w3dx = −
∫
ΩK

∇(p̃− p) · V dx =

∫
ΩK

(w · ∇w + u · ∇w +w · ∇u−Δw) · V dx.

Using integration by parts, one deduces

∫
ΩK

(p̃− p)w3dx =
3∑

i,j=1

∫
ΩK

(∂iwj − wiwj − uiwj − ujwi)∂iVjdx.

By applying Hölder’s inequality and (4.1) in Lemma 4.1, one deduces that∣∣∣∣
∫
ΩK

(p̃− p)w3dx

∣∣∣∣ � C(‖∇w‖L2(ΩK) + ‖w‖2L4(ΩK) + ‖u‖L4(ΩK)‖w‖L4(ΩK))‖w3‖L2(ΩK). (4.2)

Since v3 has a zero mean value on each cross section Σ, and (w − w3e3) satisfies

(w − w3e3) · n = 0 for any x ∈ ∂D ∩ ∂ΩK ,

the vector w enjoys the Poincaré inequality

‖w‖L2(ΩK) � CD‖∇hw‖L2(ΩK). (4.3)

Substituting (4.3) into (4.2) and also noting the Gagliardo-Nirenberg inequality

‖w‖2L4(ΩK) � CD(‖w‖1/2L2(ΩK)‖∇w‖3/2L2(ΩK) + ‖w‖2L2(ΩK)),

one concludes∣∣∣∣
∫
ΩK

(p̃− p)w3dx

∣∣∣∣ � CD(‖u‖L4(ΩK)‖∇w‖2L2(ΩK) + ‖∇w‖2L2(ΩK) + ‖∇w‖3L2(ΩK)).

This completes the proof.

4.2 Main estimates

Subtracting the equation of u from the equation of ũ, one finds

w · ∇w + u · ∇w +w · ∇u+∇(p̃− p)−Δw = 0. (4.4)

Multiplying w on both sides of (4.4), and integrating on Dζ , one derives∫
Dζ

w ·Δwdx =

∫
Dζ

w(w · ∇w + u · ∇w +w · ∇u+∇(p̃− p))dx. (4.5)
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Using the divergence-free property and the Navier-slip boundary condition of u and ũ, one deduces∫
Dζ

w ·Δwdx

=

∫
Dζ

wi∂xj (∂xjwi + ∂xiwj)dx

= −
3∑

i,j=1

∫
Dζ

∂xjwi(∂xjwi + ∂xiwj)dx+
3∑

i,j=1

∫
∂Dζ

winj(∂xjwi + ∂xiwj)dx

= −2

∫
Dζ

|Sw|2dx− α

∫
∂Dζ∩∂D

(|wτ1 |2 + |wτ2 |2)dS

+
3∑

i=1

∫
ΣR×{x3=ζ}

wi(∂x3wi + ∂xiw3)dxh −
3∑

i=1

∫
ΣL×{x3=−ζ}

wi(∂x3wi + ∂xiw3)dxh. (4.6)

Here, n = (n1, n2, n3) is the unit outer normal vector on ∂D.

On the other hand, using integration by parts, we may alternatively derive∫
Dζ

w ·Δwdx = −
∫
Dζ

|∇w|2dx+
1

2

∫
∂Dζ

∇|w|2 · ndS︸ ︷︷ ︸
T1

, (4.7)

where

T1 =
1

2

∫
∂Dζ∩∂DM

∇|w|2 · ndS︸ ︷︷ ︸
T11

+
1

2

∫
∂Dζ∩∂DL

∇|w|2 · ndS︸ ︷︷ ︸
T12

+
1

2

∫
∂Dζ∩∂DR

∇|w|2 · ndS︸ ︷︷ ︸
T13

+
1

2

(∫
D∩{x3=ζ}

∂x3 |w|2(xh, ζ)dxh −
∫
D∩{x3=−ζ}

∂x3 |w|2(xh,−ζ)dxh

)
.

To bound the term T11, we apply the local orthogonal curvilinear coordinates on ∂D. Thus, we split

∂Dζ ∩ ∂DM into finitely many pieces, i.e.,

∂Dζ ∩ ∂DM =

N⋃
i=1

Vi,

and in each piece Vi, there exists an orthogonal curvilinear frame {τ i
1, τ

i
2,n

i} such that

∇|w|2 = ∂τ i
1
|w|2τ i

1 + ∂τ i
2
|w|2τ i

2 + ∂ni |w|2ni on Vi.

Using (2.1), one derives

|T11| �
N∑
i=1

∫
Vi

|wτ i
1
(α− κi

1(x))wτ i
1
|dS +

N∑
i=1

∫
Vi

|wτ i
2
(α− κi

2(x))wτ i
2
|dS

� Cα,D
∫
∂Dζ∩∂DM

|wtan|2dS. (4.8)

Here, Cα,D > 0 is a constant depending only on the friction ratio α and the domain D. The existence

of this constant Cα,D follows from the boundedness of the principal curvature of ∂D (see Proposition 2.2

for details).

Noting that DL is a straight pipe, one can find the global natural coordinates {τ1, e3,n} of ∂D∩∂DL,

where τ1 and n are the unit tangent vector and the unit outer normal vector of ∂ΣL in the x1Ox2 plane,

while e3 is the Euclidean coordinate vector in the x3-direction. In this case, one writes

∇|w|2 = ∂τ1 |w|2τ1 + ∂x3 |w|2e3 + ∂n|w|2n on ∂Dζ ∩ ∂DL.
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Using (2.3), one finds that T12 satisfies

|T12| �
∣∣∣∣
∫
∂Dζ∩∂DL

(wτ (α− κ1(x))wτ + α|w3|2)dS
∣∣∣∣ � Cα,D

∫
∂Dζ∩∂DL

|wtan|2dS. (4.9)

Similar to (4.9), one derives

|T13| � Cα,D
∫
∂Dζ∩∂DR

|wtan|2dS. (4.10)

Substituting (4.8)–(4.10) into (4.7), one concludes that∫
Dζ

w ·Δwdx � −
∫
Dζ

|∇w|2dx+ Cα,D
∫
∂Dζ∩∂D

|wtan|2dS + C

∫
D∩{x3=±ζ}

|w||∇w|dxh. (4.11)

Now we focus on the right-hand side of (4.5). Applying integration by parts, one derives∫
Dζ

w(w · ∇w +∇(p̃− p))dx =

∫
D∩{x3=ζ}

w3

(
1

2
|w|2 + (p̃− p)

)
dx

−
∫
D∩{x3=−ζ}

w3

(
1

2
|w|2 + (p̃− p)

)
dx. (4.12)

Applying Hölder’s inequality, and noting that u = v + a, where a is the profile vector defined in

Subsection 3.2, while v is the H1-weak solution constructed in Subsection 3.3, one has∣∣∣∣
∫
Dζ

(w · ∇u ·w + u · ∇w ·w)dx

∣∣∣∣ � ‖∇v‖L2(Dζ)‖w‖2L4(Dζ)
+ ‖v‖L4(Dζ)‖∇w‖L2(Dζ)‖w‖L4(Dζ)

+ ‖∇a‖L∞(Dζ)‖w‖2L2(Dζ)
+ ‖a‖L∞(Dζ)‖∇w‖L2(Dζ)‖w‖L2(Dζ)

� CD(‖v‖H1(Dζ) + ‖a‖W 1,∞(Dζ))

∫
Dζ

|∇w|2dx

� Cα,DΦ
∫
Dζ

|∇w|2dx. (4.13)

Here in the second inequality, we have applied the Gagliardo-Nirenberg inequality and the Poincaré

inequality (2.10) in Lemma 2.6, which indicate

‖w‖L4(Dζ) � CD(‖w‖1/4L2(Dζ)
‖∇w‖3/4L2(Dζ)

+ ‖w‖L2(Dζ)) � CD

(∫
Dζ

|∇w|2dx
)1/2

.

Meanwhile, the third inequality in (4.13) is guaranteed by (3.24) and (3.18).

Therefore, by calculating

(4.6)× Cα,D + (4.11)× α,

we derive∫
Dζ

w ·Δwdx � −2Cα,D
∫
Dζ

|Sw|2dx− α

∫
Dζ

|∇w|2dx+ C

∫
D∩{x3=±ζ}

|w||∇w|dxh. (4.14)

Substituting (4.12)–(4.14) into (4.5), one arrives

(1− Cα,DΦ)
∫
Dζ

|∇w|2dx

� Cα,D
α

(∫
D∩{x3=±ζ}

|w|(|∇w|+ |w|2)dxh −
∫
D∩{x3=ζ}

w3(p̃− p)dxh +

∫
D∩{x3=−ζ}

w3(p̃− p)dxh

)
.

Now one concludes that if Φ � 1 being small enough such that Cα,DΦ < 1
2 ,∫

Dζ

|∇w|2dx � Cα

α(1− Cα,DΦ)

(∫
D∩{x3=±ζ}

|w|(|∇w|+ |w|2)dxh

−
∫
D∩{x3=ζ}

w3(p̃− p)dxh +

∫
D∩{x3=−ζ}

w3(p̃− p)dxh

)
.
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Therefore, one derives the following estimate by integrating with ζ on [K − 1,K], where K � Z + 1:∫ K

K−1

∫
Dζ

|∇w|2dxdζ � Cα,D

(∫
Ω+

K∪Ω−
K

|w|(|∇w|+ |w|2)dx+

∣∣∣∣
∫
Ω+

K∪Ω−
K

w3(p̃− p)dx

∣∣∣∣
)
. (4.15)

Here, Cα,D > 0 is a constant. Now we only handle integrations on Ω+
K since the case of Ω−

K is similar.

Using the Cauchy-Schwarz inequality and the Poincaré inequality in Lemma 2.5, one has∫
Ω+

K

|w||∇w|dx � ‖w‖L2(Ω+
K)‖∇w‖L2(Ω+

K) � C‖∇w‖2
L2(Ω+

K)
. (4.16)

Moreover, by Hölder’s inequality and the Gagliardo-Nirenberg inequality, one writes∫
Ω+

K

|w|3dx � CD(‖w‖3/2
L2(Ω+

K)
‖∇w‖3/2

L2(Ω+
K)

+ ‖w‖3
L2(Ω+

K)
).

It follows from the Poincaré inequality that∫
Ω+

K

|w|3dx � C‖∇w‖3
L2(Ω+

K)
.

Recalling Proposition 4.2, one arrives at∣∣∣∣
∫
Ω+

K

w3(p̃− p)dx

∣∣∣∣ � C(‖u‖L4(Ω+
K)‖∇w‖2

L2(Ω+
K)

+ ‖∇w‖2
L2(Ω+

K)
+ ‖∇w‖3

L2(Ω+
K)

). (4.17)

Substituting (4.16) and (4.17), together with their related inequality on the domain Ω−
K , into (4.15), one

concludes ∫ K

K−1

∫
Dζ

|∇w|2dxdζ � Cα,D(‖∇w‖2
L2(Ω+

K∪Ω−
K)

+ ‖∇w‖3
L2(Ω+

K∪Ω−
K)

). (4.18)

4.3 End of the proof

Finally, by defining

Y (K) :=

∫ K

K−1

∫
Dζ

|∇w|2dxdζ,

we see that (4.18) indicates

Y (K) � Cα,D(Y ′(K) + (Y ′(K))3/2), ∀K � Z + 1.

By Lemma 2.7, we derive

lim inf
ζ→∞

K−3Y (K) > 0,

i.e., there exists a C0 > 0 such that ∫ K

K−1

∫
Dζ

|∇w|2dxdζ � C0K
3.

However, this leads to a paradox to the condition (1.9). Thus, Y (K) ≡ 0 for all K � Z+1, which proves

u ≡ ũ.

5 Regularity and decay estimates of the weak solution

In this section, we show that the weak solution, which is proved to be unique in Section 4, is smooth,

and it decays exponentially to Poiseuille flows gR
Φ and gL

Φ as x3 → ±∞, respectively. Recall

v = u− a, Π = p+
Φ
∫ x3

−∞ η(s)ds

CP,R
− Φ

∫ −x3

−∞ η(s)ds

CP,L
. (5.1)
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The route of the proof is as follows:

(i) the global W 1,3- and H2-estimates of v, together with the global L2-estimate of ∇Π;

(ii) the higher-order regularity of (v,Π);

(iii) the H1-exponential decay estimate of v;

(iv) the exponential decay for higher-order norms of (v,Π).

5.1 The global H2-estimate of the solution

In this subsection, we show that the weak solution constructed in Section 3 is strong. Our strategy is

treating the Navier-Stokes system (3.20) as the following linear Stokes equations:{
−Δv +∇Π = divF + f , ∇ · v = 0, in D,

2(Sv · n)tan + αvtan = 0, v · n = 0, on ∂D,
(5.2)

where

F := −v ⊗ v − a⊗ v − v ⊗ a,

f := Δa+Φ

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
e3 − a · ∇a,

and then applying the bootstrapping method. Noting that v ∈ H1(D), we see that the Sobolev embedding

indicates v ∈ L2(D) ∩ L6(D), which indicates v ⊗ v ∈ L3(D). Moreover, noting that a is smooth and

uniformly bounded in D, and both

Δa+Φ

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
e3

and a · ∇a have compact support, one concludes

F ∈ L3(D), f ∈ C∞
c (D). (5.3)

Here is the main result of this subsection.

Proposition 5.1. Let (u, p) be the weak solution to (1.4)–(1.6), and (v,Π) be defined as in (5.1).

Then

(v,∇Π) ∈ H2(D)× L2(D), (5.4)

which satisfies

‖v‖H2(D) + ‖∇Π‖L2(D) � Cα,DΦ. (5.5)

Proof. The proof consists of two parts. First, we show v ∈ W 1,3(D) by applying the regularity results

in (5.3). This leads to

divF ∈ L2(D). (5.6)

Then based on (5.6), we can obtain (5.4).

Now we split the problem (5.2) into a sequence of problems on bounded domains so that Lemmas 2.8

and 2.9 are valid for each one of them. To do this, we define

D =
⋃
k∈Z

Dk, where Dk := D ∩
{
x ∈ R

3 :

(
3k

2
− 1

)
Z � x3 �

(
3k

2
+ 1

)
Z

}
,

and the related cut-off function

ψk = ψ

(
x3 − 3kZ

2

)
,

which satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

suppψ ⊂ [−9Z/10, 9Z/10],

ψ ≡ 1 in [−4Z/5, 4Z/5],

0 � ψ � 1 in [−Z,Z],

|ψ(m)| � C/Zm � C for m = 1, 2.
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Remark 5.2. According to the splitting and construction above, one notices that the “bubble part”

in D is totally contained in D0, and ψ′
k, for each k ∈ Z, is totally supported away from the “bubble part”

of D. Moreover, any point in D is contained in at most two neighboring Dk, while the union of sets

D′
k := {x3 ∈ Dk : ψk(x3) = 1}, k ∈ Z

covers D (see Figure 5).

Multiply the linearized equation (5.2)1 with ψk, and then we convert the problem (5.2) to a related

problem in the domain Dk with k ∈ Z, i.e.,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ(ψkv) +∇(ψk(Π−ΠDk
))

= div (ψkF ) + ψkf + (Π−ΠDk
)ψ′

ke3 − 2ψ′
k∂x3v − ψ′′

kv − ψ′
kF · e3 in Dk,

∇ · (ψkv) = v3ψ
′
k in Dk,

2(S(ψkv) · n)tan + α(ψkv)tan = 0, (ψkv) · n = 0, on ∂Dk ∩ ∂D,

(5.7)

Here, the first two lines in (5.7) follow from direct calculations, and thus we only give some explanation

for the boundary condition in (5.7)3. According to the construction of the cut-off function ψk, one knows

that for any k ∈ Z, ψ′
k is supported away from the “bubble part” of D. This indicates that the Navier-

slip boundary condition (5.2)2 enjoys the following form in the orthogonal curvilinear coordinates on the

boundary: ⎧⎪⎨
⎪⎩
∂nvτ1 = (κ1(x)− α)vτ1 ,

∂nv3 = −αv3,

vn = 0,

on ∂D ∩ (∂DR ∪ ∂DL) (5.8)

(see Remark 2.1 for details). Noting that the normal vector n depends only on xh in the “straight part”

of D, while ψk depends only on x3, one deduces that the boundary condition of ψkv shares the form

as (5.8). This indicates the validity of (5.7)3.

However, Lemma 2.8 is not legal for ψkv at the moment, because ψkv is not divergence-free, and it

also does not lie on a smooth domain. Nevertheless, let D̃k be a bounded smooth domain, which contains

Dk, with its boundary ∂D̃k ⊃ ∂Dk ∩ ∂D. Guaranteed by the definition of Dk, one chooses each D̃k with

k > 0 to be congruent with D̃1, and every D̃k with k < 0 to be congruent with D̃−1.

In order to eliminate the divergence part of ψkv, we introduce auxiliary functions ξk, which satisfy⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δξk = v3ψ
′
k in D̃k,

∂ξk
∂n

= 0 on ∂D̃k,∫
D̃k

ξk(x)dx = 0.

(5.9)

Below, we define

uk := ψkv −∇ξk

Figure 5 (Color online) A truncated smooth capsule D̃k
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for convenience. From (5.7) and (5.9), we know that uk satisfies⎧⎪⎪⎨
⎪⎪⎩
−Δuk +∇(ψk(Π−ΠDk

)) = divFk + fk in D̃k,

∇ · uk = 0 in D̃k,

2(Suk · n)tan + α(uk)tan = hk, uk · n = 0, on ∂D̃k.

(5.10)

Here,

Fk := ψkF +∇2ξk,

fk := ψkf + (Π−ΠDk
)ψ′

ke3 − 2ψ′
k∂x3v − ψ′′

kv − ψ′
kF · e3,

hk := −2((S∇ξk) · n)tan − α(∇ξk)tan.

Now we are ready to show the regularity estimate of the quantities Fk, fk and hk above.

Lemma 5.3. The following estimate of Fk, fk and hk holds:

‖Fk‖L3(D̃k)
+ ‖fk‖

L
3
2 (D̃k)

+ ‖hk‖
W− 1

3
,3(∂D̃k)

� CD‖v‖H1(Dk)(1 + ‖v‖H1(Dk)) + CΦχ|k|�1. (5.11)

Here, the constant CD is uniform with k, and χ|k|�1 is the characteristic function defined by

χ|k|�1 =

{
1, if k ∈ {0, 1,−1},
0, if k ∈ Z− {0, 1,−1}.

Proof. Noting that the support of ψk is uniformly bounded, we see that the estimates of Fk and hk

in (5.11) follow directly from the classical elliptic estimate of the system (5.9), which is

‖ξk‖W 2,3(D̃k)
� CD‖v‖L3(Dk) � CD‖v‖H1(Dk). (5.12)

The trace theorem of Sobolev functions indicates that

‖hk‖
W− 1

3
,3(∂D̃k)

� Cα,D‖ξk‖W 2,3(D̃k)
. (5.13)

For the term fk, we only derive the estimate of the pressure term since the rest are transparent. Using

Lemma 3.11 and Hölder’s inequality, one deduces

‖(Π−ΠDk
)ψ′

k‖L 3
2 (D̃k)

� C‖Π−ΠDk
‖L2(Dk) � C1‖∇Π‖H−1(Dk). (5.14)

Notice that by the definitions of Dk and D̃k, each Dk (k ∈ Z) is congruent with an element in

{D−1,D0,D1}, while every D̃k (k ∈ Z) is congruent with an element in {D̃−1, D̃0, D̃1}. Thus, the

constants in the estimates (5.12)–(5.14) above could be chosen uniformly with respect to k ∈ Z. Finally,

by the equation

∇Π = div(∇v − v ⊗ v − a⊗ v − v ⊗ a) + Δa+

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
Φe3 − a · ∇a

with both

Δa+

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
Φe3

and a · ∇a vanishing in Dk with |k| � 2, one concludes from (5.14) that

‖(Π−ΠDk
)ψ′

k‖L 3
2 (D̃k)

� C(‖∇v‖L2(Dk) + ‖v‖2L4(Dk)
+Φ‖v‖L2(Dk)) + CΦχ|k|�1

� Cα,D‖v‖H1(Dk)(1 + ‖v‖H1(Dk)) + CΦχ|k|�1. (5.15)

Here, we have applied the Sobolev embedding theorem and interpolations of Lp spaces. This completes

the proof of Lemma 5.3.
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Therefore, one concludes the following intermediate W 1,3-estimate of v:

‖v‖W 1,3(D) � Cα,DΦ (5.16)

by combining (2.18) in Lemma 2.8 and (5.11) in Lemma 5.3, and then summing up with k ∈ Z. The

details are as follows:

‖v‖3W 1,3(D) � C
∑
k∈Z

‖ψkv‖3W 1,3(D̃k)

� C
∑
k∈Z

(‖uk‖3W 1,3(D̃k)
+ ‖ξk‖3W 2,3(D̃k)

)

� Cα,D
∑
k∈Z

(‖v‖3H1(Dk)
(1 + ‖v‖3H1(Dk)

) + Φ3χ|k|�1).

Here, we have applied the fact that any point in D is contained in at most two neighboring Dk. Noting

that Φ � Φ0 = Φ0(α,D), we see that

‖v‖3W 1,3(D) � Cα,D

(
(Φ + Φ4)

∑
k∈Z

‖v‖2H1(Dk)
+Φ3

)
� Cα,DΦ3.

Moreover, (5.16) and Hölder’s inequality indicate that

‖v · ∇v‖L2(D) � ‖v‖L6(D)‖∇v‖L3(D) < ∞,

which further implies

divF + f ∈ L2(D).

Similar to (5.11), now we can deduce

‖divFk + fk‖L2(D̃k)
+ ‖hk‖

H
1
2 (∂D̃k)

� Cα,D‖v‖H1(Dk)(1 + ‖v‖H1(Dk)) + CΦχ|k|�1. (5.17)

From now on, Lemma 2.9 with m = 0 is valid for the system (5.10). Combining (5.17) above and (2.19)

in Lemma 2.9, one arrives at

‖v‖H2(Dk) � ‖uk‖H2(D̃k)
+ ‖ξk‖H3(D̃k)

� Cα,D‖v‖H1(Dk)(1 + ‖v‖H1(Dk)) + CΦχ|k|�1. (5.18)

Now summing over k ∈ Z, one proves (5.4) and (5.5) by an approach similar to the proof of (5.16). The

estimate of ∇Π in (5.5) follows directly from the equations (5.2)1 and (5.18) above. This completes the

proof of Proposition 5.1.

Remark 5.4. In the proof of Proposition 5.1, one notices that (5.14) and (5.15) can lead to the

following uniform estimate of the pressure by summing over k ∈ Z :∑
k∈Z

‖Π−ΠDk
‖2L2(Dk)

� Cα,DΦ2 < ∞. (5.19)

Moreover, since (5.19) is derived in the framework of the H1-weak solution, it is valid for the case where

∂D is less regular.

5.2 Higher-order regularity and related estimates

Following the route of obtaining H2 regularity of the solution, now we are ready to derive higher-order

regularity of (u, p) via bootstrapping.
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Proposition 5.5. Let (u, p) be the weak solution to the problem (1.4)–(1.6). Then

(u, p) ∈ C∞(D).

Meanwhile,

v = u− a, Π = p+
Φ
∫ x3

−∞ η(s)ds

CP,R
− Φ

∫ −x3

−∞ η(s)ds

CP,L

satisfies

‖v‖Hm+2(D) + ‖∇Π‖Hm(D) � Cm,α,DΦ. (5.20)

Proof. The proof follows from an induction argument. First, the case of m = 0 is already shown in

Proposition 5.1. Once the regularity estimate (5.20) is achieved with the order m � 0, one deduces that

‖∇m+1(v · ∇v)‖L2(D) � Cm,D(‖v‖L∞(D)‖∇m+2v‖L2(D) + ‖v‖2Wm+1,4(D)) � Cm,D‖v‖2Hm+2(D). (5.21)

Therefore, the Navier-Stokes system (1.1)–(1.3) is equivalent to{
−Δv +∇Π = g, ∇ · v = 0, in D,

2(Sv · n)tan + αvtan = 0, v · n = 0, on ∂D,
(5.22)

where

g = −(v · ∇v + v · ∇a+ a · ∇v + a · ∇a) + Δa+Φ

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
e3

enjoys

‖g‖Hm+1(D) � Cm,α,DΦ < ∞
by direct calculations. Meanwhile, the problem (5.9)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δξk = v3ψ
′
k in D̃k,

∂ξk
∂n

= 0 on ∂D̃k,∫
D̃k

ξk(x)dx = 0

now admits a unique solution in Hm+4(D̃k) that satisfies

‖ξk‖Hm+4(D̃k)
� Cm,D‖v‖Hm+2(Dk). (5.23)

Here, the constant Cm,D is independent of k, because every D̃k is congruent with an element in

{D̃−1, D̃0, D̃1}. Recalling the construction of (5.10), we conclude that uk := ψkv −∇ξk satisfies⎧⎪⎪⎨
⎪⎪⎩
−Δuk +∇(ψk(Π−ΠDk

)) = gk in D̃k,

∇ · uk = 0 in D̃k,

2(Suk · n)tan + α(uk)tan = hk, uk · n = 0, on ∂D̃k

with

gk := div (ψkF +∇2ξk) + ψkf + (Π−ΠDk
)ψ′

ke3 − 2ψ′
k∂x3

v − ψ′′
kv3e3 − ψ′

kF · e3,
hk := −2((S∇ξk) · n)tan − α(∇ξk)tan.

By induction, together with (5.21) and (5.23), one deduces that

‖gk‖Hm+1(D̃k)
+ ‖hk‖

Hm+3
2 (∂D̃k)

� Cm,α,D‖v‖Hm+2(Dk)(1 + ‖v‖Hm+2(Dk)) + CmΦχ|k|�1 (5.24)
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by the approach in the proof of Lemma 5.3. Using the higher-order regularity for linear Stokes equations

in Lemma 2.9, together with the estimates (5.23) and (5.24), one proves the following Hm+3-estimate

in D̃k:

‖v‖Hm+3(Dk) � ‖uk‖Hm+3(D̃k)
+ ‖ξk‖Hm+4(D̃k)

� Cm,α,D‖v‖Hm+2(Dk)(1 + ‖v‖Hm+2(Dk)) + CmΦχ|k|�1.

Summing over k ∈ Z, one concludes

‖v‖Hm+3(D) � Cα,m,DΦ.

Finally, the estimate of ∇Π in (5.20) follows directly from the equation (5.22)1 and the estimate above.

This completes the proof of Proposition 5.5, which indicates the validity of (1.10) in Theorem 1.6.

5.3 Exponential decay of the weak solution

In this subsection, we show the H1-norm exponential decay property of the solution. Our proof is carried

out under the framework of the H1-weak solution, which means that we only assume the solution satisfies

the estimate in Theorem 3.8. However, with the help of the higher-order uniform estimates of the solution

in Proposition 5.5, the proof of the exponential decay property would be much simpler. Nevertheless,

our proof in this subsection is also valid for the stationary Navier-Stokes problem on domains which are

less regular, i.e., an infinite pipe only with a C1,1 boundary.

Proposition 5.6. Let the conditions of Theorem 1.4 be satisfied and (v,Π) is given in (5.1). Then

there exist positive constants C and σ depending only on α and D such that

‖u− gL
Φ‖H1(ΣL×(−∞,−ζ)) + ‖u− gR

Φ‖H1(ΣR×(ζ,∞)) � C‖v‖H1(D) exp(−σζ) (5.25)

for any ζ > Z + 1.

Proof. We only prove the estimate of the term ‖u − gR
Φ‖H1(ΣR×(ζ,∞)) since the remaining term is

essentially identical. In ΣR × (Z,∞), the equation of v = u− a is

v · ∇v + a · ∇v + v · ∇a+∇Π−Δv = 0. (5.26)

This is because

Δa+

(
η(x3)

CP,R
+

η(−x3)

CP,L

)
Φe3 − a · ∇a =

(
ΔgRΦ +

Φ

CP,R

)
e3 = 0 in ΣR × (Z,∞).

In the following proof, we drop (upper or lower) indexes “R” for convenience. For any Z < ζ � ζ ′ < ζ1,

taking the inner product with v on both sides of (5.26) and integrating on Σ× (ζ ′, ζ1), one has∫
Σ×(ζ′,ζ1)

v ·Δvdx︸ ︷︷ ︸
left-hand side (LHS)

=

∫
Σ×(ζ′,ζ1)

(v · ∇v + a · ∇v + v · ∇a+∇Π) · vdx︸ ︷︷ ︸
right-hand side (RHS)

. (5.27)

To handle the left-hand side of (5.27), one first recalls the derivation of (4.6), which indicates that∫
Σ×(ζ′,ζ1)

v ·Δvdx

= −2

∫
Σ×(ζ′,ζ1)

|Sv|2dx− α

∫
∂Σ×(ζ′,ζ1)

|vtan|2dS

−
3∑

i=1

∫
Σ×{x3=ζ′}

vi(∂x3vi + ∂xiv3)dxh +
3∑

i=1

∫
Σ×{x3=ζ1}

vi(∂x3vi + ∂xiv3)dxh. (5.28)
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On the other hand, one can derive the following inequality similar to (4.11):∫
Σ×(ζ′,ζ1)

v ·Δvdx � −
∫
Σ×(ζ′,ζ1)

|∇v|2dx+ Cα,D
∫
∂Σ×(ζ′,ζ1)

|vtan|2dS

−
3∑

i=1

∫
Σ×{x3=ζ′}

vi∂x3vidxh +

3∑
i=1

∫
Σ×{x3=ζ1}

vi∂x3vidxh. (5.29)

Therefore, by calculating

(5.28)× Cα,D + (5.29)× α,

one deduces that the left-hand side of (5.27) satisfies

LHS � −α

∫
Σ×(ζ′,ζ1)

|∇v|2dx+ Cα,D

( 3∑
i=1

∫
Σ×{x3=ζ1}

vi∂xiv3dxh −
3∑

i=1

∫
Σ×{x3=ζ′}

vi∂xiv3dxh

)

+ (α+ Cα,D)
( 3∑

i=1

∫
Σ×{x3=ζ1}

vi∂x3vidxh −
3∑

i=1

∫
Σ×{x3=ζ′}

vi∂x3vidxh

)
. (5.30)

Using integration by parts on the right-hand side of (5.27), one arrives at

RHS =

∫
Σ×{x3=ζ1}

(
1

2
(v3 + gΦ)|v|2 + v3Π+ gΦ(v3)

2

)
dxh

−
∫
Σ×{x3=ζ′}

(
1

2
(v3 + gΦ)|v|2 + v3Π+ gΦ(v3)

2

)
dxh

−
∫
Σ×(ζ′,ζ1)

v · ∇v · adx. (5.31)

Now we are ready to perform ζ1 → ∞. To do this, one must be careful with the integrations on

Σ×{x3 = ζ1} in both (5.30) and (5.31). Recalling the estimates of (v,Π) in Theorem 3.8 and Remark 5.4,

one derives

‖v‖2H1(D) + ‖v‖4L4(D) +
∑
k∈Z

‖Π−ΠDk
‖2L2(Dk)

� Cα,DΦ2 < ∞. (5.32)

Choosing

M :=
Cα,DΦ2

Z
,

one concludes that for any k > 1, there exists a slice Σ× {x3 = ζ1,k} which satisfies

Σ× {x3 = ζ1,k} ⊂ D ∩
{
x ∈ R

3 :

(
3k

2
− 1

2

)
Z � x3 �

(
3k

2
+

1

2

)
Z

}
⊂ Dk,

and it holds that ∫
Σ×{x3=ζ1,k}

(|∇v|2 + |v|4 + |Π−ΠDk
|2)dxh � M.

Otherwise, one has

‖v‖2H1(Dk)
+ ‖v‖4L4(Dk)

+ ‖Π−ΠDk
‖2L2(Dk)

> ZM = Cα,DΦ2,

which creates a paradox to (5.32). Choosing k0 > 0 being sufficiently large such that the sequence satisfies

{ζ1,k}∞k=k0
⊂ [ζ ′,∞), clearly one has ζ1,k ↗ ∞ as k → ∞. Moreover, using the trace theorem of functions

in the Sobolev space H1, one has∫
Σ

|v(xh, x3)|2dxh � C

∫
z>x3

∫
Σ

(|v|2 + |∇v|2)(xh, z)dxhdz → 0 as x3 → ∞.
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Noting that
∫
Σ×{x3=ζ1,k} v3dxh = 0 for k � k0, we deduce the following by the Poincaré inequality:∣∣∣∣

∫
Σ×{x3=ζ1,k}

v3Πdxh

∣∣∣∣
=

∣∣∣∣
∫
Σ×{x3=ζ1,k}

v3(Π−ΠDk
)dxh

∣∣∣∣
�

(∫
Σ×{x3=ζ1,k}

|v|2dxh

)1/2(∫
Σ×{x3=ζ1,k}

|Π−ΠDk
|2dxh

)1/2

→ 0 as k → ∞.

Meanwhile, one finds∫
Σ×{x3=ζ1,k}

|v|(|∇v|+ |v|2)dxh

�
(∫

Σ×{x3=ζ1,k}
(|∇v|2 + |v|4)dxh

)1/2(∫
Σ×{x3=ζ1,k}

|v|2dxh

)1/2

→ 0 as k → ∞

and ∫
Σ×{x3=ζ1,k}

|gΦ||v|2dxh � ‖gΦ‖L∞(DR)

∫
Σ×{x3=ζ1,k}

|v|2dxh → 0 as k → ∞.

Choosing ζ1 = ζ1,k (k � k0) in (5.30) and (5.31), respectively, and performing k → ∞, one can deduce

that

α

∫
Σ×(ζ′,∞)

|∇v|2dx

�
∫
Σ×(ζ′,∞)

v · ∇v · adx︸ ︷︷ ︸
R1

+ Cα,D
∫
Σ×{x3=ζ′}

(|v|(|v|2 + |gΦ||v|+ |∇v|) + v3Π)dxh.

Using the Cauchy-Schwarz inequality, the Poincaré inequality in Lemma 2.5 and the construction of the

profile vector a, one derives

R1 � ‖a‖L∞(D)

(∫
Σ×(ζ′,∞)

|∇v|2dx
)1/2(∫

Σ×(ζ′,∞)

|v|2dx
)1/2

� C0Φ

∫
Σ×(ζ′,∞)

|∇v|2dx,

which indicates the following estimate provided Φ is small enough such that C0Φ < α:∫
Σ×(ζ′,∞)

|∇v|2dx � Cα,D
∫
Σ×{x3=ζ′}

(|v|(|v|2 + |gΦ||v|+ |∇v|) + v3Π)dxh. (5.33)

Denoting

G(ζ ′) :=
∫
Σ×(ζ′,∞)

|∇v|2dx, (5.34)

and integrating (5.33) with ζ ′ on (ζ,∞), one arrives at∫ ∞

ζ

G(ζ ′)dζ ′ � Cα,D

(∫
Σ×(ζ,∞)

(|v|(|v|2 + |gΦ||v|+ |∇v|))dx+

∣∣∣∣
∫
Σ×(ζ,∞)

v3Πdx

∣∣∣∣
)
. (5.35)

Applying the Poincaré inequality in Lemma 2.5, one deduces∫
Σ×(ζ,∞)

|v|(|v|2 + |gΦ||v|+ |∇v|)dx � Cα,D
∫
Σ×(ζ,∞)

|∇v|2dx. (5.36)

Moreover, using a similar approach as in the proof of Proposition 4.2, one notices that∣∣∣∣
∫
Σ×(ζ,∞)

v3Πdx

∣∣∣∣ � ∞∑
m=1

∣∣∣∣
∫
Ω+

ζ+m

v3Πdx

∣∣∣∣
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� C

∞∑
m=1

(‖gΦ‖L∞(Ω+
ζ+m)‖∇v‖2

L2(Ω+
ζ+m)

+ ‖∇v‖2
L2(Ω+

ζ+m)
+ ‖∇v‖3

L2(Ω+
ζ+m)

)

� C

∫
Σ×(ζ,∞)

|∇v|2dx. (5.37)

Substituting (5.36) and (5.37) into (5.35), one arrives at∫ ∞

ζ

G(ζ ′)dζ ′ � Cα,DG(ζ) for any ζ > Z.

This implies that

N (ζ) :=

∫ ∞

ζ

G(ζ ′)dζ ′

is well-defined for all ζ > Z, and

N (ζ) � −Cα,DN ′(ζ) for any ζ > Z. (5.38)

Multiplying the factor eC
−1
α,Dζ on both sides of (5.38) and integrating on [Z, ζ], one deduces

N (ζ) � Cα,D exp(−C−1
α,Dζ) for any ζ > Z.

According to the definition (5.34), one knows that G is both non-negative and non-increasing. Thus,

G(ζ) �
∫ ζ

ζ−1

G(ζ ′)dζ ′ � N (ζ − 1) � C exp(−C−1
α,Dζ) for any ζ > Z + 1.

We complete the proof of (5.25) by choosing σ = C−1
α,D.

5.4 On the exponential decay for higher-order derivatives

In this subsection, we focus on the higher-order asymptotic behavior of the aforementioned unique smooth

solution to the problem. One sees that the solution u converges to the Poiseuille flow at the far field

with an exponential speed. Based on the H1 decay property in Proposition 5.6, we finish the proof of

the estimate (1.11) in Theorem 1.6.

Using Sobolev embedding, we first need to show the following decay of the solution in the Hm-norms

with m � 2:

‖v‖Hm(ΣL×(−∞,−ζ)) + ‖v‖Hm(ΣR×(ζ,∞))

� Cm,α,D(‖v‖H1(ΣL×(−∞,−ζ+2Z)) + ‖v‖H1(ΣR×(ζ−2Z,∞))) for all ζ > 3Z.

This is derived by using the method in the proof of Proposition 5.5, but summing over k ∈ Z such that

suppψk ∩ ((−∞,−ζ) ∪ (ζ,∞)) �= ∅.

Then the proof is completed by the H1 decay estimate (5.25).
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6 Bogovskĭi M E. Solutions of some problems of vector analysis, associated with the operators div and grad (in Russian).

In: Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics.

Proceedings of the S. L. Sobolev Seminar, vol. 149. Novosibirsk: Akad Nauk SSSR Sibirsk Otdel, 1980, 5–40

7 de Rham G. Differentiable Manifolds: Forms, Currents, Harmonic Forms. Grundlehren der mathematischen

Wissenschaften, vol. 266. Berlin: Springer, 1984

8 Galdi G. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd

ed. Springer Monographs in Mathematics. New York: Springer, 2011

9 Ghosh A. Navier-Stokes equations with Navier boundary condition. PhD Thesis. Pau and Bilbao: Université de Pau
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