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Let D be the exterior of a cone inside a ball, with its altitude 
angle at most π/6 in R3, which touches the x3 axis at the 
origin. For any initial value v0 = v0,rer + v0,θeθ + v0,3e3 in a 
C2(D) class, which has the usual even-odd-odd symmetry in 
the x3 variable and has the partial smallness only in the swirl 
direction: |rv0,θ| ≤ 1

100 , the axially symmetric Navier-Stokes 
equations (ASNS) with Navier-Hodge-Lions slip boundary 
condition have a finite-energy solution that stays bounded 
for all time. In particular, no finite-time blowup of the 
fluid velocity occurs. Compared with standard smallness 
assumptions on the initial velocity, no size restriction is 
made on the components v0,r and v0,3. In a broad sense, 
this result appears to solve 2/3 of the regularity problem 
of ASNS in such domains in the class of solutions with the 
above symmetry. Equivalently, this result is connected to the 
general open question which asks that if an absolute smallness 
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of one component of the initial velocity implies the global 
smoothness, see e.g. page 873 in Chemin et al. (2017) [6]. Our 
result seems to give a positive answer in a special setting.
As a byproduct, we also construct an unbounded solution of 
the forced Navier Stokes equation in a special cusp domain 
that has finite energy. The forcing term, with the scaling 
factor of −1, is in the standard regularity class, and it can 
be generated by an electric current in a long and straight wire 
(i.e. Ampère force). This result confirms the intuition that if 
the channel of a fluid is very thin, arbitrarily high speed in 
the classical sense can be attained under a mildly singular, 
physically reasonable force.

© 2024 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of the paper is to construct a class of global bounded solutions to the axially 
symmetric Navier-Stokes equations, abbreviated as ASNS henceforth.



Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393 3
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Δ − 1

r2

)
vr − (vr∂r + v3∂x3)vr + (vθ)2

r − ∂rP − ∂tvr = 0,(
Δ − 1

r2

)
vθ − (vr∂r + v3∂x3)vθ − vθvr

r − ∂tvθ = 0,
Δv3 − (vr∂r + v3∂x3)v3 − ∂x3P − ∂tv3 = 0,
1
r∂r(rvr) + ∂x3v3 = 0.

(1.1)

Here, v = vrer + vθeθ + v3e3 is the velocity in the cylindrical system with the standard 
basis {er, eθ, e3}, where for any x = (x1, x2, x3) ∈ R3, r =

√
x2

1 + x2
2 and

er = (x1/r, x2/r, 0), eθ = (−x2/r, x1/r, 0), e3 = (0, 0, 1). (1.2)

The components vr, vθ and v3 are independent of the azimuthal angle θ. Although ASNS 
is a special case of the full 3D Navier-Stokes equations,

Δv − (v · ∇)v −∇P − ∂tv = 0, div v = 0, (1.3)

the regularity problem of the former is still open in general. In the last several decades, 
there has been an outburst of research on ASNS, see e.g. [18,39,7,8,17,14,10,19,40,42] and 
the references therein. Especially after it was realized in [19] that ASNS is essentially 
a critical system, there is some expectation that the regularity problem is becoming 
accessible one way or the other.

A little of the expectation is achieved in [42] where the regularity problem is solved 
for a cusp domain under the Navier-slip boundary condition. This is the first time that 
the regularity problem of ASNS is settled when the essential difficulty is beyond that 
in 2D. Actually, the regularity problem of the 3D Navier-Stokes equations is also solved 
in [23] under the helical symmetry assumption of the solution. It is such an assumption 
that makes the classical 2D Ladyzhenskaya’s inequality available in 3D. With that being 
said, the fundamental obstacle of the 3D regularity problem is absent in this situation.

One may feel that the cusp domain in [42] is somewhat special. In the current paper, 
we consider the ASNS in some wider domains, those outside a cone (see Fig. 1), which 
seems to be the next most feasible case. The problem we are studying can be used to 
model water flows around a cone shaped reef. Although we are not able to fully solve 
the regularity problem in our main result, Theorem 1.5, since there is a size assumption 
on the initial velocity, this assumption is only applied in the swirl direction and no size 
assumption is made on the other components of the initial velocity.

Since there are many well-established results of global smoothness for the Navier 
Stokes equations involving size assumptions for the initial value, we hereby explain the 
main new feature of this paper. The standard global smoothness result for ASNS in the 
literature can be summarized as follows. There exists a function λ = λ(s), whose value 
goes to +∞ as s → +∞, such that for any small ε > 0, the solution to the ASNS is 
globally smooth if the initial condition v0 satisfies

‖v0,θ‖X < ε, ‖v0,r‖Y + ‖v0,3‖Y < λ(ε−1).
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Fig. 1. Domain D in cylindrical coordinates.

Here X is a scaling-invariant suitable space of various choices, and ‖ · ‖Y is a quantity 
which may involve both velocity and vorticity. Notice that the non-swirl components 
v0,r and v0,3 of the initial velocity are also restricted in size, unless the swirl component 
v0,θ = 0. In contrast, these restrictions are removed in our Theorem 1.5 below. This 
result is also connected to the general open question, which asks that if an absolute 
smallness of one component of the initial velocity implies the global smoothness, see e.g. 
page 873 in [6] in which the space X = Ḣ

1
2 . Our result seems to give a positive answer 

in the special setting stated in Theorem 1.5.
Now we make more precise description of the domains in this paper which are the 

exterior of certain cones inside a ball that touches the x3 axis at the origin. We remark 
that similar regions were also introduced before to study other fluid problems, such as 
the singular formation for Euler flows [13], but these regions are bounded away from the 
x3-axis.

Definition 1.1. Let α ∈
(
0, π2
)

be any fixed angle. The domain D with boundary surfaces 
R1, R2 and A is defined in the cylindrical coordinates as follows (also see Fig. 1):

D =
{
(r, θ, x3) : 0 < r2 + x2

3 < 1, −r tanα < x3 < r tanα, θ ∈ [0, 2π)
}
. (1.4)

Moreover, for convenience of notation, we denote

∂RD = R1 ∪R2, ∂AD = A,

where the superscripts R and A stand for the radial boundary and the annular boundary 
respectively.

The associated boundary condition is

v · n = 0, ω × n = 0, on ∂D, (1.5)

where n is the unit outward normal on the smooth part of ∂D and ω is the vorticity 
defined as
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ω = curl v = ∇× v. (1.6)

Condition (1.5) is a special case in a family of boundary conditions proposed by Navier 
[26]. This condition has been studied extensively in the literature and was attributed to 
different authors. For example, it was studied in [38]. Later, it was called the Navier-
Hodge boundary condition in [25], and the Navier-Lions boundary condition in [15]. For 
this reason, we will name it as Navier-Hodge-Lions boundary condition in this paper, 
which is abbreviated as the NHL boundary condition thereafter. For more details on the 
history of this boundary condition and other types of Navier boundary conditions, see 
also ([15,41,9,24,30,31,3]).

Due to Leray [21], if D = R3, v0 ∈ L2(R3), the Cauchy problem (1.3) has a solution 
in the energy space (cf. (1.7) below). By finite energy, we mean the solutions are in the 
energy space E = L2

tH
1
x ∩ L∞

t L2
x. Here and throughout, the norm in E for a function v

on D × [0, T ] is taken as

‖v‖2
E =

T∫
0

∫
D

|∇v|2dxdt + sup
t∈[0,T ]

∫
D

|v(x, t)|2dx. (1.7)

Here, T > 0 and the function v can be vector-valued or scalar-valued, depending on the 
context. The solutions with finite energy include the so-called Leray-Hopf solutions which 
need to satisfy the strong energy inequality. In general, it is not known if Leray-Hopf 
solutions stay bounded or regular for all t > 0. Recently, by allowing a super-critical 
forcing term in (1.3), it was shown in [2] that even with zero initial value and identical 
forcing term, Leray-Hopf solutions may not be unique.

In this paper, we will focus on a special case of (1.3), namely when v and P are 
independent of the azimuthal angle θ in the cylindrical coordinate system (r, θ, x3). 
Although ASNS seems more complicated than the full 3-dimensional equation, a simpli-
fication happens in the 2nd equation where the pressure term disappears. For a succinct 
derivation of the ASNS (1.1) using the tensor notations, we refer the readers to [42]. If 
the swirl vθ = 0, then it is well-known that finite energy solutions to the Cauchy problem 
of (1.1) in R3 are smooth for all time t > 0, see e.g. [18,39,20]. In the presence of swirl, 
it is still not known in general if finite energy solutions blow up in finite time.

By the partial regularity result in [5], possible singularity for suitable weak solutions 
of ASNS can only appear at the x3 axis. See also [22] for a simplified proof and [4] for 
the same statement but without the “suitable” requirement. Moreover, in [7,8,17,35], it 
was shown that if

|v(x, t)| ≤ C

r
, (1.8)

then finite energy solutions to the Cauchy problem of ASNS are smooth for all time. Here, 
C is any positive constant. Later, there are some logarithmic improvements on the order 
of the criterion (1.8), see e.g. [28,34,33,11]. Also see [37] for a similar improvement in full 
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3D Navier-Stokes equations. In contrast, the energy bound scales as −1/2. So even with 
axial symmetry, there is a finite scaling gap which makes the ASNS supercritical, just 
like the full equations. Promisingly in [19], the authors revealed the following property.

The vortex stretching term of the ASNS is critical after a suitable change of dependent 
variables.

Thus, the aforementioned scaling gap is zero, which makes the regularity problem of 
ASNS appears less formidable. Nevertheless, all major open problems are still open.

The main result in [19] includes the following statement. Let δ0 ∈ (0, 12 ) and C∗ > 1. 
If

sup
0≤t<T

|rvθ(r, x3, t)| ≤ C∗| ln r|−2, r ≤ δ0, (1.9)

then the above v is regular globally in time. Note that a priori we have |rvθ(r, x3, t)| ≤ C

by the maximal principle applied on equation (1.10) of Γ:

ΔΓ − b · ∇Γ − 2
r
∂rΓ − ∂tΓ = 0, (1.10)

where Γ = rvθ and b = vrer + v3e3. So there is still a gap of logarithmic nature from 
regularity. Later, the power index −2 in (1.9) was improved to −3

2 in [40].
Now we specify the meaning of solutions to ASNS (1.1) associated with the NHL 

boundary condition (1.5). In the rest of this paper, functions and vector fields are always 
assumed to be axially symmetric with respect to the x3-axis unless stated otherwise. 
Fix any T > 0 and any v0 ∈ H2(D) that is divergence free in D and satisfies the NHL 
boundary condition (1.5). Consider

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δv − (v · ∇)v −∇P − ∂tv = 0 in D × (0, T ],

∇ · v = 0 in D × (0, T ],

v · n = 0, ω × n = 0 on ∂D × (0, T ],

v(·, 0) = v0(·) in D,

(1.11)

where ω = ∇ × v. Define the space of testing vector fields to be

ST :=
{
f ∈ H1

t L
2
x ∩ L2

tH
2
x

(
D × [0, T ]

)
: ∇ · f = 0 in D × [0, T ],

f · n = 0 on ∂D × [0, T ]
}
.

(1.12)

If there exist v ∈ ST and P ∈ L2
tH

1
x(D× [0, T ]) such that (v, P ) satisfies (1.11), then we 

test (1.11) by any function f ∈ ST to obtain (see Section A.4 for detailed computations)
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∫
D

v(x, T ) · f(x, T ) dx +
T∫

0

∫
D

(∇× v) · (∇× f) dx dt

=
∫
D

v0(x) · f(x, 0) dx−
T∫

0

∫
D

[(v · ∇)v] · f dx dt +
T∫

0

∫
D

v · (∂tf) dx dt.

(1.13)

If we replace f by v, then (1.13) yields the following identity:

∫
D

|v(x, T )|2 dx + 2
T∫

0

∫
D

|∇ × v(x, t)|2 dx dt =
∫
D

|v0(x)|2 dx. (1.14)

We point out that the left-hand side of (1.14) is not the energy norm (1.7) of v. Actually, 
without further assumptions, it is not clear if (1.14) implies the uniform (in time) finite-
energy of the solution since the L2 norm of ∇v may not be controlled by the L2 norm 
of ∇ × v, see the discussion in Section 4.1.

In this paper, we are looking for strong solutions of (1.11) which are defined as below.

Definition 1.2. If there exist v ∈ L2
tH

2
x ∩H1

t L
2
x

(
D × [0, T ]

)
and P ∈ L2

tH
1
x

(
D × [0, T ]

)
such that (v, P ) satisfies (1.11) in L2

tx sense, then v or (v, P ) is called a strong solution 
of (1.11) on D × [0, T ].

Note that if (v, P ) is a strong solution, then (v, P ) satisfies (1.11) almost everywhere. 
In addition, both the integration identities (1.13) and (1.14) are valid for v. For the 
bounded domain D in (1.4) with α ∈

(
0, π6
]

and under the NHL boundary condition 
(1.5), we manage to obtain a strong solution to ASNS (1.1) under the assumptions (i) 
and (ii) in the main result of this paper, Theorem 1.5, which removes the logarithmic 
term in (1.9). We emphasize that the assumption (1.17) is only made on the initial 
swirl v0,θ and no smallness restriction is imposed on the other components v0,r and v0,3. 
Assumption (i) is a symmetry condition which we describe now.

Definition 1.3. Let v = vrer + vθeθ + v3e3 be a vector field in R3. We say v has the 
even-odd-odd symmetry if vr is even, and vθ and v3 are odd symmetric in x3.

This symmetry condition will be not only used to find a strong solution, but also 
utilized to establish the uniform (in time) energy inequality (1.19) in Theorem 1.5. Next, 
we introduce the admissible class A of the initial vector fields that we consider in this 
paper. Since the original domain D touches the x3 axis with an angle, the singularity 
of the velocity might have more chance to occur. Moreover, the solution may not be 
expected to have higher regularity than L2

tH
1
x. In order to acquire more regularity and 

to prove the boundedness of the velocity, we first cut the corner of D and then study 
the problem in approximating domains Dm (m ≥ 2), which are defined as
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Dm =
{

(r, θ, x3) : 1
m2 < r2 + x2

3 < 1, −r tanα < x3 < r tanα, θ ∈ [0, 2π)
}
. (1.15)

The NHL boundary condition (1.5) associated with Dm is:

v · n = 0, ω × n = 0, on ∂Dm. (1.16)

Due to the above strategy, it is natural to choose the elements in A to be the limits of 
vector fields on Dm.

Definition 1.4 (Admissible classes Am and A ). Fix any angle α ∈
(
0, π2
)
.

(1) For any integer m ≥ 2, we define the admissible class Am on Dm to be the space 
of vector fields v(m)

0 in C2(Dm) that are divergence free in Dm and satisfy the NHL 
condition (1.16) on ∂Dm.

(2) For the domain D, we define the admissible class A on it to be the space of vector 
fields v0 in C2(D) such that there exist vector fields 

{
v
(m)
0
}
m≥2 such that v(m)

0 ∈ Am

and

lim
m→∞

∥∥v0 − v
(m)
0
∥∥
C2(Dm) = 0.

Now we are ready to state the main result of this paper.

Theorem 1.5. Let the domain D be as defined in (1.4) with the angle α ∈
(
0, π6
]
. Suppose 

the initial velocity v0 lies in the admissible class A with the following two properties:

(i) v0 has the even-odd-odd symmetry as in Definition 1.3;
(ii) the swirl component of the initial velocity satisfies

sup
D

r|v0,θ| ≤
1

100 . (1.17)

Then for any T > 0, equation (1.1) with the initial data v0 and the NHL boundary 
condition (1.5) has a strong solution (v, P ) on D×[0, T ] such that v is bounded uniformly 
in time and possesses the even-odd-odd symmetry. More precisely,

‖v‖L∞
tx(D×[0,T ]) + ‖v‖H1

t L
2
x(D×[0,T ]) + ‖v‖L2

tH
2
x(D×[0,T ]) + ‖P‖L2

tH
1
x(D×[0,T ]) ≤ C, (1.18)

where C is a constant that only depends on α and ‖v0‖C2(D). In addition, the following 
energy inequality holds:

∫
|v(x, T )|2 dx + 2

3

T∫ ∫
|∇v(x, t)|2 dx dt ≤

∫
|v0(x)|2 dx. (1.19)
D 0 D D
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On the other hand, if (ṽ, P̃ ) is another strong solution on D×[0, T ] with the even-odd-odd 
symmetry, then ṽ coincides with the above strong solution v.

Remark 1.6. We remark that without the symmetry assumption (i) in the above theo-
rem, there is indication that the energy inequality (1.19) may fail. One example is the 
stationary solution

v = 1
r
eθ,

which satisfies equation (1.1) with P = − 1
2r2 , and the NHL boundary condition (1.5), 

in the domain Dm for any m ≥ 2. See also Section 7.

We also want to mention that there do exist vector fields v0 = v0,ρeρ + v0,φeφ + v0,θeθ
in A which satisfy the assumptions (i) and (ii) in Theorem 1.5, and for which the size of 
v0,ρ and v0,φ can be chosen arbitrarily large. We will provide such an initial vector field 
v0 in Example 2.2.

Remark 1.7. Similar to the weak-strong uniqueness property (see e.g. Theorem 6.10 in 
Section 6.3 in [32]) of the classical Navier-Stokes equations (1.3), one can apply that idea 
to establish such a property for ASNS (1.1) under the NHL boundary condition (1.5), 
with a small modification as follows. Since a strong solution only satisfies the integral 
identity (1.14), a weak solution is required to satisfy the corresponding inequality:

∫
D

|v(x, T )|2 dx + 2
T∫

0

∫
D

|∇ × v(x, t)|2 dx dt ≤
∫
D

|v0(x)|2 dx.

We would like to mention that the above inequality is different from the classical one 
since its left hand side only involves the vorticity ∇ × v rather than the gradient ∇v.

Let us describe the organization of the paper. After some preparations in Section 2, we 
will prove, in Section 3, the existence and uniqueness of strong solutions in approximating 
domains Dm. The core of the paper is contained in Section 4 and Section 5 where we 
will prove the required uniform a priori bounds on the solutions found in Section 3. 
After these two sections, the proof of the main result, Theorem 1.5, will be completed 
in Section 6. Finally, as a byproduct of studying the NHL boundary condition, we will 
construct a special class of blowup solutions of (1.1) on some cusp domains in Section 7. 
In particular, for a thin cusp channel, we show in Proposition 7.2 that the vector field 
η(t)
r eθ solves the forced ASNS (7.5) with forces −η′(t)

r eθ, where η(t) is a smooth cut-off 
function in time. As a magnetohydrodynamic intuition, one can interpret the situation 
as the Ampère magnetic forces −η′(t)

r eθ, generated by an electric current in a long wire, 
can produce infinite speed of the conductive fluid in the classical sense. Note that these 
forces are subcritical under the standard scaling.
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Here are some key ideas in the proofs. The first step is to rewrite the ASNS and 
the vorticity equations in the spherical coordinate system. It is well known for a long 
time, see e.g. paragraph 4 in the contemporary exposition [36], that the Navier-Stokes 
equations are supercritical. In particular, the vorticity equations contain the supercritical 
vortex stretching terms which block the path to the standard energy estimates, without 
size restrictions on all components. Our new input is the discovery of two new quantities 
K and F (see (2.14)):

K = ωρ

ρ
, F = ωφ

ρ
,

involving the vorticity for which the vortex stretching terms become critical. In addition, 
the boundary behaviors of these quantities are manageable so that an energy estimate 
can be achieved under only the partial smallness condition (ii) in Theorem 1.5. One may 
wonder, if the well known quantities Ω = ωθ/r (see [39]) and J = ωr/r (see [10]) in the 
cylindrical system are still useful in our situation. It turns out that Ω is still necessary 
but we are not able to control the boundary terms coming out from the equation of J . 
The next step is to derive an energy estimate for the system of equations for K, F and 
Ω (see (2.15)). Since there are a large number of terms in the system, which need to be 
handled separately, and which may satisfy various boundary conditions, the calculation 
will be relatively long. Although the modified vortex equations for F, K, Ω are essentially 
critical, some of the bad terms still appear bigger in size than the good viscosity term. 
For example, the term 6K/ρ2 in (2.15)1 can not be controlled by ΔK using the standard 
Hardy’s inequality in 3D domains. This is also why we need the extra restrictions on 
the angle of the domain and the even-odd-odd symmetry of the data. With the energy 
estimate in hand, we can prove the boundedness of the velocity v by using a modified 
version of the Biot-Savart law and the Moser’s iteration. Here are some crucial steps to 
obtain the uniform estimate on ‖v‖L∞

tx(Dm×[0,T ]).

• Step 1: We will derive an energy inequality about v in Section 4.1. This energy 
inequality provides a uniform bound on ‖v‖Em,T

.
• Step 2: In Sections 4.2–4.4, we will take advantage of the Biot-Savart law and the con-

dition α ∈
(
0, π6
]

to control the L2(Dm) norms of ∇(vρ/ρ)(·, t) and ∇(vφ/ρ)(·, t) by 
‖Ω(·, t)‖L2(Dm), and control the L2(Dm) norms of 1

ρ∇(vρ/ρ)(·, t) and 1
ρ∇(vφ/ρ)(·, t)

by ‖∇Ω(·, t)‖L2(Dm).
• Step 3: Thanks to the smallness condition ‖Γ(·, 0)‖L∞(Dm) ≤ 1

95 , the estimates in 
Step 1 will be used in Section 4.5 to obtain an upper bound, which is uniform in m
and T , on ‖(K, F, Ω)‖L∞

t L2
x(Dm×[0,T ]).

• Step 4: According to the uniform bound on ‖(K, F, Ω)‖L∞
t L2

x(Dm×[0,T ]), we will derive 
in Section 4.6 a uniform bound on ‖v/ρ‖L∞

t L6
x(Dm×[0,T ]).

• Step 5: Finally in Section 4.7, we will bound ‖v‖L∞
tx(Dm×[0,T ]) in terms of ‖v0‖C2(Dm), 

‖v‖Em,T
, ‖(K, F, Ω)‖L∞L2 (Dm×[0,T ]) and ‖v/ρ‖L∞L6 (Dm×[0,T ]). Due to the uniform 
t x t x
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estimates in Steps 1, 3 and 4, the bound on ‖v‖L∞
tx(Dm×[0,T ]) will also be uniform in 

m and T .

We finish the introduction with a list of some notations and conventions to be used 
throughout this paper.

• Functions or vector fields in this paper are always assumed to be axially symmetric 
unless stated otherwise.

• The velocity field is usually called v and the vorticity ∇ × v is denoted as ω. We use 
subscripts to denote their components in either the cylindrical or spherical coordinate 
systems (see Section 2). For instance, vρ = v · eρ, ωθ = ω · eθ, ωφ = ω · eφ. Here, 
θ refers to the azimuthal (longitude) angle and φ is the angle between the radius 
vector and the positive x3-axis. In addition, we write b = vrer + v3e3 = vρeρ + vφeφ.

• Lp(Ω), p ≥ 1, denotes the usual Lebesgue space on a domain Ω which may be 
a spatial, temporal or space-time domain. Let X be a Banach space defined for 
functions on Ω ⊂ R3. Lp(0, T ; X) represents the Bochner-Banach space of functions 

f on the space time domain D× [0, T ] with the norm 
(∫ T

0 ‖f(·, t)‖pXdt
)1/p

. We also 

use Lp
xL

q
t or Lq

tL
p
x to denote the mixed p, q norm in space time.

• Let Ω ⊂ R3 be an open domain, then H1(Ω) = W 1,2(Ω) = {f : f, ∇f ∈ L2(Ω)}
and H2(Ω) = W 2,2(Ω) = {f : f, ∇f, ∇2f ∈ L2(Ω)}, denote the standard Sobolev 
spaces on Ω. Meanwhile, for any time interval I ⊂ R, the notation H1(I) means the 
Sobolev space W 1,2(I).

• Interchangeable notations div v = ∇ · v, curl v = ∇ × v will be used.
• B(x, r) denotes the ball of radius r centered at x in a Euclidean space; and BX(f, r)

denotes the open ball in a normed space X, centered at f ∈ X with radius r.
• We use C or Ci (i ≥ 1) with or without index to denote generic constants which 

may change from line to line. Sometimes, we will make the dependence of constants 
on parameters explicitly. For example, the notation C = C(a, b . . . ) or C = Ca,b,...

means that the constant C only depends on a, b . . . .

2. Preliminaries

Although the Navier-Stokes equations under the spherical coordinates are well-known, 
various notations exist in literatures. In this section, we will first fix the notations and 
derive the basic equations for the key quantities K, F and Ω in Section 2.1. We point out 
that the equation (2.7) for the velocity v and the equation (2.13) for the vorticity ω may 
look slightly differently from other literatures since we have rewritten some terms based 
on the divergence free condition. Then we will introduce some inequalities of Poincaré’s 
or Hardy’s type which will be used in latter sections. Furthermore, we will establish the 
a priori L∞ bound for another crucial quantity Γ.
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2.1. Reformulation of equations in spherical system with unknowns K = ωρ/ρ, 
F = ωφ/ρ and Ω = ωθ/(ρ sinφ)

Due to the geometry of the domain D and the boundary condition (1.5), it may be 
more beneficial to adopt the spherical coordinates (ρ, φ, θ), where ρ is the radial distance 
and φ is the angle between the radius vector and the positive x3 axis. The relation 
between the cylindrical coordinates and the spherical coordinates is(

r
θ
x3

)
=
(
ρ sinφ

θ
ρ cosφ

)
. (2.1)

For any axially symmetric vector field v, we denote

v = vρ(ρ, φ, t)eρ + vφ(ρ, φ, t)eφ + vθ(ρ, φ, t)eθ,

where

eρ =
(sinφ cos θ

sinφ sin θ
cosφ

)
, eφ =

(cosφ cos θ
cosφ sin θ
− sinφ

)
, eθ =

(− sin θ
cos θ

0

)
. (2.2)

Then {
eρ = sinφ er + cosφ e3,

eφ = cosφ er − sinφ e3,

{
vρ = sinφ vr + cosφ v3,

vφ = cosφ vr − sinφ v3.
(2.3)

Under the spherical coordinates, the domain D in (1.4) is equivalent to the following 
(also see Fig. 2)

D =
{
(ρ, φ, θ) : 0 < ρ < 1, π2 − α < φ <

π

2 + α, θ ∈ [0, 2π)
}
. (2.4)

The boundary condition (1.5) becomes{
vφ = ωρ = ωθ = 0, on ∂RD;

vρ = ωφ = ωθ = 0, on ∂AD,
(2.5)

and the initial vector field v0 can be written as

v0 = v0,ρ(ρ, φ)eρ + v0,φ(ρ, φ)eφ + v0,θ(ρ, φ)eθ. (2.6)

We can convert (1.1) from the cylindrical coordinates to the spherical coordinates. 
For simplicity in notation, we denote b = vrer + v3e3, or equivalently, in the spherical 
coordinates,
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ρ

φ

O ρ = 1

φ1 = π
2 − α

φ2 = π
2 + α

D A

R2

R1

A : ρ = 1

R1 : φ = π
2 − α

R2 : φ = π
2 + α

Fig. 2. Domain D in spherical coordinates.

b = vρeρ + vφeφ.

Then (1.1) can be rewritten as the following well-known system for which we give a short 
derivation in Appendix A.1.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Δ + 2

ρ ∂ρ + 2
ρ2

)
vρ − b · ∇vρ + 1

ρ (v2
φ + v2

θ) − ∂ρP − ∂tvρ = 0,(
Δ − 1

ρ2 sin2 φ

)
vφ − b · ∇vφ + 2

ρ2 ∂φvρ − 1
ρvρvφ + cotφ

ρ v2
θ − 1

ρ∂φP − ∂tvφ = 0,(
Δ − 1

ρ2 sin2 φ

)
vθ − b · ∇vθ − 1

ρ (vρ + cotφ vφ)vθ − ∂tvθ = 0,
1
ρ2 ∂ρ(ρ2vρ) + 1

ρ sinφ∂φ(sinφ vφ) = 0.

(2.7)

We remark that under the spherical coordinates, the assumption (i) in Theorem 1.5
means that v0,ρ is even, and v0,φ and v0,θ are odd symmetric with respect to the plane {
φ = π

2
}
, respectively. In other words,

v0,ρ(ρ, φ) = v0,ρ(ρ, π − φ), v0,φ(ρ, φ) = −v0,φ(ρ, π − φ), v0,θ(ρ, φ) = −v0,θ(ρ, π − φ).
(2.8)

The quantity Γ := rvθ, in the cylindrical coordinate case, can now be expressed in 
the spherical coordinates as

Γ = ρ sinφ vθ. (2.9)

It then follows from (1.10) that Γ satisfies the equation below.

ΔΓ − b · ∇Γ − 2
ρ
∂ρΓ − 2 cotφ

ρ2 ∂φΓ − ∂tΓ = 0. (2.10)

Moreover, the restriction (1.17) is converted to be
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sup
D

ρ sinφ |v0,θ| ≤
1

100 . (2.11)

The vorticity ω = ∇ × v can be written as ω = ωρeρ + ωφeφ + ωθeθ, where⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωρ = 1

ρ (∂φ + cotφ)vθ = 1
ρ sinφ ∂φ(sinφ vθ),

ωφ = −(∂ρ + 1
ρ )vθ = − 1

ρ ∂ρ(ρvθ),

ωθ = (∂ρ + 1
ρ )vφ − 1

ρ∂φvρ = 1
ρ ∂ρ(ρvφ) − 1

ρ ∂φvρ.

(2.12)

Meanwhile, ω satisfies the following well-known system for which we also give a short 
derivation in appendix A.2.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
Δ + 2

ρ ∂ρ + 2
ρ2

)
ωρ − b · ∇ωρ + ω · ∇vρ − ∂tωρ = 0,(

Δ − 1
ρ2 sin2 φ

)
ωφ − b · ∇ωφ + 2

ρ2 ∂φωρ + ω · ∇vφ + 1
ρ (vρωφ − ωρvφ) − ∂tωφ = 0,(

Δ − 1
ρ2 sin2 φ

)
ωθ − b · ∇ωθ + 1

ρ (vρ + cotφ vφ)ωθ − 1
ρ2 ∂φ(v2

θ) + cotφ
ρ ∂ρ(v2

θ) − ∂tωθ = 0,

1
ρ2 ∂ρ(ρ2ωρ) + 1

ρ sinφ∂φ(sinφωφ) = 0.
(2.13)

Due to the presence of some super-critical terms in the above vorticity equation (2.13), it 
is actually more effective to consider modified quantities K, F and Ω which are defined 
by

K = ωρ

ρ
, F = ωφ

ρ
, Ω = ωθ

ρ sinφ
. (2.14)

It follows from (2.13) that K, F and Ω satisfy the system below:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
Δ + 4

ρ∂ρ + 6
ρ2

)
K − b · ∇K + ω · ∇

( vρ
ρ

)
− ∂tK = 0,(

Δ + 2
ρ∂ρ + 1−cot2 φ

ρ2

)
F − b · ∇F + 2

ρ2 ∂φK + ω · ∇
(vφ

ρ

)
− ∂tF = 0,(

Δ + 2
ρ∂ρ + 2 cotφ

ρ2 ∂φ
)
Ω − b · ∇Ω − 2vθ

ρ sinφ (K + cotφF ) − ∂tΩ = 0,

1
ρ2 ∂ρ(ρ3K) + 1

sinφ ∂φ(sinφF ) = 0.

(2.15)

The derivations of (2.12), (2.13) and (2.15) can be found in Appendix A.3. Meanwhile, 
since

K + cotφF = ωρ

ρ
+ cotφ ωφ

ρ
= 1

ρ2 ∂φvθ −
cotφ
ρ

∂ρvθ,

the third equation for Ω in (2.15) is equivalent to(
Δ + 2

∂ρ + 2 cotφ
2 ∂φ

)
Ω − b · ∇Ω − ∂tΩ = 1

3 ∂φ(v2
θ) −

cotφ
2 ∂ρ(v2

θ). (2.16)

ρ ρ ρ sinφ ρ sinφ
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ρ

φ

O
ρ1 = 1

m
ρ2 = 1

φ1 = π
2 − α

φ2 = π
2 + α

DmA1,m A2,m

R2,m

R1,m

A1,m : ρ = 1
m

A2,m : ρ = 1

R1,m : φ = π
2 − α

R2,m : φ = π
2 + α

Fig. 3. Domain Dm in spherical coordinates.

Noticing that the system (2.15) contains two vortex stretching terms ω · ∇
(vρ

ρ

)
and 

ω · ∇
(vφ

ρ

)
, we hope to find relations between vρ

ρ , vφ
ρ and K, F, Ω so that we can close 

the energy estimate. Similar to the cylindrical case, one is able to establish equations 
between vρ

ρ , vφ
ρ and Ω, see Section 4.2. In this manner, the vortex stretching terms 

become critical, which allows us to prove the main result.

2.2. Boundary conditions in approximating domains Dm in spherical coordinates

Under the spherical coordinates, the domain Dm in (1.15) is equivalent to the following 
(also see Fig. 3):

Dm =
{

(ρ, φ, θ) : 1
m

< ρ < 1, π2 − α < φ <
π

2 + α, θ ∈ [0, 2π)
}
. (2.17)

In addition, for convenience of notation, we denote the four pieces of the boundary ∂Dm

to be R1,m, R2,m, A1,m and A2,m, and write ∂RDm = R1,m∪R2,m, ∂ADm = A1,m∪A2,m.

Then the NHL boundary condition (1.16) associated with Dm becomes:

{
vφ = ωρ = ωθ = 0, on ∂RDm;
vρ = ωφ = ωθ = 0, on ∂ADm.

(2.18)

Making use of the vorticity formula (2.12), we see (2.18) is equivalent to

{
vφ = ∂φvρ = ∂φ(sinφ vθ) = 0, on ∂RDm;
v = ∂ (ρv ) = ∂ (ρv ) = 0, on ∂AD .

(2.19)

ρ ρ φ ρ θ m
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Based on (2.18) and (2.19), we can also obtain the boundary conditions for Γ, K, F and 
Ω by direct computation. We collect all these results in the lemma below.

Lemma 2.1. Let Dm be the domain as in (2.17). Then the following boundary conditions 
hold.{

∂φvρ = 0, vφ = 0, ∂φvθ = − cotφ vθ, ∂φΓ = 0,
ωρ = ωθ = K = Ω = 0, ∂φωφ = − cotφωφ, ∂φF = − cotφF ,

on ∂RDm,

(2.20)
and{

vρ = 0, ∂ρvφ = −vφ/ρ, ∂ρvθ = −vθ/ρ, ∂ρΓ = 0,
ωφ = ωθ = F = Ω = 0, ∂ρωρ = −2ωρ/ρ ∂ρK = −3K/ρ,

on ∂ADm. (2.21)

Before ending this subsection, we construct an element v0 = v0,ρeρ +v0,φeφ +v0,θeθ in 
the admissible set A (see Definition 1.4) such that v0,ρ and v0,φ can be chosen arbitrarily 
large while v0,θ can be chosen arbitrarily small. In addition, v0 enjoys the even-odd-odd 
symmetry as in (2.8).

Example 2.2. Let α ∈
(
0, π2
)
. We first choose

f(ρ) = ρ7(ρ− 1)3, g(φ) = sin3
(
π

α

(
φ− π

2

))
, h(s) = s3(s− 1).

Then for any real numbers λ1 and λ2, we define v0 = v0,ρeρ + v0,φeφ + v0,θeθ, where

v0,ρ = λ1

ρ2 sinφ
f(ρ)g′(φ), v0,φ = − λ1

ρ sinφ
f ′(ρ)g(φ),

v0,θ = λ2

ρ sinφ

( ρ∫
0

h(s) ds
)

sin
(

π

2α

(
φ− π

2

))
.

We claim that v belongs to A and has the even-odd-odd symmetry as in (2.8). Moreover, 
by taking λ1 sufficiently large and λ2 sufficiently small, v0,ρ and v0,φ can be chosen 
arbitrarily large while v0,θ can be chosen arbitrarily small.

In order to show v ∈ A , for any m ≥ 2, we first choose g(φ) to be the same function 
as the above example, and choose

fm(ρ) = ρ4
(
ρ− 1

m

)3
(ρ− 1)3, hm(s) = s2

(
s− 1

m

)
(s− 1).

Then we define v(m)
0 = v

(m)
0,ρ eρ + v

(m)
0,φ eφ + v

(m)
0,θ eθ, where
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v
(m)
0,ρ = λ1

ρ2 sinφ
fm(ρ)g′(φ), v

(m)
0,φ = − λ1

ρ sinφ
f ′
m(ρ)g(φ),

v
(m)
0,θ = λ2

ρ sinφ

( ρ∫
0

hm(s) ds
)

sin
(

π

2α

(
φ− π

2

))
.

Then for each m ≥ 2, one can directly check that v(m)
0 satisfies the NHL boundary 

condition (2.19). In addition,

div v(m)
0 = 1

ρ2 ∂ρ
(
ρ2v

(m)
0,ρ
)

+ 1
ρ sinφ

∂φ
(
sinφ v

(m)
0,φ
)

= 1
ρ2 sinφ

[
∂ρ

(
ρ2 sinφ v

(m)
0,ρ

)
+ ∂φ

(
ρ sinφ v

(m)
0,φ

)]
= 0.

Thus, v(m)
0 ∈ Am. Meanwhile, it is obvious that

lim
m→∞

∥∥v0 − v
(m)
0
∥∥
C2(Dm) = 0.

Therefore, v ∈ A .

2.3. Two weighted Poincaré inequalities on R

In this subsection, we will introduce some weighted Poincaré inequalities, in the spirit 
of [29], which are needed in the sequel. Given a, b ∈ R with a < b, let p ∈ C∞([a, b]) and 
assume

min
y∈[a,b]

p(y) > 0.

Denote the numbers pA and pB by⎧⎪⎨⎪⎩
pA = max

[a,b]

(
1
2
p′′

p − 3
4

(p′)2
p2

)
,

pB = max
[a,b]

1
2

(
(p′)2
p2 − p′′

p

)
.

(2.22)

Lemma 2.3. Define a functional Φ as

Φ(u) =
∫ b

a
p(y)

(
u′(y)

)2
dy∫ b

a
p(y)u2(y) dy

, ∀u ∈ A,

where A =
{
u ∈ H1(a, b) \ {0} :

∫ b

a
p(y)u(y) dy = 0

}
. Then

inf Φ(u) ≥ π2

2 − pA,

u∈A (b− a)
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where pA is defined in (2.22).

The proof of this lemma follows directly from the proof of the lemma on page 3 in 
Section 2 in [29]. By choosing p(y) = sin y on an interval 

[
π
2 − α, π2 + α

]
for α ∈

(
0, π2
)
, 

we immediately obtain the following corollary.

Corollary 2.4. Let 0 < α < π
2 , a = π

2 − α, b = π
2 + α. Then for any u ∈ H1(a, b) \ {0}

with 
∫ b

a
sin y u(y) dy = 0, we have

b∫
a

sin y u2(y) dy ≤ Cα,A

b∫
a

sin y
(
u′(y)

)2
dy,

where

Cα,A = (b− a)2

π2 + 2α2 = 4α2

π2 + 2α2 . (2.23)

So far, the Poincaré inequalities cover functions whose weighted integral on [a, b] is 
equal to 0. In the next two results, we will consider the situation when the functions are 
equal to 0 on the boundary of the interval.

Lemma 2.5. Define a functional Ψ as

Ψ(u) =
∫ b

a
p(y)

(
u′(y)

)2
dy∫ b

a
p(y)u2(y) dy

, ∀u ∈ B,

where B = H1
0 (a, b) \ {0}. Then

inf
u∈B

Ψ(u) ≥ π2

(b− a)2 − pB ,

where pB is defined in (2.22).

In Lemma 2.5, by choosing p(y) = sin y on an interval 
[
π
2 − α, π2 + α

]
for α ∈

(
0, π4
]
, 

we conclude the following result right away.

Corollary 2.6. Let 0 < α ≤ π
4 , a = π

2 − α, b = π
2 + α. Then for any u ∈ H1

0 (a, b) \ {0}, 
we have

b∫
a

sin y u2(y) dy ≤ Cα,B

b∫
a

sin y
(
u′(y)

)2
dy,

where
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Cα,B = (b− a)2

π2 − 2α2

cos2 α

= 4α2

π2 − 2α2

cos2 α

. (2.24)

Note that when α ∈
(
0, π4
]
, both Cα,A and Cα,B are increasing functions in α. In 

particular, ⎧⎨⎩Cπ/6,A = 2
19 , Cπ/4,A = 2

9 ,

Cπ/6,B = 3
25 , Cπ/4,B = 1

3 .
(2.25)

Proof of Lemma 2.5. The idea of this proof is similar to that of the lemma on page 3 in 
Section 2 in [29]. Define

B1 =
{
u ∈ H1

0 (a, b) :
b∫

a

p(y)u2(y) dy = 1
}
.

Then B1 ⊂ B. By standard argument, there exists some u∗ ∈ B1 such that the operator 
Ψ attains its infimum over B at u∗. Denote λ = Ψ(u∗). Then

inf
u∈B

Ψ(u) = Ψ(u∗) = λ > 0.

Now for any h ∈ H1
0 (a, b), u∗ + th is still in B for any sufficiently small t. Define

g(t) = Ψ(u∗ + th).

Then g′(0) = 0. This implies that

b∫
a

pu′
∗h

′ dy − λ

b∫
a

pu∗h dy = 0, ∀h ∈ H1
0 (a, b). (2.26)

So u∗ is a weak solution of (
pu′

∗
)′ + λpu∗ = 0, in (a, b). (2.27)

Since p is smooth and bounded from below by a positive constant, it follows from classical 
regularity theory that u∗ ∈ C∞([a, b]). So u∗ is a classical solution to the following 
equation with Dirichlet boundary condition.{

u′′
∗ + p′

p u′
∗ + λu∗ = 0, in (a, b),

u∗(a) = u∗(b) = 0.
(2.28)

Testing (2.28) by u∗ and using integration by parts,



20 Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393
b∫
a

(
u′
∗
)2

dy = 1
2

b∫
a

p′

p

(
u2
∗
)′
dy + λ

b∫
a

u2
∗ dy

=
b∫

a

[
− 1

2

(
p′

p

)′
+ λ

]
u2
∗ dy

≤ (λ + pB)
b∫

a

u2
∗ dy,

where pB is as defined in (2.22). Hence,

λ + pB ≥
∫ b

a

(
u′
∗
)2

dy∫ b

a
u2
∗ dy

.

Since u∗(a) = u∗(b) = 0, it is well-known that the quotient on the right-hand side of the 
above inequality is bounded from below by π2/(b − a)2. Thus,

λ ≥ π2

(b− a)2 − pB. �
2.4. A Hardy’s type inequality in Dm

Let the region Dm be as defined in (2.4) with m ≥ 2 and the angle α ∈
(
0, π2
)
. 

If a scalar-valued function f ∈ H1(Dm) with 0 boundary value, that is f ∈ H1
0 (Dm), 

then it follows from the classical Hardy’s inequality that 
∥∥ f

ρ

∥∥
L2(Dm) =

∥∥ f
|x|
∥∥
L2(Dm) ≤

2‖∇f‖L2(Dm). But if a function does not vanish on the boundary, then the norm of the 
gradient ∇f alone does not suffice to control the norm of f/ρ. The next result says that 
in the special domains Dm, after adding the norm of a lower-order term, only the norm 
of partial gradient, ∂ρf , is needed to control the norm of f/ρ with constants independent 
of m. Such an estimate may be known, but we could not find the specific form in the 
literature when the domain is a finite cone.

Lemma 2.7. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π2
)
. Then for any scalar-valued function f ∈ H1(Dm) and for any ε > 0,∫

Dm

f2

ρ2 dx ≤ (4 + ε)
∫

Dm

|∂ρf |2 dx +
(

40 + 16
ε

) ∫
Dm

f2 dx. (2.29)

Proof. By converting the integral into spherical coordinates, we have

∫
D

f2

ρ2 dx = 2π

π
2 +α∫

π−α

sinφ

( 1∫
1

f2(ρ, φ) dρ
)
dφ. (2.30)
m 2 m
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Using integration by parts,

1∫
1
m

f2(ρ, φ) dρ ≤ f2(1, φ) − 2
1∫

1
m

ρf∂ρf dρ

Plugging this estimate into (2.30) yields∫
Dm

f2

ρ2 dx ≤ I1 − I2, (2.31)

where

I1 = 2π

π
2 +α∫

π
2 −α

sinφ f2(1, φ) dφ, I2 = 4π

π
2 +α∫

π
2 −α

1∫
1
m

ρ sinφ f∂ρf dρ dφ.

For I2, by changing back to the Euclidean coordinates and using Cauchy-Schwarz in-
equality, we find

|I2| ≤
1
2

∫
Dm

f2

ρ2 dx + 2
∫

Dm

|∂ρf |2 dx. (2.32)

In order to estimate I1, we fix a cutoff function η ∈ C∞(R) such that 0 ≤ η ≤ 1,

η(t) =
{

0 if t ≤ 3
4 ,

1 if t ≥ 1,

and sup
t∈R

|η′(t)| ≤ 10. Then

I1 = 2π

π
2 +α∫

π
2 −α

sinφ
[
f2(1, φ)η(1) − f2(3/4, φ)η(3/4)

]
dφ

= 2π

π
2 +α∫

π
2 −α

sinφ

1∫
3
4

∂ρ

[
f2(ρ, φ)η(ρ)

]
dρ dφ.

Since |η′| ≤ 10, it follows from the above expression that

I1 ≤ 20π

π
2 +α∫

π−α

1∫
3

sinφ f2(ρ, φ) dρ dφ + 4π

π
2 +α∫

π−α

1∫
3

sinφ |f∂ρf | dρ dφ.

2 4 2 4



22 Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393
Since ρ has the lower bound 3
4 in the above integral, we further deduce that

I1 ≤ 40π

π
2 +α∫

π
2 −α

1∫
3
4

ρ2 sinφ f2(ρ, φ) dρ dφ + 8π

π
2 +α∫

π
2 −α

1∫
3
4

ρ2 sinφ |f∂ρf | dρ dφ.

Changing back to the Euclidean coordinates and applying Cauchy-Schwarz inequality, 
we find

I1 ≤ 20
∫

Dm

f2 dx + 4
∫

Dm

|f∂ρf | dx ≤
(

20 + 8
ε

) ∫
Dm

f2 dx + ε

2

∫
Dm

|∂ρf |2 dx. (2.33)

Putting (2.33) and (2.32) into (2.31) leads to (2.29). �
Let v be a vector field on Dm. It has two decompositions under the Euclidean coor-

dinates and the spherical coordinates respectively:

v = v1e1 + v2e2 + v3e3 = vρeρ + vφeφ + vθeθ.

Then it is well-known that |∇v|2 =
3∑

i=1
|∇vi|2. But according to formula (A.8), the rela-

tion |∇v|2 = |∇vρ|2 + |∇vφ|2 + |∇vθ|2 may not hold. Nonetheless, we can take advantage 
of Lemma 2.7 to show the equivalence between the H1(Dm) norm of v and the sum of 
H1(Dm) norms of its components vρ, vφ and vθ.

Corollary 2.8. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π2
)
. Let v = vρeρ + vφeφ + vθeθ be a vector field on Dm. Then v belongs to 

H1(Dm) if and only if all its components vρ, vφ and vθ belong to H1(Dm). In addition, 
there exists some constant C > 1, which only depends on α, such that

1
C
‖v‖H1(Dm) ≤ ‖vρ‖H1(Dm) + ‖vφ‖H1(Dm) + ‖vθ‖H1(Dm) ≤ C‖v‖H1(Dm). (2.34)

Proof. Firstly, since {eρ, eφ, eθ} forms an orthogonal basis in R3, |v|2 = |vρ|2 + |vφ|2 +
|vθ|2, so

‖v‖2
L2(Dm) = ‖vρ‖2

L2(Dm) + ‖vφ‖2
L2(Dm) + ‖vθ‖2

L2(Dm).

On the other hand, according to formula (A.8), under the basis (A.7), the gradient ∇v

can be represented as

∇v =

⎛⎜⎜⎝
∂ρvρ

1
ρ (∂φvρ − vφ) − 1

ρ vθ

∂ρvφ
1
ρ (∂φvφ + vρ) − cotφ

ρ vθ

∂ v 1∂ v 1 (v + cotφ v )

⎞⎟⎟⎠ . (2.35)
ρ θ ρ φ θ ρ ρ φ
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Meanwhile,

|∇vρ|2 = |∂ρvρ|2+
∣∣∣1
ρ
∂φvρ

∣∣∣2, |∇vφ|2 = |∂ρvφ|2+
∣∣∣1
ρ
∂φvφ

∣∣∣2, |∇vθ|2 = |∂ρvθ|2+
∣∣∣1
ρ
∂φvθ

∣∣∣2.
Noticing that in the domain Dm, ρ and cotφ are bounded:

1
m

< ρ < 1, 0 ≤ cotφ < cotα,

so it is straightforward to check that v belongs to H1(Dm) if and only if all its components 
vρ, vφ and vθ belong to H1(Dm). Moreover, one can apply Lemma 2.7 and Cauchy-
Schwarz inequality to (2.35) to establish (2.34). �
2.5. A priori L∞ bound for Γ = ρ sinφ vθ in Dm

In this section, we study the quantity Γ, defined as in (2.9), in the approximating 
space-time domain Dm × [0, T ], where 0 < T < ∞. Define the energy space Em,T as

Em,T = L∞
t L2

x ∩ L2
tH

1
x

(
Dm × [0, T ]

)
(2.36)

which is equipped with the following norm:

‖v‖2
Em,T

=
T∫

0

∫
Dm

|∇v(x, t)|2 dx dt + sup
t∈[0,T ]

∫
Dm

|v(x, t)|2 dx. (2.37)

The function v can be either vector-valued or scalar-valued, depending on the context. 
We denote by Eσ

m,T the subspace of Em,T which consists of vectors which are divergence 
free and whose normal component vanishes on the boundary of Dm.

Eσ
m,T =

{
v ∈ Em,T : ∇ · v = 0 in Dm and v · n = 0 on ∂Dm for a.e. t ∈ [0, T ]

}
. (2.38)

If a function v is independent of time, we may also say it belongs to Em,T or Eσ
m,T by 

regarding it as a stationary function.
Based on the equation (2.10) and the boundary conditions in Lemma 2.1, Γ is deter-

mined by the following problem:⎧⎪⎨⎪⎩
ΔΓ − b · ∇Γ − 2

ρ∂ρΓ − 2 cotφ
ρ2 ∂φΓ − ∂tΓ = 0, in Dm × (0, T ];

∂nΓ = 0, on ∂Dm × (0, T ];
Γ(x, 0) = Γ0(x), x ∈ Dm,

(2.39)

where b = vρeρ + vφeφ, Γ0 is the initial value defined as Γ0 = ρ sinφ v0,θ(x), and ∂nΓ
means the directional derivative of Γ along the exterior normal direction of ∂Dm, except 
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at the corners. In this section, we will study the solvability of (2.39) and the regularity 
of its solution. As a preparation, we first introduce an embedding result.

In general, for any 3D domain Ω and for any function v that lies in the energy space 
L∞
t L2

x ∩L2
tH

1
x

(
Ω × [0, T ]

)
automatically belongs to L10/3

tx

(
Ω × [0, T ]

)
by standard inter-

polation. But if the function v is axially symmetric and the domain Ω, say Ω = Dm, is 
bounded and has a positive distance to the x3 axis, then we can regard v as a function 
on a 2D domain Ω′ in the ρ-φ space. Thus, the 2D Ladyzhenskaya’s inequality (or more 
precisely, the Gagliardo-Nirenberg inequality) is applicable and we are able to improve 
the regularity of v from L10/3

tx to L4
tx. We point out that the range of α in the following 

Lemma 2.9 and 2.10 is larger than the one in the main theorem.

Lemma 2.9. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π2
)
. Then for any T > 0, the energy space Em,T is embedded in L4

tx

(
Dm × [0, T ]

)
. In 

addition, there exists a constant C = C(α, m) such that

‖f‖L4
tx(Dm×[0,T ]) ≤ C

(
T 1/4 + 1

)
‖f‖Em,T

, ∀ f ∈ Em,T . (2.40)

Proof. Since the volume element ρ2 sinφ dρdφdθ on Dm is equivalent to the two-
dimensional volume element dρdφ on the ρ-φ plane, we can apply the 2D Gagliardo-
Nirenberg inequality to f in Dm to conclude that

‖f(·, t)‖L4(Dm) ≤ C
(
‖f(·, t)‖

1
2
L2(Dm)‖∇f(·, t)‖

1
2
L2(Dm) + ‖f(·, t)‖L2(Dm)

)
,

for a.e. t ∈ [0, T ],

where C is some constant that only depends on α and m. As a result, we deduce that

‖f(·, t)‖4
L4(Dm) ≤ C

(
‖f(·, t)‖2

L2(Dm)‖∇f(·, t)‖2
L2(Dm) + ‖f(·, t)‖4

L2(Dm)

)
,

for a.e. t ∈ [0, T ].

Then (2.40) follows from integrating the above estimate in t on [0, T ]. �
Now we are ready to present the main result of this subsection.

Lemma 2.10. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π2
)
. Let T > 0 and b = vρeρ + vφeφ ∈ Eσ

m,T . Assume the initial velocity 
v0 ∈ H2(Dm) is divergence free and satisfies the NHL boundary condition (2.18). Then 
the problem (2.39) possesses a unique bounded weak solution Γ in the energy space Em,T

which satisfies

‖Γ‖L∞(Dm×[0,T ]) ≤ ‖Γ0‖L∞(Dm), (2.41)

and
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ρ

φ

(0, 0) ρ1 = 1
m

ρ2 = 1

φ1 = π
2 − α

φ2 = π
2 + α

D′
mA′

1,m A′
2,m

R′
2,m

R′
1,m

Fig. 4. Domain D′
m in ρ-φ coordinates.

‖Γ‖Em,T
≤ CeCT ‖Γ0‖L2(Dm), (2.42)

where Γ0 = ρ sinφ v0,θ and C is a positive constant which only depends on α and m.

Proof. We use the dimension reduction method and Lemma 2.9 to justify the conclusions. 
Firstly, we view Γ as a function of variables ρ, φ and t, and regard Dm as a 2D domain 
D′

m on the ρ-φ plane, which is defined as below (see Fig. 4).

D′
m =

{
(ρ, φ) : 1

m
< ρ < 1, π2 − α < φ <

π

2 + α
}
. (2.43)

Then equation (2.39) can be rewritten as below:⎧⎪⎪⎨⎪⎪⎩
∂2
ρΓ + 1

ρ2 ∂
2
φΓ − vρ∂ρΓ −

(
1
ρvφ + cotφ

ρ2

)
∂φΓ − ∂tΓ = 0, in D′

m × (0, T ];

∂nΓ = 0, on ∂D′
m × (0, T ];

Γ(x, 0) = Γ0(x), x ∈ D′
m.

(2.44)

Thanks to Lemma 2.9, both vρ and vφ belong to L4
tx(D′

m × (0, T ]), and any function Γ
in the energy space Em,T also belongs to L4

tx(D′
m × (0, T ]) which is the critical space for 

(2.44) in 2D space. Since the distance of D′
m to the x3 axis is at least 1

m , the existence of 
a weak solution Γ of (2.39) in Em,T follows from the classical theory. Meanwhile, since 
D′

m is a 2D domain and both vρ and vφ belong to L4
tx, the weak maximum principle 

is applicable for (2.39), see e.g. Theorem 2.1 in [16]. As a result, the uniqueness of the 
solution and the estimate (2.41) are justified.

Since the above solution Γ lies in L∞ ∩ Em,T , it can be served as a test function to 
(2.39). Meanwhile, since b ∈ Eσ

m,T , which implies ∇ · b = 0 in Dm × (0, T ] and b · n = 0
on ∂Dm× (0, T ], then it holds that 

∫
Dm

(b ·∇Γ)Γ dx = 0. As a result, (2.42) follows from 
the standard energy estimate. �
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3. Existence of strong solutions in Dm

In this section, we study the existence of solutions in the approximating space-time 
domains Dm× [0, T ], where m ≥ 2 and 0 < T < ∞. We point out that the local existence 
of the solution in the energy space Em,T has already been proven in literature, see e.g. 
[25] which even covers more general Lipschitz domains. In the current situation, the local 
existence can be extended to the global one since Dm is away from x3 axis. Our main 
goal here is to prove the existence of the solution with higher regularity. Actually, we will 
establish the existence of the bounded strong solution v on Dm×[0, T ] for any T > 0. The 
proof of higher regularity of solutions, although somewhat unsurprising, requires some 
detailed analysis because the domains are not smooth. Those, who would like to have a 
quick view of the key idea in the proof for the main Theorem 1.5, can skip this section 
for now and jump to Section 4. We also remark that if the NHL boundary condition is 
replaced by the Dirichlet boundary condition, then the local existence of strong solutions 
on general bounded Lipschitz domains has been established in [12] using the semi-group 
theory. But it may take much effort to adapt that method to treat the more complicated 
NHL boundary condition.

Besides the existence of the strong solution, we will also show that if the initial data 
enjoys the even-odd-odd symmetry, defined as in Definition (1.3), then this symmetry 
will be preserved in time for the strong solution. For convenience of notations, we define

Eσ,s
m,T =

{
v ∈ Eσ

m,T : v has the even-odd-odd symmetry
}
, (3.1)

where s stands for symmetry. In the following, we will first construct a local solution in 
Proposition 3.1 and then extend it to be a global one in Corollary 3.3.

Proposition 3.1. Let α ∈
(
0, π2
)

and m ≥ 2. Assume the initial velocity v0 ∈ H2(Dm) is 
divergence free in Dm and satisfies the NHL condition (2.18) on ∂Dm. Then there exists 
some time T > 0 and a strong solution (v, P ) of (2.7) on Dm × [0, T ] with the initial 
data v0 and the NHL condition (2.18) such that

v ∈ Eσ
m,T ∩H1

t L
2
x ∩ L2

tH
2
x ∩ L∞

tx

(
Dm × [0, T ]

)
, P ∈ L2

tH
1
x(Dm × [0, T ]). (3.2)

Moreover, if (v̂, P̂ ) is another strong solution, then v̂ coincides with v on Dm × [0, T ]. 
As a result, if v0 possesses the even-odd-odd symmetry, i.e. v0 ∈ Eσ,s

m,T , then so does v.

Remark 3.2. In Euclidean coordinates, the strong solution v of (2.7) in Proposition 3.1
is understood in the same sense as that in Definition 1.2 with D being replaced by Dm.

Proof of Proposition 3.1. Firstly, we decompose the given initial data v0 and the initial 
vorticity ω0 := curl v0 as

v0 = v0,ρeρ + v0,φeφ + v0,θeθ, ω0 = ω0,ρeρ + ω0,φeφ + ω0,θeθ.
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Meanwhile, we denote

A0 := 1 + ‖v0,θ‖L∞(Dm) + ‖ω0,θ‖L6(Dm). (3.3)

In the following proof, C denotes a generic constant which may depend on α and m. 
The values of C may be different from line to line. If a constant C also depends on other 
quantities, we will state it explicitly. Now we give an outline of the proof:

(i) For any T > 0 and for any scalar functions vρ and vφ such that the vector field 
b := vρeρ + vφeφ belongs to Eσ

m,T , we use b as a given data in the equation for vθ
(see (2.7)). This linearized equation, with suitable boundary condition and v0,θ as 
the initial value, determines a vector field vθeθ ∈ Eσ

m,T ∩ L∞
tx(Dm × (0, T ]).

(ii) Use the above b and vθ as given data in the equation for Ω̃ (see (2.16)) with 0 
boundary value and ω0,θ/(ρ sinφ) as initial value, one finds Ω̃ in Em,T∩L∞

t Lq
x

(
Dm×

[0, T ]
)

for any q ≥ 1. Then we define ω̃θ = ρ sinφ Ω̃ and treat it as the angular 
vorticity.

(iii) Based on the ω̃θ constructed above and the Biot-Savart law with a suitable bound-
ary condition, we determine a vector

b̃ = ṽρeρ + ṽφeφ ∈ Eσ
m,T ∩ L2

tH
2
x ∩ L∞

tx(Dm × [0, T ]).

Thus, the correspondence between b and b̃ determines a map L:

Lb = b̃, (3.4)

from the space Eσ
m,T∩span{eρ, eφ} to itself. As a summary of steps so far, a diagram 

of the process is given below:

Diagram: b ⇒ vθ ⇒ Ω̃ ⇒ ω̃θ ≡ ρ sinφ Ω̃ ⇒ b̃.

(iv) Next, we will find a suitably large number M such that L is a contraction mapping 
on the space BEσ

m,T
(0,M)

⋂
span{eρ, eφ} as long as T is sufficiently small. Thus, 

we obtain a fixed point b of L thanks to the contraction mapping theorem.
(v) Based on the fixed point b of L in the above step, we define v ≡ b + vθeθ and 

ω = ∇ × v, where vθ is the function constructed in step (i). Then we show that 
ωθ coincides with the previously constructed ω̃θ. Based on this, we manage to 
prove v ∈ Eσ

m,T ∩ H1
t L

2
x ∩ L2

tH
2
x ∩ L∞

tx(Dm × [0, T ]) and find a pressure term P
in L2

tH
1
x(Dm × [0, T ]) such that (v, P ) is a strong solution of (2.7) on Dm × [0, T ]

subject to the initial data v0 and the NHL boundary condition (2.18).
(vi) Finally, the uniqueness of the strong solution v will be addressed. As a byproduct, 

we will justify the preservation of the even-odd-odd symmetry of the initial data.

In the following argument, details of the above steps will be carried out.
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Step 1. Construction of vθ.
Fix any b := vρeρ + vφeφ ∈ Eσ

m,T . Based on the vθ equation in (2.7), we determine vθ
by the following initial boundary value problem:

⎧⎪⎨⎪⎩
(
Δ − 1

ρ2 sin2 φ

)
vθ − b · ∇vθ − 1

ρ

(
vρ + cotφ vφ

)
vθ − ∂tvθ = 0, in Dm × (0, T ];

∂φvθ = − cotφ vθ, on ∂RDm × (0, T ], ∂ρvθ = − 1
ρ vθ, on ∂ADm × (0, T ];

vθ(x, 0) = v0,θ(x), x ∈ Dm,

(3.5)
where v0,θ is the θ-component of the given initial data v0. Since the boundary condition 
for vθ is of Robin type which is more complicated than the Neumann condition, we 
instead consider the equation for Γ, defined as

Γ = ρ sinφ vθ,

which satisfies the homogeneous Neumann boundary condition. More precisely, Γ is 
determined by the following problem based on (3.5).

⎧⎪⎨⎪⎩
ΔΓ − b · ∇Γ − 2

ρ∂ρΓ − 2 cotφ
ρ2 ∂φΓ − ∂tΓ = 0, in Dm × (0, T ];

∂nΓ = 0, on ∂Dm × (0, T ];
Γ(x, 0) = Γ0(x), x ∈ Dm,

(3.6)

where Γ0 := ρ sinφ v0,θ. According to Lemma 2.10, (3.6) possesses a unique bounded 
weak solution Γ in Em,T which satisfies the estimates (2.41) and (2.42). Since ρ is 
bounded from above and below, then (2.41) and (2.42) imply that

‖vθ‖L∞(Dm×[0,T ]) ≤ C‖v0,θ‖L∞(Dm),

‖vθ‖Em,T
≤ CeCT ‖v0,θ‖L2(Dm).

(3.7)

Step 2. Constructing an intermediate angular vorticity ω̃θ.
With the vector field b and the corresponding vθ from Step 1, we will introduce a 

function

ω̃θ := ρ sinφ Ω̃, (3.8)

where Ω̃ is determined by the following problem (also see (2.16)):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Δ + 2

ρ∂ρ + 2 cotφ
ρ2 ∂φ

)
Ω̃ − b · ∇Ω̃ − ∂tΩ̃

= 1
ρ2 sinφ

(
1
ρ∂φ(v2

θ) − cotφ∂ρ(v2
θ)
)
, in Dm × (0, T ];

Ω̃ = 0, on ∂Dm × (0, T ];
Ω̃(x, 0) = ω (x)/(ρ sinφ), x ∈ D .

(3.9)
0,θ m
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Here, ω0,θ is the θ-component of ω0 := curl v0. The reason that we study the equation 
(3.9) of Ω̃ instead of the equation of ω̃θ (see (3.14)) is to avoid the term 1ρ(vρ+cotφ vφ)ω̃θ

in (3.14).

Claim A. The problem (3.9) has a unique weak solution Ω̃ in the energy space Em,T . In 
addition, the energy of Ω̃ has the following upper bound:

‖Ω̃‖Em,T
≤ CA2

0e
CT , (3.10)

where C = C(α, m) and A0 is as defined in (3.3).

Proof of Claim A. Firstly, we denote the function on the right-hand side of (3.9) to be 
R1, that is

R1 := 1
ρ2 sinφ

(1
ρ
∂φ(v2

θ) − cotφ∂ρ(v2
θ)
)
.

Thanks to the estimates (3.7), we know vθ ∈ Em,T ∩ L∞
tx(Dm × [0, T ]), which implies 

R1 ∈ L2
tx(Dm × [0, T ]) and

‖R1‖L2(Dm×[0,T ]) ≤ CeCT ‖v0,θ‖L∞(Dm)‖v0,θ‖L2(Dm) ≤ CeCTA2
0. (3.11)

Next, similar to the proof of Lemma 2.10, we regard the problem (3.9) as a 2D problem 
on the domain D′

m which is defined as in (2.43). Then the energy space Em,T is embedded 
into L4

tx(Dm × [0, T ]) due to Lemma 2.9. So the vector field b in the drift term b · ∇Ω̃
is in the critical class. As a result, the existence part in Claim A follows from standard 
parabolic theory. To address the uniqueness part, we assume there are two weak solutions 
Ω̃1 and Ω̃2 in the energy space Em,T and then consider the equation for their difference 
Ω̃1 − Ω̃2. Then it follows from the standard energy estimate that Ω̃1 − Ω̃2 ≡ 0 on 
Dm × [0, T ]. Finally, the estimate (3.10) can be established by testing (3.9) with Ω̃ and 
taking advantage of the estimate (3.11). Hence, Claim A is verified.

For the solution Ω̃ in the above claim, we can actually obtain higher integrability 
of Ω̃ which will be used later. Since v0 ∈ H2(Dm) and satisfies the NHL boundary 
condition (2.18), then Ω̃(·, 0) = ω0,θ(x)/(ρ sinφ) ∈ H1(Dm) with 0 boundary value. So 
by regarding it as a function on the 2D domain D′

m, we find Ω̃(·, 0) ∈ Lq(Dm) for any 
q ≥ 1 due to the 2D Sobolev inequality. Then using the standard energy estimate for Ω̃q

and the fact that the drift terms are integrated out, we have

‖Ω̃‖L∞
t Lq

x(Dm×[0,T ]) ≤ exp
(
Cq‖vθ‖4

L∞(Dm×[0,T ])T
)(

‖Ω̃(·, 0)‖Lq(Dm) + 1
)
.

Since ‖vθ‖L∞(Dm×[0,T ]) ≤ C‖v0,θ‖L∞(Dm) ≤ CA0, we deduce

‖Ω̃‖L∞Lq
x(Dm×[0,T ]) ≤ eCqA4

0T
(
‖Ω̃(·, 0)‖Lq(Dm) + 1

)
. (3.12)
t



30 Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393
In particular, if q is restricted in the interval [1, 6], then

‖Ω̃‖L∞
t Lq

x(Dm×[0,T ]) ≤ CeCA4
0TA0, ∀ 1 ≤ q ≤ 6. (3.13)

After the construction of Ω̃, we define

ω̃θ = ρ sinφ Ω̃.

Then it is the unique weak solution of the following problem (3.14) in the energy space 
Em,T .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Δ − 1

ρ2 sin2 φ

)
ω̃θ − b · ∇ω̃θ + 1

ρ (vρ + cotφ vφ)ω̃θ − ∂tω̃θ

= 1
ρ2 ∂φ(v2

θ) − cotφ
ρ ∂ρ(v2

θ), in Dm × (0, T ];
ω̃θ = 0, on ∂Dm × (0, T ];
ω̃θ(x, 0) = ω0,θ(x), x ∈ Dm.

(3.14)

Note that ω̃θ may not be equal to curl b yet. Next, we will use Ω̃ to construct a vector 
field b̃ according to the Biot-Savart law Δb̃ = −∇ × ω̃θ. Eventually, the map that assigns 
b to b̃ will be shown to have a fixed point. For such a fixed point b, we will prove in Step 
5 that curl b = ω̃θ.

Step 3. Introducing a map L from Eσ
m,T

⋂
span{eρ, eφ} into itself.

Using the function Ω̃ in Step 2 and the Biot-Savart law in the spherical system (see 
(4.12) and (4.13) in Section 4.2), we construct two functions ṽρ, ̃vφ ∈ Em,T by solving 
the elliptic problems (3.15) and (3.16) respectively in H1(Dm) for a.e. t ∈ [0, T ].

{(
Δ + 2

ρ ∂ρ + 2
ρ2

)
ṽρ = − 1

sinφ ∂φ(sin2 φ Ω̃), in Dm;
∂φṽρ = 0 on ∂RDm, ṽρ = 0 on ∂ADm.

(3.15)

{(
Δ + 2

ρ∂ρ + 1−cot2 φ
ρ2

)
ṽφ = 1

ρ3 ∂ρ(ρ4 sinφ Ω̃), in Dm;
ṽφ = 0 on ∂RDm, ∂ρṽφ = − 1

ρ ṽφ on ∂ADm.
(3.16)

In particular, when t = 0, recalling that Ω̃(x, 0) = ω0,θ(x)/(ρ sinφ) in (3.9), then by 
defining

ṽρ(x, 0) = v0,ρ(x) and ṽφ(x, 0) = v0,φ(x) on Dm, (3.17)

one can verify that ṽρ(x, 0) and ṽφ(x, 0) satisfy (3.15) and (3.16) respectively when t = 0.

Claim B. For a.e. t ∈ [0, T ], (3.15) (resp. (3.16)) has a unique solution ṽρ(·, t) (resp. 
ṽφ(·, t)) in the space H1(Dm). Moreover, both ṽρ(·, t) and ṽφ(·, t) belong to H2(Dm) and 
satisfy the following estimates:
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‖ṽρ(·, t)‖H1(Dm) + ‖ṽφ(·, t)‖H1(Dm) ≤ C‖Ω̃(·, t)‖L2(Dm), (3.18)

‖ṽρ(·, t)‖H2(Dm) + ‖ṽφ(·, t)‖H2(Dm) ≤ C‖Ω̃(·, t)‖H1(Dm), (3.19)

where C = C(α, m).

Proof of Claim B. Firstly, since Ω̃ ∈ Em,T , we can find a set ST ⊆ [0, T ] such that 
[0, T ] \ ST has measure 0 and for any t ∈ ST , Ω̃(·, t) ∈ H1(Dm). Fix any t ∈ ST , the 
functions on the right-hand side of (3.20) and (3.21) are in L2(Dm). Noting the signs of 
the potential terms in (3.15) and (3.16) are not helpful when proving the existence and 
uniqueness of the solutions, so we introduce

f̃(·) := ρṽρ(·, t) and g̃(·) := ρṽφ(·, t)

which are determined by the following problems:{
Δf̃ = − ρ

sinφ ∂φ(sin2 φ Ω̃), in Dm;
∂φf̃ = 0 on ∂RDm, f̃ = 0 on ∂ADm.

(3.20)

⎧⎨⎩
(
Δ − 1+cot2 φ

ρ2

)
g̃ = 1

ρ2 ∂ρ(ρ4 sinφ Ω̃), in Dm;

g̃ = 0 on ∂RDm, ∂ρg̃ = 0 on ∂ADm.
(3.21)

Now the potential term in (3.15) disappears and the potential term in (3.21) has the good 
sign, so the existence and uniqueness of the solutions of (3.20) and (3.21) in the space 
H1(Dm) can be established using classical methods, e.g. the Lax-Milgram theory. Next, 
we will show both f̃ and g̃ belong to the stronger space H2(Dm). Analogous to the proof 
of Lemma 2.10, we view (3.20) and (3.21) as 2D elliptic problems on the rectangular 
domain D′

m in the ρ-φ plane, see Fig. 4. Then the problems become⎧⎨⎩
(
∂2
ρ + 1

ρ2 ∂
2
φ + 2

ρ∂ρ + cotφ
ρ2 ∂φ

)
f̃ = − ρ

sinφ ∂φ(sin2 φ Ω̃), in D′
m;

∂φf̃ = 0 on ∂RD′
m, f̃ = 0 on ∂AD′

m.
(3.22)

⎧⎨⎩
(
∂2
ρ + 1

ρ2 ∂
2
φ + 2

ρ∂ρ + cotφ
ρ2 ∂φ − 1+cot2 φ

ρ2

)
g̃ = 1

ρ2 ∂ρ(ρ4 sinφ Ω̃), in D′
m;

g̃ = 0 on ∂RD′
m, ∂ρg̃ = 0 on ∂AD′

m.
(3.23)

Since Ω̃(·, t) ∈ L2(D′
m) and 1

m ≤ ρ ≤ 1, we can use the standard interior regularity 
theory to estimate the H1(D′

m) (resp. H2(D′
m)) norms of f̃ and g̃ in terms of the L2(D′

m)
(resp. H1(D′

m)) norms of Ω̃(·, t). In addition, since D′
m is a rectangle in ρ-φ plane and 

the boundary conditions of f̃ and g̃ are of mixed Dirichlet-Neumann type, we can apply 
appropriate reflection near the boundary of D′

m (two reflections are needed near any 
corner) to reduce the boundary regularity estimates into interior regularity estimates. 
Thus, we know both f̃ and g̃ belong to H2(Dm) and
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‖f̃‖H1(Dm) + ‖g̃‖H1(Dm) ≤ C‖Ω̃(·, t)‖L2(Dm), (3.24)

‖f̃‖H2(Dm) + ‖g̃‖H2(Dm) ≤ C‖Ω̃(·, t)‖H1(Dm). (3.25)

Now changing back to ṽρ(·, t) and ṽφ(·, t) from f̃ and g̃, we conclude that both ṽρ(·, t)
and ṽφ(·, t) belong to H2(Dm) and they satisfy the estimates (3.18) and (3.19). Hence, 
Claim B is justified.

For any t ∈ ST and for the function f̃ defined in the above proof, if we apply the 
Moser iteration on (3.20), then one can find

‖f̃‖L∞(Dm) ≤ C
(
1 + ‖Ω̃(·, t)‖L6(Dm)

)(
1 + ‖f̃‖L6(Dm)

)
. (3.26)

By Sobolev inequality, ‖f̃‖L6(Dm) ≤ C‖f̃‖H1(Dm). Then we combine the estimates (3.26)
with (3.24) to obtain

‖f̃‖L∞(Dm) ≤ C
(
1 + ‖Ω̃(·, t)‖L6(Dm)

)(
1 + ‖Ω̃(·, t)‖L2(Dm)

)
≤ C

(
1 + ‖Ω̃(·, t)‖L6(Dm)

)2
.

By similar argument, the above inequality also holds if the function f̃ is replaced by g̃. 
Therefore,

‖ṽρ(·, t)‖L∞(Dm) + ‖ṽφ(·, t)‖L∞(Dm) ≤ C
(
1 + ‖Ω̃(·, t)‖L6(Dm)

)2
. (3.27)

Recalling the estimates (3.10) and (3.13) for Ω̃, we know Ω̃ ∈ Em,T∩L∞
t L6

x(Dm×[0, T ])
and

‖Ω̃‖Em,T
+ ‖Ω̃‖L∞

t L6
x(Dm×[0,T ]) ≤ CA2

0e
CA4

0T .

Consequently, we deduce from (3.18), (3.19) and (3.27) that

ṽρ, ṽφ ∈ L∞
t H1

x ∩ L2
tH

2
x ∩ L∞

tx

(
Dm × [0, T ]

)
(3.28)

and

‖ṽρ‖L∞
t H1

x(Dm×[0,T ]) + ‖ṽρ‖L2
tH

2
x(Dm×[0,T ]) + ‖ṽρ‖L∞

tx(Dm×[0,T ]) ≤ CA4
0e

CA4
0T ,

(3.29)

‖ṽφ‖L∞
t H1

x(Dm×[0,T ]) + ‖ṽφ‖L2
tH

2
x(Dm×[0,T ]) + ‖ṽφ‖L∞

tx(Dm×[0,T ]) ≤ CA4
0e

CA4
0T .

(3.30)

Define

b̃ = ṽρeρ + ṽφeφ. (3.31)
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Then the above steps determine the map L (3.4) from b to b̃. Next, we will prove b̃ ∈
Eσ

m,T . Due to the regularity property (3.28) and the boundary conditions in (3.15) and 
(3.16) for ṽρ and ṽφ, it remains to show div b̃ = 0 for a.e. t ∈ [0, T ]. Instead of showing 
div b̃ = 0 directly, we will take advantage of the fact that ρ2div b̃ satisfies a simple 
equation (3.32) with a good boundary condition, which allows us to conclude ρ2div b̃ = 0
for a.e. t ∈ [0, T ].

In fact, we fix any t ∈ ST , where ST is the set defined in the proof of Claim B, and 
then define

h(·) = ρ2div b̃(·, t), on Dm.

By direct calculation, it follows from the equations (3.15) and (3.16) for ṽρ and ṽφ that{
Δh = 0, in Dm,

∂nh = 0, on ∂Dm.
(3.32)

Testing (3.32) with h, we have

‖∇h‖L2(Dm) = 0,

which implies h ≡ C is a constant on Dm. Next, we will prove this constant C must be 
0. Based on the divergence formula (A.3) in spherical coordinates,

h(·) = ρ2div b̃(·, t) = ∂ρ
(
ρ2ṽρ(·, t)

)
+ 1

sinφ
∂φ
(
ρ sinφ ṽφ(·, t)

)
. (3.33)

Denote φ1 = π
2 − α and φ2 = π

2 + α. For any ρ ∈
[ 1
m , 1

]
, we multiply (3.33) by sinφ

and then integrate both sides with respect to φ from φ1 to φ2. Then due to the fact that 
ṽφ = 0 on ∂RDm, we know the second term on the right-hand side disappears. Thus, we 
obtain

φ2∫
φ1

h(ρ, φ) sinφdφ = ∂ρ

(
ρ

φ2∫
φ1

ρṽρ(ρ, φ, t) sinφdφ

)
.

Define

H(ρ) = ρ

φ2∫
φ1

ṽρ(ρ, φ, t) sinφdφ, ∀ ρ ∈ [1/m, 1].

In order to show h is identically 0, it suffices to prove

H(ρ) = 0, ∀ ρ ∈ [1/m, 1]. (3.34)
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Denote f̃(·) = ρṽρ(·, t) on Dm as we did in the proof of Claim B, then H(ρ) =∫ φ2
φ1

f̃(ρ, φ) sinφ dφ. Meanwhile, it follows from (3.22) that f̃ can be regarded as a solution 
of the following equation on the 2D domain D′

m.⎧⎨⎩
(
∂2
ρ + 1

ρ2 ∂
2
φ + 2

ρ∂ρ + cotφ
ρ2 ∂φ

)
f̃ = − ρ

sinφ ∂φ(sin2 φ Ω̃), in D′
m;

∂φf̃ = 0 on ∂RD′
m, f̃ = 0 on ∂AD′

m.
(3.35)

For any ρ ∈
( 1
m , 1

)
, by taking advantage of the boundary conditions ∂φf̃ = Ω̃ = 0 on 

∂RD′
m and the relation

(∂2
φf̃) sinφ + cosφ∂φf̃ = ∂φ

(
sinφ∂φf̃

)
,

we can multiply (3.35) by sinφ and then integrate both sides with respect to φ from φ1
to φ2 to obtain

H ′′(ρ) + 2
ρ
H ′(ρ) = 0, ∀ ρ ∈ (1/m, 1). (3.36)

In addition, we have H(ρ1) = H(ρ2) = 0 since ṽρ = 0 on ∂AD′
m. By solving (3.36)

with the Dirichlet boundary condition, we conclude H ≡ 0 on [ρ1, ρ2]. As a result, 
∇ · b̃ = h/ρ2 = 0, completing this step. Meanwhile, thanks to (3.34), we also obtain the 
following byproduct:

φ2∫
φ1

ṽρ(ρ, φ, t) sinφdφ = 0, ∀ ρ ∈ [1/m, 1], t > 0. (3.37)

Step 4. We prove L is a contraction map from BEσ
m,T

(0,M)
⋂

span{eρ, eφ} into itself 
for some large M and small T .

For any b ∈ Eσ
m,T ∩span{eρ, eφ}, denote ̃b = Lb. We point out that although the initial 

value of b is not required to be v0,ρeρ + v0,φeφ, where v0 is the given initial velocity in 
Proposition 3.1, the initial value of b̃ is guaranteed to be v0,ρeρ + v0,φeφ according to 
the construction of L (see (3.17)). In addition, based on (3.5), the constructed vθ is also 
ensured to have the initial value v0,θ, where v0 is again the given initial velocity. As a 
result, when T ≤ 1, it follows from the estimates (3.29) and (3.30) that

‖b̃‖Eσ
m,T

≤ CA4
0e

CA4
0 ,

where A0 is as defined in (3.3). Now we denote M to be the above upper bound:

M := CA4
0e

CA4
0 . (3.38)

Then L maps BEσ
m,T

(0,M)
⋂

span{eρ, eφ} into itself. We fix such an M and then we will 
prove L is a contraction map if T is sufficiently small.
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For i = 1, 2, let b(i) = v
(i)
ρ eρ + v

(i)
φ eφ ∈ Eσ

m,T , and denote Γ(i), v(i)
θ , Ω̃(i), ṽ(i)

ρ , ṽ(i)
φ

and b̃(i) to be the functions constructed as in the previous steps 1-3. According to the 
equations (3.15) and (3.16) with ṽρ, ṽφ and Ω̃ being replaced by ṽ(i)

ρ , ṽ(i)
φ and Ω̃(i) for 

i = 1, 2 respectively, we have⎧⎨⎩
(
Δ + 2

ρ ∂ρ + 2
ρ2

)(
ṽ
(2)
ρ − ṽ

(1)
ρ

)
= − 1

sinφ ∂φ
[
sin2 φ

(
Ω̃(2) − Ω̃(1))], in Dm;

∂φ
(
ṽ
(2)
ρ − ṽ

(1)
ρ

)
= 0 on ∂RDm,

(
ṽ
(2)
ρ − ṽ

(1)
ρ

)
= 0 on ∂ADm.⎧⎨⎩

(
Δ + 2

ρ∂ρ + 1−cot2 φ
ρ2

)(
ṽ
(2)
φ − ṽ

(1)
φ

)
= 1

ρ3 ∂ρ
[
ρ4 sinφ

(
Ω̃(2) − Ω̃(1))], in Dm;(

ṽ
(2)
φ − ṽ

(1)
φ

)
= 0 on ∂RDm, ∂ρ

(
ṽ
(2)
φ − ṽ

(1)
φ

)
= − 1

ρ

(
ṽ
(2)
φ − ṽ

(1)
φ

)
on ∂ADm.

Then similar to the derivation of (3.18), we find

‖b̃(2) − b̃(1)‖Em,T
≤ C‖Ω̃(2) − Ω̃(1)‖L∞

t L2
x(Dm×[0,T ]). (3.39)

Denote f = Ω̃(2) − Ω̃(1). Then based on the equations in (3.9) with Ω̃ and b being 
replaced by Ω̃(i) and b(i) for i = 1, 2, we know f is a weak solution to the following 
problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Δ + 2

ρ∂ρ + 2 cotφ
ρ2 ∂φ

)
f − b(2) · ∇f − (b(2) − b(1)) · ∇Ω̃(1) − ∂tf

= 1
ρ2 sinφ

(
1
ρ∂φ

[(
v
(2)
θ

)2 − (v(1)
θ

)2]− cotφ∂ρ

[(
v
(2)
θ

)2 − (v(1)
θ

)2])
, in Dm × (0, T ];

f = 0, on ∂Dm × (0, T ];
f(x, 0) = 0, x ∈ Dm.

(3.40)
Testing (3.40) with f and using integration by parts, we have

T∫
0

∫
Dm

|∇f |2 dx dt + 1
2

∫
Dm

|f(x, T )|2 dx = I1 + I2, (3.41)

where

I1 = −
T∫

0

∫
Dm

[
(b(2) − b(1)) · ∇Ω̃(1)]f dx dt,

I2 =
T∫

0

∫
Dm

1
ρ2 sinφ

[(
v
(2)
θ

)2 − (v(1)
θ

)2](1
ρ
∂φf − cotφ∂ρf

)
dx dt.

Applying the integration by parts and the Hölder’s inequality, we know
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I1 ≤ ‖Ω̃(1)‖L5
tx(Dm×[0,T ])‖b(2) − b(1)‖

L
10/3
tx (Dm×[0,T ])‖∇f‖L2

tx(Dm×[0,T ])

≤ T 1/5‖Ω̃(1)‖L∞
t L5

x(Dm×[0,T ])‖b(2) − b(1)‖Em,T
‖∇f‖L2

tx(Dm×[0,T ]).

Then it follows from the Cauchy-Schwarz inequality and the estimate (3.13) with q = 5
that

I1 ≤ 1
4‖∇f‖2

L2
tx(Dm×[0,T ]) + CA2

0e
CA4

0TT 2/5‖b(2) − b(1)‖2
Em,T

. (3.42)

Next, we estimate I2. By Hölder’s inequality, we find

I2 ≤ C‖∇f‖L2
tx(Dm×[0,T ])

∥∥v(2)
θ + v

(1)
θ

∥∥
L∞

tx(Dm×[0,T ])

∥∥v(2)
θ − v

(1)
θ

∥∥
L2

tx(Dm×[0,T ]).

By Cauchy-Schwarz inequality and the bound (3.7), we have

I2 ≤ 1
4‖∇f‖2

L2
tx(Dm×[0,T ]) + CA2

0
∥∥v(2)

θ − v
(1)
θ

∥∥2
L2

tx(Dm×[0,T ]). (3.43)

Plugging (3.42) and (3.43) into (3.41) leads to

‖f‖2
Em,T

≤ CA2
0e

CA4
0TT 2/5‖b(2) − b(1)‖2

Em,T
+ CA2

0
∥∥v(2)

θ − v
(1)
θ

∥∥2
L2

tx(Dm×[0,T ]). (3.44)

Combining (3.39) with (3.44) yields

‖b̃(2) − b̃(1)‖Em,T
≤ CA2

0e
CA4

0TT 2/5‖b(2) − b(1)‖2
Em,T

+ CA2
0
∥∥v(2)

θ − v
(1)
θ

∥∥2
L2

tx(Dm×[0,T ]).

(3.45)
So it remains to estimate ‖v(2)

θ −v
(1)
θ ‖L2

tx(Dm×[0,T ]) or equivalently ‖Γ(2)−Γ(1)‖L2
tx(Dm×[0,T ]). 

Denote g = Γ(2) − Γ(1). Then according to (3.6), it holds that

⎧⎪⎨⎪⎩
Δg − b(2) · ∇g −

(
b(2) − b(1)

)
· ∇Γ(1) − 2

ρ∂ρg −
2 cotφ

ρ2 ∂φg − ∂tg = 0, in Dm × (0, T ];
∂ng = 0, on ∂Dm × (0, T ];
g(x, 0) = 0, x ∈ Dm.

(3.46)
Testing (3.46) by g, then we have

T∫
0

∫
Dm

|∇g|2 dx dt + 1
2

∫
Dm

|g(x, T )|2 dx = J1 + J2, (3.47)

where
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J1 = −
T∫

0

∫
Dm

[
(b(2) − b(1)) · ∇Γ(1)]g dx dt,

J2 = −
T∫

0

∫
Dm

(
2
ρ
∂ρg + 2 cotφ

ρ2 ∂φg

)
g dx dt.

We first estimate J1. Applying the integration by parts and the Hölder’s inequality yields

J1 ≤ ‖Γ(1)‖L∞
tx(Dm×[0,T ])‖b(2) − b(1)‖L2

tx(Dm×[0,T ])‖∇g‖L2
tx(Dm×[0,T ])

≤ T
1
2 ‖b(2) − b(1)‖Em,T

‖Γ(1)‖L∞
tx(Dm×[0,T ])‖∇g‖L2

tx(Dm×[0,T ]).

It then follows from the estimate (3.7) and the Cauchy-Schwarz inequality that

J1 ≤ 1
4‖∇g‖2

L2
tx(Dm×[0,T ]) + CA2

0T‖b(2) − b(1)‖2
Em,T

. (3.48)

Next, we estimate J2 by Cauchy-Schwarz inequality to get

J2 ≤ 1
4‖∇g‖2

L2
tx(Dm×[0,T ]) + C‖g‖2

L2
tx(Dm×[0,T ]). (3.49)

Plugging (3.48) and (3.49) into (3.47) leads to

1
2

T∫
0

∫
Dm

|∇g|2 dx dt + 1
2

∫
Dm

|g(x, T )|2 dx ≤ CA2
0T‖b(2) − b(1)‖2

Em,T
+ C‖g‖2

L2
tx(Dm×[0,T ]).

Now by Gronwall’s inequality, we obtain

‖g‖2
Em,T

≤ CA2
0Te

CT ‖b(2) − b(1)‖2
Em,T

,

which implies

‖v(2)
θ − v

(1)
θ ‖2

L2
tx(Dm×[0,T ]) ≤ T‖v(2)

θ − v
(1)
θ ‖2

Em,T
≤ CA2

0T
2eCT ‖b(2) − b(1)‖2

Em,T
. (3.50)

Finally, substituting (3.50) into (3.45) leads to

‖b̃(2) − b̃(1)‖Em,T
≤ C

(
A2

0e
CA4

0TT 2/5 + A4
0e

CTT 2)‖b(2) − b(1)‖2
Em,T

.

Now by choosing

T ≤ e−CA4
0 , (3.51)

where C is some large constant that only depends on α and m, we obtain
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‖b̃(2) − b̃(1)‖Em,T
≤ 1

2‖b
(2) − b(1)‖2

Em,T
.

Hence, for any M and T that satisfies (3.38) and (3.51), L is a contraction map. 
Thanks to the contraction mapping theorem, L has a fixed point b that lies in 
BEσ

m,T
(0,M)

⋂
span{eρ, eφ}. In addition, by taking advantage of the fact that b = b̃

and (3.28),

b ∈ L∞
t H1

x ∩ L2
tH

2
x ∩ L∞

tx

(
Dm × [0, T ]

)
.

Step 5. Existence of a strong solution v such that

v ∈ Eσ
m,T ∩H1

t L
2
x ∩ L2

tH
2
x ∩ L∞

tx

(
Dm × [0, T ]

)
, (∇× v)θ ∈ L∞

t L6
x

(
Dm × [0, T ]

)
.

Based on the fixed point b defined in the previous step, we define v = b + vθeθ, 
where vθ is the function constructed in Step 1 based on b. We will first show vθ ∈
L2
tH

2
x

(
Dm × [0, T ]

)
. Recall the equation for Γ (3.6):

⎧⎪⎨⎪⎩
ΔΓ − b · ∇Γ − 2

ρ∂ρΓ − 2 cotφ
ρ2 ∂φΓ − ∂tΓ = 0, in Dm × (0, T ];

∂nΓ = 0, on ∂Dm × (0, T ];
Γ(x, 0) = Γ0(x), x ∈ Dm.

Now the function b is in L∞(Dm × [0, T ]), so it follows from the standard theory that 
Γ is L2

tH
2
x in Dint × [0, T ], where Dint is any interior domain of Dm, i.e. Dint ⊂ Dm. 

Moreover, by the reflection argument as that in Step 4.1, we can show Γ is L2
tH

2
x on the 

whole region Dm × [0, T ]. As a result, v ∈ Eσ
m,T ∩ L2

tH
2
x ∩ L∞

tx

(
Dm × [0, T ]

)
.

Define ω = ∇ × v and write ω = ωρeρ + ωφeφ + ωθeθ. Then ω ∈ L2
tH

1
x(Dm × [0, T ]). 

Let ω̃θ be given by (3.14). We remark that although b̃ is constructed from ω̃θ according 
to the Biot-Savart law Δb̃ = −∇ × ω̃θ (also see (3.15) and (3.16)), it is not obvious 
that ∇ × b̃ = ω̃θ. As a result, although b = b̃, it is not readily seen that ∇ × b = ω̃θ. 
Next, we will carry out a detailed argument to show that ωθ indeed coincides with ω̃θ

so that ωθ also satisfies (3.14). Firstly, since ω = ∇ × v, then it follows from (2.12) that 
ωθeθ = ∇ × b, where b = vρeρ + vφeφ. Thus,

Δb = −∇× (ωθeθ). (3.52)

On the other hand, since b is divergence free, we can use formula (A.12) to find

Δb =
(

Δ + 2
ρ
∂ρ + 2

ρ2

)
vρeρ +

[(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ

]
eφ. (3.53)

Recall that b is the fixed point of the mapping L, vρ and vφ are given by (3.15) and 
(3.16) respectively. As a result,
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Δ + 2
ρ
∂ρ + 2

ρ2

)
vρ = − 1

ρ sinφ
∂φ(sinφ ω̃θ),

Δvφ = −2
ρ
∂ρvφ − 1 − cot2 φ

ρ2 vφ + 1
ρ3 ∂ρ(ρ3ω̃θ).

(3.54)

Meanwhile, it follows from (2.12) that ωθ = 1
ρ ∂ρ(ρvφ) − 1

ρ ∂φvρ, which implies

∂φvρ = ∂ρ(ρvφ) − ρωθ. (3.55)

Putting (3.54) and (3.55) into (3.53) yields

Δb = − 1
ρ sinφ

∂φ(sinφ ω̃θ)eρ +
(

1
ρ3 ∂ρ(ρ3ω̃θ) −

2
ρ
ωθ

)
eφ.

Applying formula (2.12) again (replacing v by ω̃θeθ), we find

∇× (ω̃θeθ) = 1
ρ sinφ

∂φ(sinφ ω̃θ)eρ −
1
ρ
∂ρ(ρω̃θ)eφ.

Combining the above two relations, we know

Δb = −∇× (ω̃θeθ) + 2
ρ
(ω̃θ − ωθ)eφ.

Since we have already derived in (3.52) that Δb = −∇ × (ωθeθ), the above equation 
implies

∇× (ueθ) −
2
ρ
ueφ = 0, (3.56)

where u := ω̃θ − ωθ. By computing ∇ × (ueθ) based on formula (2.12) (replacing v by 
ueθ), it follows from (3.56) that

1
ρ sinφ

∂φ(sinφu)eρ −
1
ρ3 ∂ρ(ρ

3u)eφ = 0.

So ∂φ(sinφ u) = ∂ρ(ρ3u) = 0. Define ũ = ρ3 sinφ u. Then

∂φũ = ∂ρũ = 0 in Dm × (0, T ]. (3.57)

On the boundary ∂Dm, ω̃θ = 0 by the construction (3.14). Meanwhile, since ωθ =
1
ρ ∂ρ(ρvφ) − 1

ρ ∂φvρ, it follows from the constructions of vρ and vφ in (3.15) and (3.16)
that ωθ = 0 on ∂Dm. Hence,

ũ = 0 on ∂Dm × (0, T ]. (3.58)
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Since ũ ∈ L2
tH

1
x(Dm× [0, T ]), we deduce from (3.57) and (3.58) that ũ = 0 in Dm for a.e. 

t ∈ (0, T ]. This implies that ω̃θ = ωθ in Dm for a.e. t ∈ (0, T ]. Now the interior regularity 
of ω̃θ and ωθ indicates that ω̃θ = ωθ in Dm × (0, T ]. For the initial data, it again follows 
from the constructions of ω̃θ, vρ and vφ that ω̃θ(·, 0) = ω0,θ(·) = ωθ(·, 0). Thus,

ω̃θ = ωθ in Dm × [0, T ].

In particular, ωθ also satisfies (3.14):⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Δ − 1

ρ2 sin2 φ

)
ωθ − b · ∇ωθ + 1

ρ (vρ + cotφ vφ)ωθ − ∂tωθ

= 1
ρ2 ∂φ(v2

θ) − cotφ
ρ ∂ρ(v2

θ), in Dm × (0, T ];
ωθ = 0, on ∂Dm × (0, T ];
ωθ(x, 0) = ω0,θ(x), in Dm.

(3.59)
Meanwhile, it follows from (3.13) that ωθ ∈ L∞

t L6
x(Dm × [0, T ]) and

‖ωθ‖L∞
t L6

x(Dm×[0,T ]) ≤ CeCA4
0TA0. (3.60)

Finally, we will take advantage of (3.59) to find a pressure term P such that (v, P )
satisfies (2.7) and the NHL boundary condition (2.18) pointwisely so that (v, P ) is a 
strong solution. First, we recall a vector calculus identity (see equation (2.45) on page 
429 in [42]) in the cylindrical coordinates:

∇×
(

Δb− (b · ∇)b + v2
θ

r
er − ∂tb

)
=
[(

Δ − 1
r2

)
ωθ − b · ∇ωθ + 2vθ

r
∂x3vθ + vr

r
ωθ − ∂tωθ

]
eθ.

(3.61)

Next, we will convert this identity in the form of spherical coordinates. Noticing

r = ρ sinφ, er = sinφ eρ + cosφ eφ, vr = sinφ vρ + cosφ vφ

and

2vθ∂x3vθ = ∂x3(v2
θ) =

(
cosφ∂ρ −

sinφ

ρ
∂φ

)
(v2

θ),

so the identity (3.61) can be equivalently written as

∇×
(

Δb− (b · ∇)b + 1
ρ
v2
θ eρ + cotφ

ρ
v2
θ eφ − ∂tb

)
=
[(

Δ − 1
ρ2 sin2 φ

)
ωθ − b · ∇ωθ + cotφ

ρ
∂ρ(v2

θ) −
1
ρ2 ∂φ(v2

θ)

+ vρ + cotφ vφ
ωθ − ∂tωθ

]
eθ.

(3.62)
ρ
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Define

B = Δb− (b · ∇)b + 1
ρ
v2
θ eρ + cotφ

ρ
v2
θ eφ − ∂tb.

Then it follows from (3.62), (3.59) and the interior regularity of v and ωθ that

∇×B = 0, pointwise in Dm × (0, T ]. (3.63)

By direct computation, B can be written as B = Bρeρ + Bφeφ, where⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bρ =

(
Δ + 2

ρ
∂ρ + 2

ρ2

)
vρ − b · ∇vρ + 1

ρ
(v2

φ + v2
θ) − ∂tvρ,

Bφ =
(

Δ − 1
ρ2 sin2 φ

)
vφ − b · ∇vφ + 2

ρ2 ∂φvρ −
1
ρ
vρvφ + cotφ

ρ
v2
θ − ∂tvφ.

(3.64)

Next, we discuss the regularity of B. Firstly, since v ∈ L2
tH

2
x ∩ L∞

tx

(
Dm × [0, T ]

)
and 

ωθ = ω̃θ ∈ L2
tH

1
x

(
Dm×[0, T ]

)
, it then follows from (3.5) and (3.14) that ∂tvθ ∈ L2

tx

(
Dm×

[0, T ]
)

and ∂tωθ ∈ L2
tH

−1
x

(
Dm × [0, T ]

)
. Now we take advantage of (3.15) and (3.16)

to find that both ∂tvρ and ∂tvφ belong to L2
tx

(
Dm × [0, T ]

)
. As a consequence, v ∈

H1
t L

2
x

(
Dm × [0, T ]

)
and B ∈ L2

tx

(
Dm × [0, T ]

)
.

Based on formula (2.12) and equation (3.63), we have

∂ρ(ρBφ) − ∂φBρ = ρ(∇×B)θ = 0 pointwise in Dm × (0, T ].

Since the domain Dm can be regarded as a simply connected 2D domain D′
m, defined 

in (2.43), on the ρ-φ plane, by viewing both ρBφ and Bρ as functions in ρ and φ in the 
domain D′

m, we can apply Green’s theorem to find a scalar function P ∈ L2
tH

1
x

(
Dm ×

[0, T ]
)

such that

∂φP = ρBφ, ∂ρP = Bρ, pointwise in D′
m × (0, T ].

This implies that

Bρ = ∂ρP, Bφ = 1
ρ
∂φP, pointwise in Dm × (0, T ]. (3.65)

Meanwhile, without loss of generality, we can assume the average of P in the space 
variable on Dm is 0 for any fixed time t, that is 

∫
Dm

P (x, t) dx = 0 for any t. Then it 
follows from Poincaré inequality that P ∈ L2

tH
1
x

(
Dm × [0, T ]

)
. Substituting (3.65) into 

(3.64) and combining with equation (3.5) for vθ, we conclude that (v, P ) satisfies the NS 
system (2.7) in L2

tx sense on the space-time domain Dm × (0, T ]. In addition, from the 
construction (3.5) for vθ, and (3.15) and (3.16) for vρ and vφ, the initial condition and 
the NHL boundary condition (2.19) are also satisfied. Hence, (v, P ) is a strong solution 
such that
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v ∈ Eσ
m,T ∩H1

t L
2
x ∩ L2

tH
2
x ∩ L∞

tx

(
Dm × [0, T ]

)
, P ∈ L2

tH
1
x

(
Dm × [0, T ]

)
.

Step 6. Uniqueness of the strong solution and preservation of the even-odd-odd sym-
metry.

Suppose that (v̂, P̂ ) is another strong solution of (2.7) with the initial data v0 and the 
NHL boundary condition (2.19). Define

b̂ = v̂ρeρ + v̂φeφ.

Then b̂ ∈ Eσ
m,T

⋂
span{eρ, eφ} and b̂ is also a fixed point of the map L defined in Step 3. 

As a result,

L(b) − L(b̂) = b− b̂. (3.66)

On the other hand, due to the choice (3.51) of the time T in Step 4, the map L is 
contractive so that

‖L(b) − L(b̂)‖Em,T
≤ 1

2‖b− b̂‖Em,T
. (3.67)

The combination of (3.66) and (3.67) leads to b = b̂ in Dm × [0, T ]. This further implies 
that v̂θ = vθ since both of them satisfy the equation (3.5) whose solution in the energy 
space Em,T is unique. Hence, v̂ = v in Dm × [0, T ] and the uniqueness is verified.

Now we assume the initial data v0 enjoys the even-odd-odd symmetry as in Defini-
tion 1.3. Then we will prove the unique strong solution v as constructed above also has 
this property. Firstly, by the characterization (2.8), we know

v0,ρ(ρ, φ) = v0,ρ(ρ, π − φ), v0,φ(ρ, φ) = −v0,φ(ρ, π − φ), v0,θ(ρ, φ) = −v0,θ(ρ, π − φ).

Then we define a new vector field v̂ = v̂ρeρ + v̂φeφ + v̂θeθ and another pressure P̂ as

{
v̂ρ(ρ, φ, t) = vρ(ρ, π − φ, t), v̂φ(ρ, φ, t) = −vφ(ρ, π − φ, t),

v̂θ(ρ, φ, t) = −vθ(ρ, π − φ, t), P̂ (ρ, φ, t) = P (ρ, π − φ, t).
(3.68)

According to this definition, one can directly check that

(1) The initial value of v̂ matches v0;
(2) (v̂, P̂ ) satisfies the equations (2.7).
(3) v̂ satisfies the NHL boundary condition (2.18).

So v̂ is also a strong solution, which implies v̂ = v on Dm × [0, T ] due to the uniqueness 
of the strong solution that we just established. Based on the definition (3.68), we deduce 
from the fact v̂ = v that v has the even-odd-odd symmetry on Dm × [0, T ]. �
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Next, we aim to extend the local solution in Proposition 3.1 with a small lifespan T
to be a solution with arbitrarily large lifespan. In fact, according to the proof in Step 
4, the existence time T in (3.51) only depends on α, m and A0. Noticing A0 in (3.3)
is determined by ‖vθ(·, 0)‖L∞

x (Dm) and ‖ωθ(·, 0)‖L6
x(Dm), and we have uniform (in time) 

bounds (3.7) and (3.60) on ‖vθ(·, t)‖L∞
x (Dm) and ‖ωθ(·, t)‖L6

x(Dm). As a result, the solution 
v constructed in Step 4 on a small time interval [0, T ] can be extended to arbitrary finite 
time. Thus, we obtain the following result.

Corollary 3.3. Let α, m and v0 be the same as in Proposition 3.1. Then for any time 
T > 0, the problem (2.7) on Dm × [0, T ] with the initial data v0 and the NHL boundary 
condition (2.18) has a strong solution (v, P ) such that

v ∈ Eσ
m,T ∩H1

t L
2
x ∩ L2

tH
2
x ∩ L∞

tx

(
Dm × [0, T ]

)
, P ∈ L2

tH
1
x(Dm × [0, T ]).

Moreover, if (v̂, P̂ ) is another strong solution, then v̂ coincides with v on Dm × [0, T ]. 
As a result, if v0 belongs to Eσ,s

m,T , then so does v.

Remark 3.4. Although a bounded strong solution is obtained in the above corollary for 
any finite time T and any fixed m, the L∞

tx bound on the velocity v is neither uniform in 
T nor uniform in m. In the next section, after introducing some new quantities involving 
the vorticity (see (2.14)), we will prove that the L∞

tx norm of v on Dm×[0, T ] is uniformly 
bounded in T and this uniform bound only depends on m through ‖v0‖C2(Dm), as long 
as some mild restrictions on the angle α and the size of Γ0 are imposed.

4. Uniform bounds for ‖v‖L∞
tx

on Dm × [0, T ]

In this section, for any fixed m ≥ 2 and T > 0, we consider the initial data v0 which 
lies in the admissible class Am with the even-odd-odd symmetry (see Definitions 1.3
and 1.4). For such initial data, we denote by v the solution in Corollary 3.3 so that 
v ∈ Eσ,s

m,T∩H1
t L

2
x∩L2

tH
2
x∩L∞

tx(Dm×[0, T ]). Moreover, by restricting the range of α within (
0, π6
]

and by requiring ‖Γ(·, 0)‖L∞(Dm) ≤ 1
95 , we will deduce a uniform bound, which is 

independent of T and dependent on m only through ‖v0‖C2(Dm), for ‖v‖L∞
tx(Dm×[0,T ]). 

The plan of this section, which has been outlined in the introduction, is as follows:

• Step 1: We will derive an energy inequality about v in Section 4.1. This energy 
inequality provides a uniform bound on ‖v‖Em,T

.
• Step 2: In Sections 4.2–4.4, we will take advantage of the Biot-Savart law and the con-

dition α ∈
(
0, π6
]

to control the L2(Dm) norms of ∇(vρ/ρ)(·, t) and ∇(vφ/ρ)(·, t) by 
‖Ω(·, t)‖L2(Dm), and control the L2(Dm) norms of 1

ρ∇(vρ/ρ)(·, t) and 1
ρ∇(vφ/ρ)(·, t)

by ‖∇Ω(·, t)‖L2(Dm).
• Step 3: Thanks to the smallness condition ‖Γ(·, 0)‖L∞(Dm) ≤ 1

95 , the estimates in 
Step 1 will be used in Section 4.5 to obtain an upper bound, which is uniform in m
and T , on ‖(K, F, Ω)‖L∞L2 (Dm×[0,T ]).
t x
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• Step 4: According to the uniform bound on ‖(K, F, Ω)‖L∞
t L2

x(Dm×[0,T ]), we will derive 
in Section 4.6 a uniform bound on ‖v/ρ‖L∞

t L6
x(Dm×[0,T ]).

• Step 5: Finally in Section 4.7, we will bound ‖v‖L∞
tx(Dm×[0,T ]) in terms of ‖v0‖C2(Dm), 

‖v‖Em,T
, ‖(K, F, Ω)‖L∞

t L2
x(Dm×[0,T ]) and ‖v/ρ‖L∞

t L6
x(Dm×[0,T ]). Due to the uniform 

estimates in Steps 1, 3 and 4, the bound on ‖v‖L∞
tx(Dm×[0,T ]) will also be uniform in 

m and T .

4.1. An energy inequality

In this section, we present a result on bounding the L2 norm of ∇v by the L2 norm of 
its vorticity ∇ × v. This result is well-known for incompressible vector fields v with zero 
boundary value (see e.g. Lemma 2 in [27]), however, it may not be true if the boundary 
value is nonzero. For example, if v = 1

ρ sinφ eθ, then ∇ × v = 0 while ∇v �= 0. But we will 
show in Lemma 4.1 that such an estimate still holds in Dm if the vector field satisfies 
the NHL boundary condition and possesses the even-odd-odd symmetry as defined in 
Definition 1.3.

Lemma 4.1. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Let u ∈ H2(Dm) be an incompressible vector field. Assume further that u satisfies 

the NHL boundary condition (2.18) and possesses the even-odd-odd symmetry. Then

‖∇u‖L2(Dm) ≤
√

3‖∇ × u‖L2(Dm). (4.1)

Proof. Firstly, by similar computation as that in Section A.4, we know∫
Dm

uΔu dx = −
∫

Dm

|∇ × u|2 dx.

On the other hand, it directly follows from integration by parts that∫
Dm

uΔu dx =
∫

∂Dm

u
∂u

∂n
dS −

∫
Dm

|∇u|2 dx.

As a result,

∫
Dm

|∇u|2 dx =
∫

Dm

|∇ × u|2 dx + 1
2

∫
∂Dm

∂|u|2
∂n

dS

︸ ︷︷ ︸
T1

. (4.2)

Now we give a detailed computation of T1 on ∂RDm and ∂ADm separately. For the 
convenience of notation, we denote ρ0 = 1 . Noticing that the normal direction on ∂RDm
m
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is parallel to the φ direction, then we can take advantage of the boundary conditions in 

(2.20) to see that ∂(u2
ρ)

∂n = ∂(u2
φ)

∂n = 0 on ∂RDm. Therefore,

1
2

∫
∂RDm

∂|u|2
∂n

dS

= −π

1∫
ρ0

1
ρ
∂φ(u2

θ)
∣∣∣
φ=π

2 −α
ρ sin

(π
2 − α

)
dρ + π

1∫
ρ0

1
ρ
∂φ(u2

θ)
∣∣∣
φ=π

2 +α
ρ sin

(π
2 + α

)
dρ

= 2π
1∫

ρ0

u2
θ

∣∣∣
φ=π

2 −α
cos
(π

2 − α
)
dρ− 2π

1∫
ρ0

u2
θ

∣∣∣
φ=π

2 +α
cos
(π

2 + α
)
dρ.

Now using the fundamental theorem of Calculus, we find

1
2

∫
∂RDm

∂|u|2
∂n

dS = −2π
1∫

ρ0

π
2 +α∫

π
2 −α

∂φ
[
u2
θ(ρ, φ) cosφ

]
dφ dρ

= −2
∫

Dm

1
ρ2 uθ ∂φuθ cotφdx +

∫
Dm

u2
θ

ρ2 dx.

(4.3)

Similarly, by the boundary condition in (2.21), one deduces

1
2

∫
∂ADm

∂|u|2
∂n

dS = π

π
2 +α∫

π
2 −α

[
ρ2∂ρ(u2

θ + u2
φ)
]∣∣∣ρ=1

ρ=ρ0
sinφdφ

= −2π

π
2 +α∫

π
2 −α

[
ρ
(
u2
θ + u2

φ

)]∣∣∣ρ=1

ρ=ρ0
sinφdφ.

Then applying the fundamental theorem of Calculus,

1
2

∫
∂ADm

∂|u|2
∂n

dS = −2π

π
2 +α∫

π
2 −α

1∫
ρ0

∂ρ
[
ρ(u2

θ + u2
φ)
]
sinφdρ dφ

= −
∫

Dm

1
ρ2 (u2

θ + u2
φ) dx− 2

∫
Dm

1
ρ

(uθ∂ρuθ + uφ∂ρuφ) dx.

(4.4)

Thus, by adding (4.3) and (4.4),
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T1 = −
∫

Dm

u2
φ

ρ2 dx− 2
∫

Dm

1
ρ2 uθ ∂φuθ cotφdx− 2

∫
Dm

1
ρ

(uθ∂ρuθ + uφ∂ρuφ) dx.

Since α ≤ π
6 , this implies 0 ≤ cotφ ≤ 1√

3 and

T1 ≤
(
−
∫

Dm

u2
φ

ρ2 dx + 2
∫

Dm

1
ρ

∣∣uφ∂ρuφ

∣∣ dx)+ 2
∫

Dm

|uθ|
ρ

(
1√
3

∣∣∣1
ρ
∂φuθ

∣∣∣+ |∂ρuθ|
)
dx.

By Cauchy-Schwarz inequality, we know

T1 ≤
(

2
3

∫
Dm

|∂ρuφ|2 dx+ 1
2

∫
Dm

u2
φ

ρ2 dx

)
+ 2

3

∫
Dm

(
1
3

∣∣∣1
ρ
∂φuθ

∣∣∣2 + |∂ρuθ|2
)
dx+ 3

∫
Dm

u2
θ

ρ2 dx.

Since u satisfies the even-odd-odd symmetry assumption, both uφ and uθ are odd with 
respect to the plane {φ = π

2 }. Hence, it follows from the Poincaré inequality in Corol-
lary 2.4 and the fact α ≤ π

6 that

∫
Dm

u2
φ

ρ2 dx ≤ 2
19

∫
Dm

∣∣∣1
ρ
∂φuφ

∣∣∣2 dx,
∫

Dm

u2
θ

ρ2 dx ≤ 2
19

∫
Dm

∣∣∣1
ρ
∂φuθ

∣∣∣2 dx. (4.5)

As a result,

T1 ≤ 2
3

∫
Dm

|∂ρuφ|2 dx + 1
19

∫
Dm

∣∣∣1
ρ
∂φuφ

∣∣∣2 dx + 2
3

∫
Dm

(
|∂ρuθ|2 +

∣∣∣1
ρ
∂φuθ

∣∣∣2) dx. (4.6)

Next, we claim

∫
Dm

|∇u|2 dx ≥
∫

Dm

(
|∂ρuφ|2 + |∂ρuθ|2 +

∣∣∣1
ρ
∂φuθ

∣∣∣2) dx + 1
4

∫
Dm

∣∣∣1
ρ
∂φuφ

∣∣∣2 dx. (4.7)

Assuming this claim for a moment, then it follows from (4.6) that

T1 ≤ 2
3

∫
Dm

|∇u|2 dx.

Putting this estimate into (4.2) yields the desired conclusion (4.1).
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Thus, it remains to verify (4.7) in the above claim. According to formula (A.8),

∇u =

⎛⎜⎜⎝
∂ρuρ

1
ρ (∂φuρ − uφ) − 1

ρ uθ

∂ρuφ
1
ρ (∂φuφ + uρ) − cotφ

ρ uθ

∂ρuθ
1
ρ∂φuθ

1
ρ (uρ + cotφuφ)

⎞⎟⎟⎠
under the basis (A.7), so in order to prove (4.7), it suffices to justify the following 
estimate: ∫

Dm

(
1
ρ
∂φuφ + 1

ρ
uρ

)2

+
(

1
ρ
uρ + cotφ

ρ
uφ

)2

dx ≥ 1
4

∫
Dm

∣∣∣1
ρ
∂φuφ

∣∣∣2 dx. (4.8)

Using the basic inequality that for any A, B, C in R and for any 0 < λ < 1,

(A + B)2 + (B + C)2 ≥ 1
2(A− C)2 ≥ 1

2

(
λA2 − λ

1 − λ
C2
)
,

we know(
1
ρ
∂φuφ + 1

ρ
uρ

)2

+
(

1
ρ
uρ + cotφ

ρ
uφ

)2

≥ λ

2

(
1
ρ
∂φuφ

)2

− λ

2(1 − λ)

(
cotφ
ρ

uφ

)2

.

By choosing λ = 2
3 and using the fact that 0 ≤ cotφ ≤ 1√

3 , we find

(
1
ρ
∂φuφ + 1

ρ
uρ

)2

+
(

1
ρ
uρ + cotφ

ρ
uφ

)2

≥ 1
3

(
1
ρ
∂φuφ

)2

− 1
3

(
1
ρ
uφ

)2

.

Integrating both sides on Dm and taking advantage of (4.5) yields

∫
Dm

(
1
ρ
∂φuφ + 1

ρ
uρ

)2

+
(

1
ρ
uρ + cotφ

ρ
uφ

)2

dx ≥
(1

3 − 2
57

) ∫
Dm

∣∣∣1
ρ
∂φuφ

∣∣∣2 dx,
which implies (4.8). �
Remark 4.2. Let D be the original target region as defined in (1.4) or (2.4). Let u ∈
H2(D) be an incompressible vector field such that u satisfies the NHL boundary condition 
(1.5) and possesses the even-odd-odd symmetry. Then (4.1) also holds when Dm is being 
replaced with D. That is ‖∇u‖L2(D) ≤

√
3‖∇ × u‖L2(D). The proof is essentially the 

same as that for Lemma 4.1.

For the Cauchy problem of (1.3) involving finite energy solutions v, Leray discovered 
the classical energy inequality as follows.
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∫
R3

|v(x, T )|2dx + 2
T∫

0

∫
R3

|∇v(x, t)|2dxdt ≤
∫
R3

|v(x, 0)|2dx.

But under various boundary conditions, the above inequality may need to be modified. 
For example, under the NHL boundary condition (1.16), we obtain an energy inequality 
with a slightly different form in the following result.

Proposition 4.3. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Let v be the solution in Corollary 3.3 on Dm × [0, T ]. Then

∫
Dm

|v(x, T )|2 dx + 2
T∫

0

∫
Dm

|∇ × v(x, t)|2 dx dt =
∫

Dm

|v(x, 0)|2 dx. (4.9)

In addition,

∫
Dm

|v(x, T )|2 dx + 2
3

T∫
0

∫
Dm

|∇v(x, t)|2 dx dt ≤
∫

Dm

|v(x, 0)|2 dx. (4.10)

Proof. The proof of (4.9) is essentially the same as that in Section A.4 by replacing 
D with Dm. After (4.9) is established, one can combine it with Lemma 4.1 to justify 
(4.10). �
4.2. Modified Biot-Savart law in spherical coordinates

We first derive the relations between vρρ , vφρ and Ω by taking advantage of the Biot-
Savart law: Δv = −∇ × ω. On the one hand, since div v = 0, it follows from (A.12)
that

Δv =
(
Δ + 2

ρ
∂ρ + 2

ρ2

)
vρeρ +

[(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ

]
eφ +

(
Δ − 1

ρ2 sin2 φ

)
vθeθ.

On the other hand, we know from (2.12) that

∇× v = 1
ρ sinφ

∂φ(sinφ vθ) eρ −
1
ρ
∂ρ(ρvθ) eφ +

(
1
ρ
∂ρ(ρvφ) − 1

ρ
∂φvρ

)
eθ. (4.11)

Applying the above formula (4.11) to ω gives

∇× ω = 1
ρ sinφ

∂φ(sinφωθ) eρ −
1
ρ
∂ρ(ρωθ) eφ +

(
1
ρ
∂ρ(ρωφ) − 1

ρ
∂φωρ

)
eθ.

Hence, the Biot-Savart law Δv = −∇ × ω is equivalent to the following form.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Δ + 2

ρ ∂ρ + 2
ρ2

)
vρ = − 1

ρ sinφ ∂φ(sinφωθ),(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ = 1
ρ ∂ρ(ρωθ),(

Δ − 1
ρ2 sin2 φ

)
vθ = − 1

ρ ∂ρ(ρωφ) + 1
ρ ∂φωρ.

(4.12)

Recalling from (2.12) that ωθ = 1
ρ ∂ρ(ρvφ) − 1

ρ ∂φvρ, so

∂φvρ = ∂ρ(ρvφ) − ρωθ.

Therefore, the second equation in (4.12) can be rewritten as

(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂ρ(ρvφ) = 1
ρ
∂ρ(ρωθ) + 2

ρ
ωθ,

which is equivalently to

(
Δ + 2

ρ
∂ρ + 1 − cot2 φ

ρ2

)
vφ = 1

ρ3 ∂ρ(ρ3ωθ).

Combining with the first equation in (4.12) and recalling Ω = ωθ/(ρ sinφ), we obtain

⎧⎨⎩
(
Δ + 2

ρ ∂ρ + 2
ρ2

)
vρ = − 1

sinφ ∂φ(sin2 φΩ),(
Δ + 2

ρ∂ρ + 1−cot2 φ
ρ2

)
vφ = 1

ρ3 ∂ρ(ρ4 sinφΩ).
(4.13)

Consequently, one can get the following relations between vρρ , vφρ and Ω, which we call 
the modified Biot-Savart law.⎧⎨⎩

(
Δ + 4

ρ ∂ρ + 6
ρ2

)( vρ
ρ

)
= − 1

ρ sinφ ∂φ(sin2 φΩ),(
Δ + 4

ρ∂ρ + 5−cot2 φ
ρ2

)( vφ
ρ

)
= 1

ρ4 ∂ρ(ρ4 sinφΩ).
(4.14)

In the rest of this paper, for simplicity of notation, when dealing with estimates in 
the domain Dm (see Fig. 3), we denote ρ1 = 1

m , ρ2 = 1, φ1 = π
2 − α and φ2 = π

2 + α. 
In addition, the odd symmetry of vθ with respect to {φ = π

2 } plays an important role in 
the following estimates.

4.3. Control of ‖∇(vρ/ρ)(·, t)‖L2 and 
∥∥ 1
ρ∇(vρ/ρ)(·, t)

∥∥
L2 via Ω(·, t)

Firstly, recalling (3.37) in the proof of Proposition 3.1, we know for any t > 0,

φ2∫
vρ(ρ, φ, t) sinφdφ = 0, ∀ ρ ∈ [ρ1, ρ2]. (4.15)
φ1
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Next, we will take advantage of (4.15) to estimate ‖∇(vρ/ρ)(·, t)‖L2(Dm) and∥∥ 1
ρ∇(vρ/ρ)(·, t)

∥∥
L2(Dm) via Ω(·, t).

Lemma 4.4. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Then for any T > 0 and for a.e. t ∈ [0, T ],∥∥∥∥∇(vρρ (·, t)

)∥∥∥∥
L2(Dm)

≤
√

3 ‖Ω(·, t)‖L2(Dm) , (4.16)∥∥∥∥1
ρ
∇
(vρ
ρ

(·, t)
)∥∥∥∥

L2(Dm)
≤

√
44 ‖∇Ω(·, t)‖L2(Dm) . (4.17)

Before the proof of Lemma 4.4, we would like to point out that the (uniform in 
m) bound about ‖Ω(·, t)‖L2(Dm) and ‖∇Ω(·, t)‖L2(Dm) has not been available yet. This 
desired estimate is provided later in Lemma 4.7 where the (uniform in m and T ) bound 
on

sup
t∈[0,T ]

‖Ω(·, t)‖L2(Dm) and ‖∇Ω(·, ·)‖L2(Dm×[0,T ])

are obtained. The reason that we put Lemma 4.4 before Lemma 4.7 is because the proof 
of Lemma 4.7 relies on the relation established in Lemma 4.4. After Lemma 4.7, we can 
go back to Lemma 4.4 to justify the (uniform in m and T ) bound for

sup
t∈[0,T ]

∥∥∥∥∇(vρρ (·, t)
)∥∥∥∥

L2(Dm)
and

∥∥∥∥1
ρ
∇
(vρ
ρ

(·, ·)
)∥∥∥∥

L2(Dm×[0,T ])
.

Proof of Lemma 4.4. Since v ∈ Eσ,s
m,T ∩ L2

tH
2
x ∩ L∞

tx(Dm × [0, T ]) and ρ has the lower 
bound 1

m on Dm, we know Ω ∈ L2
tH

1
x(Dm× [0, T ]). So there exists a set ST ⊂ [0, T ] such 

that [0, T ] \ ST has measure 0 and for any t ∈ ST , Ω(·, t) belongs to H1(Dm). Fixing 
any t ∈ ST , it suffices to prove (4.16) and (4.17) for such t. For ease of notation, we will 
drop all the temporal variables in the following argument.

We first consider (4.16) and denote f1 = vρ
ρ . Then it follows from (4.14) that

(
Δ + 4

ρ
∂ρ + 6

ρ2

)
f1 = − 1

ρ sinφ
∂φ(sin2 φΩ). (4.18)

Moreover, we see from Lemma 2.1 that{
∂φf1 = 0, Ω = 0 on ∂RDm;
f1 = 0, Ω = 0 on ∂ADm.

(4.19)

In particular, the above relations imply that

f1∂nf1 = 0 on ∂RDm ∪ ∂ADm. (4.20)
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Applying f1 as a test function to (4.18), we deduce∫
Dm

(Δf1)f1 dx +
∫

Dm

4
ρ

(∂ρf1)f1 dx +
∫

Dm

6
ρ2 f2

1 dx = −
∫

Dm

1
ρ sinφ

∂φ(sin2 φΩ)f1 dx.

(4.21)

Now using integration by parts in (4.21) and taking advantage of (4.19) and (4.20), we 
have ∫

Dm

(Δf1)f1dx =
∫

∂Dm

(∂nf1)f1 dS −
∫

Dm

|∇f1|2 dx = −
∫

Dm

|∇f1|2 dx,

∫
Dm

4
ρ

(∂ρf1)f1 dx = 2
∫

Dm

1
ρ
∂ρ(f2

1 ) dx = 4π
φ2∫

φ1

ρ2∫
ρ1

∂ρ(f2
1 ) ρ sinφdρ dφ

= −4π
φ2∫

φ1

ρ2∫
ρ1

f2
1 sinφdρ dφ

= −2
∫

Dm

1
ρ2 f

2
1 dx,

and

−
∫

Dm

1
ρ sinφ

∂φ(sin2 φΩ)f1 dx = −2π
ρ2∫

ρ1

φ2∫
φ1

ρ ∂φ(sin2 φΩ)f1 dφ dρ

= 2π
ρ2∫

ρ1

φ2∫
φ1

ρ sin2 φΩ ∂φf1 dφ dρ

=
∫

Dm

sinφΩ ∂φf1

ρ
dx.

Putting the above relations into (4.21) yields∫
Dm

|∇f1|2 dx = 4
∫

Dm

1
ρ2 f

2
1 dx−

∫
Dm

sinφΩ ∂φf1

ρ
dx. (4.22)

As a result, it follows from Cauchy–Schwarz inequality that for any ε > 0,

∫
|∇f1|2 dx ≤ 4

∫ 1
ρ2 f

2
1 dx + ε

∫ (
∂φf1

ρ

)2

dx + 1
4ε

∫
|Ω|2 dx. (4.23)
Dm Dm Dm Dm
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Note that vρ satisfies (4.15), so

φ2∫
φ1

f1 sinφdφ = 1
ρ

φ2∫
φ1

vρ sinφdφ = 0.

Then it follows from Corollary 2.4 that

φ2∫
φ1

f2
1 sinφdφ ≤ Cα,A

φ2∫
φ1

(∂φf1)2 sinφdφ, (4.24)

where Cα,A is defined as in (2.23). Hence,

∫
Dm

1
ρ2 f

2
1 dx = 2π

ρ2∫
ρ1

φ2∫
φ1

f2
1 sinφdφ dρ

≤ 2π Cα,A

ρ2∫
ρ1

φ2∫
φ1

(∂φf1)2 sinφdφ dρ

= Cα,A

∫
Dm

(
∂φf1

ρ

)2

dx.

(4.25)

Putting the above inequality into (4.23) and noticing 
∣∣ 1
ρ ∂φf1

∣∣ ≤ |∇f1|, we obtain

(
1 − 4Cα,A − ε

) ∫
Dm

|∇f1|2 dx ≤ 1
4ε

∫
Dm

|Ω|2 dx.

Since Cα,A is increasing in α which lies in 
(
0, π6
]
, it follows from (2.25) that Cα,A ≤

Cπ/6,A = 2
19 . Thus,

(11
19 − ε

) ∫
Dm

|∇f1|2 dx ≤ 1
4ε

∫
Dm

|Ω|2 dx.

Choosing ε = 11
38 implies that

∫
Dm

|∇f1(x, t)|2 dx ≤ 3
∫

Dm

|Ω(x, t)|2 dx.

Thus, (4.16) is justified.
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Next we estimate ‖ 1
ρ∇f1‖L2(Dm). Applying f1

ρ2 as a test function to (4.18), we deduce

∫
Dm

(Δf1)
f1

ρ2 dx + 4
∫

Dm

f1∂ρf1

ρ3 dx + 6
∫

Dm

f2
1
ρ4 dx = −

∫
Dm

f1

ρ3 sinφ
∂φ(sin2 φΩ) dx.

(4.26)

Since f1 = 0 on ∂ADm and ∂nf1 = 0 on ∂RDm, it follows from integration by parts that∫
Dm

(Δf1)
f1

ρ2 dx = −
∫

Dm

∇f1 · ∇
(f1

ρ2

)
dx

= −
∫

Dm

|∇f1|2
ρ2 dx + 2

∫
Dm

f1∂ρf1

ρ3 dx.

Plugging the above equality into (4.26) yields

−
∫

Dm

|∇f1|2
ρ2 dx + 6

∫
Dm

f1∂ρf1

ρ3 dx + 6
∫

Dm

f2
1
ρ4 dx = −

∫
Dm

f1

ρ3 sinφ
∂φ(sin2 φΩ) dx. (4.27)

Using integration by parts and noting f1 = 0 on ∂ADm, we obtain

6
∫

Dm

f1∂ρf1

ρ3 dx = 6π
φ2∫

φ1

ρ2∫
ρ1

1
ρ
∂ρ(f2

1 ) sinφdρ dφ

= −6π
φ2∫

φ1

ρ2∫
ρ1

∂ρ

(1
ρ

)
f2
1 sinφdρ dφ

= 3
∫

Dm

f2
1
ρ4 dx.

(4.28)

Applying integration by parts again and recalling Ω = 0 on ∂RDm, we get

−
∫

Dm

f1

ρ3 sinφ
∂φ(sin2 φΩ) dx = −2π

ρ2∫
ρ1

φ2∫
φ1

f1

ρ
∂φ(sin2 φΩ) dφ dρ

= 2π
ρ2∫

ρ1

φ2∫
φ1

∂φf1

ρ
(sin2 φΩ) dφ dρ

=
∫ sinφ

ρ3 (∂φf1) Ω dx.

(4.29)
Dm
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Plugging (4.28) and (4.29) into (4.27), we have

∫
Dm

|∇f1|2
ρ2 dx = 9

∫
Dm

f2
1
ρ4 dx−

∫
Dm

sinφ

ρ3 (∂φf1) Ω dx.

It then follows from Cauchy–Schwarz’s inequality that for any ε > 0,

∫
Dm

|∇f1|2
ρ2 dx ≤ 9

∫
Dm

f2
1
ρ4 dx + ε

∫
Dm

1
ρ2

(
∂φf1

ρ

)2

dx + 1
4ε

∫
Dm

Ω2

ρ2 dx. (4.30)

Moreover, it follows from Corollary 2.4 that

∫
Dm

f2
1
ρ4 dx = 2π

ρ2∫
ρ1

1
ρ2

φ2∫
φ1

f2
1 sinφdφ dρ

≤ 2π Cα,A

ρ2∫
ρ1

1
ρ2

φ2∫
φ1

(∂φf1)2 sinφdφ dρ

= Cα,A

∫
Dm

1
ρ2

(
∂φf1

ρ

)2

dx.

Putting the above inequality into (4.30) and noticing that 
∣∣ 1
ρ ∂φf1

∣∣ ≤ |∇f1|, we attain

(
1 − 9Cα,A − ε

) ∫
Dm

|∇f1|2
ρ2 dx ≤ 1

4ε

∫
Dm

Ω2

ρ2 dx. (4.31)

Again, since Cα,A ≤ 2
19 , we choose ε = 1

38 and conclude

∫
Dm

|∇f1|2
ρ2 dx ≤ 192

∫
Dm

Ω2

ρ2 dx. (4.32)

Finally, since Ω = 0 on ∂RDm, it follows from Corollary 2.6 that

∫
Dm

Ω2

ρ2 dx = 2π
ρ2∫

ρ1

φ2∫
φ1

Ω2 sinφdφ dρ

≤ 2π Cα,B

ρ2∫
ρ1

φ2∫
φ1

|∂φΩ|2 sinφdφ dρ = Cα,B

∫
Dm

(
∂φΩ
ρ

)2

dx. (4.33)
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Combining (4.32), (4.33) and the fact that Cα,B ≤ Cπ/6,B = 3
25 , we get

∫
Dm

1
ρ2 |∇f1(x, t)|2dx ≤ 44

∫
Dm

(
∂φΩ(x, t)

ρ

)2

dx ≤ 44
∫

Dm

|∇Ω(x, t)|2 dx.

This completes the proof of (4.17). �
4.4. Control of ‖∇(vφ/ρ)(·, t)‖L2 and 

∥∥ 1
ρ∇(vφ/ρ)(·, t)

∥∥
L2 via Ω(·, t)

Lemma 4.5. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Then for any T > 0 and for a.e. t ∈ [0, T ],∥∥∥∥∇(vφρ (·, t)

)∥∥∥∥
L2(Dm)

≤
√

3 ‖Ω(·, t)‖L2(Dm) , (4.34)∥∥∥∥1
ρ
∇
(vφ
ρ

(·, t)
)∥∥∥∥

L2(Dm)
≤ 20 ‖∇Ω(·, t)‖L2(Dm) . (4.35)

Proof. Since v ∈ Eσ,s
m,T ∩L2

tH
2
x ∩L∞

tx(Dm × [0, T ]) and ρ has the lower bound 1
m on Dm, 

we know Ω ∈ L2
tH

1
x(Dm × [0, T ]). So there exists a set ST ⊂ [0, T ] such that [0, T ] \ ST

has measure 0 and for any t ∈ ST , Ω(·, t) belongs to H1(Dm). Fixing any t ∈ ST , it 
suffices to prove (4.16) and (4.17) for such t. For simplicity of notation, we will drop all 
the temporal variables in the following proof.

We first focus on (4.34) and define f2 = vφ
ρ . Then it follows from the second equation 

in (4.14) that

(
Δ + 4

ρ
∂ρ + 5 − cot2 φ

ρ2

)
f2 = 1

ρ4 ∂ρ(ρ4 sinφΩ). (4.36)

On the boundary portion ∂RDm, owing to vφ = ∂ρvφ = 0, one concludes that

f2 = ∂ρf2 = 0, on ∂RDm. (4.37)

Meanwhile, since ∂ρ(ρvφ) = 0 on the boundary portion ∂ADm, one deduces that

∂ρf2 + 2
ρ
f2 = 0, on ∂ADm. (4.38)

Multiplying (4.36) by f2 and integrating on domain Dm, one derives that∫
Dm

f2 Δf2 dx

︸ ︷︷ ︸
I1

+4
∫

Dm

1
ρ
f2 ∂ρf2 dx +

∫
Dm

(5 − cot2 φ)f
2
2
ρ2 dx =

∫
Dm

f2

ρ4 ∂ρ(ρ4 sinφΩ) dx

︸ ︷︷ ︸
I2

.

(4.39)
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Using integration by parts,

I1 = −
∫

Dm

|∇f2|2dx +
∫

∂Dm

f2 ∂nf2 dS

︸ ︷︷ ︸
I11

. (4.40)

By boundary conditions (4.37) and (4.38), I11 satisfies

I11 = −
∫

A1,m

f2 ∂ρf2 dS +
∫

A2,m

f2 ∂ρf2 dS =
∫

A1,m

2f2
2
ρ

dS −
∫

A2,m

2f2
2
ρ

dS,

where the meaning of A1,m and A2,m can be found in Fig. 3. By the fundamental theorem 
of calculus, we further notice that

I11 = 4π
φ2∫

φ1

ρ1 sinφ f2
2 dφ− 4π

φ2∫
φ1

ρ2 sinφ f2
2 dφ

= −4π
φ2∫

φ1

ρ2∫
ρ1

∂ρ(ρ sinφ f2
2 ) dρ dφ

= −4
∫

Dm

f2

ρ
∂ρf2 dx− 2

∫
Dm

f2
2
ρ2 dx.

Plugging the above expression of I11 in (4.40), one has

I1 = −
∫

Dm

|∇f2|2dx− 2
∫

Dm

f2
2
ρ2 dx− 4

∫
Dm

f2

ρ
∂ρf2 dx. (4.41)

For I2 which can be rewritten as

I2 = 2π
φ2∫

φ1

ρ2∫
ρ1

sinφ

ρ2 f2 ∂ρ(ρ4 sinφΩ) dρ dφ,

we use integration by parts and the fact that Ω = 0 on ∂ADm to obtain

I2 = −2π
φ2∫

φ1

ρ2∫
ρ1

∂ρ

( sinφ

ρ2 f2

)
ρ4 sinφΩ dρ dφ

= 2
∫ sinφ

ρ
f2 Ω dx−

∫
sinφ (∂ρf2) Ω dx.

(4.42)
Dm Dm
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Plugging (4.41) and (4.42) into (4.39) yields

−
∫

Dm

|∇f2|2 dx +
∫

Dm

(3 − cot2 φ)f
2
2
ρ2 dx = 2

∫
Dm

sinφ

ρ
f2 Ω dx−

∫
Dm

sinφ (∂ρf2) Ω dx.

As a result,

∫
Dm

|∇f2|2 dx ≤ 3
∫

Dm

f2
2
ρ2 dx + 2

∫
Dm

sinφ

ρ
|f2 Ω| dx +

∫
Dm

sinφ |(∂ρf2) Ω| dx.

By Cauchy-Schwarz inequality, for any ε1 > 0 and ε2 > 0,

∫
Dm

|∇f2|2 dx ≤ (3 + ε1)
∫

Dm

f2
2
ρ2 dx + ε2

∫
Dm

|∂ρf2|2 dx +
( 1
ε1

+ 1
4ε2

) ∫
Dm

Ω2 dx. (4.43)

Since f2 = 0 on ∂RDm, then by a similar derivation as that in (4.33), we get

∫
Dm

f2
2
ρ2 dx ≤ Cα,B

∫
Dm

(
∂φf2

ρ

)2

dx.

Putting the above estimate into (4.43) and recalling the estimate Cα,B ≤ 3
25 in (2.25), 

we obtain

∫
Dm

|∇f2|2 dx ≤ 3(3 + ε1)
25

∫
Dm

(
∂φf2

ρ

)2

dx + ε2

∫
Dm

|∂ρf2|2 dx +
( 1
ε1

+ 1
4ε2

) ∫
Dm

Ω2 dx.

By choosing ε1 = 2 and choosing ε2 = 3(3+ε1)
25 = 3

5 , we find

∫
Dm

|∇f2|2 dx ≤ 3
5

∫
Dm

|∇f2|2 dx +
∫

Dm

Ω2 dx.

This implies that

∫
Dm

|∇f2(x, t)|2 dx ≤ 3
∫

Dm

Ω2(x, t) dx,

which proves (4.34).
Next, we are going to prove (4.35). Multiplying (4.36) by f2

ρ2 and integrating on Dm

yields
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∫
Dm

f2

ρ2 Δf2 dx

︸ ︷︷ ︸
J1

+4
∫

Dm

1
ρ3 f2∂ρf2 dx +

∫
Dm

5 − cot2 φ
ρ4 f2

2 dx =
∫

Dm

f2

ρ6 ∂ρ(ρ4 sinφΩ) dx

︸ ︷︷ ︸
J2

.

(4.44)
Using integration by parts,

J1 = −
∫

Dm

∇
(f2

ρ2

)
· ∇f2 dx +

∫
∂Dm

f2

ρ2 ∂nf2 dS

= −
∫

Dm

1
ρ2 |∇f2|2 dx + 2

∫
Dm

f2

ρ3 ∂ρf2 dx +
∫

∂Dm

f2

ρ2 ∂nf2 dS

︸ ︷︷ ︸
J11

.

Similar to the computation of I11 above, we find

J11 = 2
∫

Dm

f2
2
ρ4 dx− 4

∫
Dm

f2

ρ3 ∂ρf2 dx.

So

J1 = −
∫

Dm

1
ρ2 |∇f2|2 dx + 2

∫
Dm

f2
2
ρ4 dx− 2

∫
Dm

f2

ρ3 ∂ρf2 dx. (4.45)

Next, by direct computation,

J2 = 4
∫

Dm

sinφ

ρ3 f2 Ω dx +
∫

Dm

sinφ

ρ2 f2 ∂ρΩ dx.

Substituting the above expression for J2 and (4.45) for J1 into (4.44), one deduces∫
Dm

1
ρ2 |∇f2|2dx =

∫
Dm

7 − cot2 φ
ρ4 f2

2 dx + 2
∫

Dm

f2

ρ3 ∂ρf2 dx

− 4
∫

Dm

sinφ

ρ3 f2 Ω dx−
∫

Dm

sinφ

ρ2 f2 ∂ρΩ dx.

Thus, ∫
Dm

1
ρ2 |∇f2|2dx ≤ 7

∫
Dm

f2
2
ρ4 dx + 2

∫
Dm

1
ρ3 |f2 ∂ρf2| dx

+ 4
∫ 1

ρ3 |f2 Ω| dx +
∫ 1

ρ2 |f2 ∂ρΩ| dx.
(4.46)
Dm Dm



Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393 59
By Cauchy-Schwarz inequality, for any constants ε1, ε2, ε3 > 0, one has

∫
Dm

1
ρ2 |∇f2|2dx ≤

(
7 + 1

ε1
+ ε2 + ε3

) ∫
Dm

f2
2
ρ4 dx + ε1

∫
Dm

1
ρ2 |∂ρf2|2 dx

+ 4
ε2

∫
Dm

Ω2

ρ2 dx + 1
4ε3

∫
Dm

|∂ρΩ|2 dx.
(4.47)

Now since f2 = Ω = 0 on ∂RDm, then similar to the derivation of (4.33), we obtain

∫
Dm

f2
2
ρ4 dx ≤ Cα,B

∫
Dm

1
ρ2

(
∂φf2

ρ

)2

dx, (4.48)

∫
Dm

Ω2

ρ2 dx ≤ Cα,B

∫
Dm

(
∂φΩ
ρ

)2

dx. (4.49)

Plugging (4.48) and (4.49) into (4.47) and recalling Cα,B ≤ 3
25 , one deduces

∫
Dm

1
ρ2 |∇f2|2dx ≤ 3

25

(
7 + 1

ε1
+ ε2 + ε3

) ∫
Dm

1
ρ2

(
∂φf2

ρ

)2

dx + ε1

∫
Dm

1
ρ2 |∂ρf2|2 dx

+ 12
25ε2

∫
Dm

(
∂φΩ
ρ

)2

dx + 1
4ε3

∫
Dm

|∂ρΩ|2 dx.

By choosing ε1 = 20
21 , ε2 = 1

20 and ε3 = 1
40 , we have

∫
Dm

1
ρ2 |∇f2|2dx ≤ 39

40

∫
Dm

1
ρ2 |∇f2|2dx + 10

∫
Dm

|∇Ω|2 dx.

This implies

∫
Dm

1
ρ2 |∇f2(x, t)|2dx ≤ 400

∫
Dm

|∇Ω(x, t)|2 dx,

completing the proof of (4.35) and Lemma 4.5. �
4.5. Uniform bounds for ‖(K, F, Ω)‖L∞

t L2
x

and ‖(∇K, ∇F, ∇Ω)‖L2
tx

In this subsection, we will derive some energy estimates for K, F and Ω.
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Lemma 4.6. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Let K, F and Ω be defined as in (2.14). Then for any T > 0, the following three 

energy identities (4.50)–(4.52) hold.

1
2

∫
Dm

K2(x, T ) dx− 1
2

∫
Dm

K2(x, 0) dx +
T∫

0

∫
Dm

|∇K|2 dx dt

= 3
T∫

0

∫
Dm

K2

ρ2 dx dt− 2
T∫

0

∫
Dm

K

ρ
∂ρK dxdt

+
T∫

0

∫
Dm

vθ
ρ

[
∂φ

(vρ
ρ

)
∂ρK − ∂ρ

(vρ
ρ

)
∂φK

]
dx dt.

(4.50)

1
2

∫
Dm

F 2(x, T ) dx− 1
2

∫
Dm

F 2(x, 0) dx +
T∫

0

∫
Dm

|∇F |2 dx dt

=
T∫

0

∫
Dm

1 − cot2 φ
ρ2 F 2 dx dt− 2

T∫
0

∫
Dm

cotφ
ρ2 F∂φF dx dt + 2

T∫
0

∫
Dm

(∂φK)F
ρ2 dx dt

+
T∫

0

∫
Dm

vθ
ρ

[
∂φ

(vφ
ρ

)
∂ρF − ∂ρ

(vφ
ρ

)
∂φF

]
dx dt.

(4.51)

1
2

∫
Dm

Ω2(x, T ) dx− 1
2

∫
Dm

Ω2(x, 0) dx +
T∫

0

∫
Dm

|∇Ω|2 dx dt

= − 2
T∫

0

∫
Dm

vθ
ρ sinφ

KΩ dx dt− 2
T∫

0

∫
Dm

vθ cosφ
ρ sin2 φ

FΩ dx dt.

(4.52)

Proof. Firstly, since v ∈ Eσ,s
m,T ∩ L2

tH
2
x ∩ L∞

tx(Dm × [0, T ]) and ρ has the lower bound 
1
m on Dm, all of K, F and Ω are in L2

tH
1
x(Dm × [0, T ]). Meanwhile, all the integrals in 

(4.50)–(4.52) are well-defined. In addition, K is even, and F and Ω are odd symmetric 
with respect to the plane {φ = π

2 }. (4.50), (4.51) and (4.52) can be justified by testing 
(2.15)1, (2.15)2 and (2.15)3 by K, F and Ω respectively. The derivations for these three 
energy identities are similar, so we will only show details for (4.51) which is relatively 
the most complicated one.

Multiplying (2.15)2 by F and integrating on Dm × [0, T ] yields

1
2

∫
F 2(x, T ) dx− 1

2

∫
F 2(x, 0) dx = L1 − L2 + L3 + L4, (4.53)
Dm Dm
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where

L1 =
T∫

0

∫
Dm

[(
Δ + 2

ρ
∂ρ + 1 − cot2 φ

ρ2

)
F

]
F dx dt, (4.54)

L2 =
T∫

0

∫
Dm

(b · ∇F )F dx dt, (4.55)

L3 =
T∫

0

∫
Dm

2
ρ2 (∂φK)F dx dt, (4.56)

L4 =
T∫

0

∫
Dm

(
ω · ∇

(vφ
ρ

))
F dx dt. (4.57)

We will first compute L1. Using integration by parts,

T∫
0

∫
Dm

(ΔF )F dx dt =
T∫

0

∫
∂Dm

(∂nF )F dS dt−
T∫

0

∫
Dm

|∇F |2 dx dt. (4.58)

According to Lemma 2.1, F = 0 on ∂ADm and ∂φF = − cotφ F on ∂RDm, so

∫
∂Dm

(∂nF )F dS =
∫

∂RDm

(∂nF )F dS

= −
∫

R1,m

(
1
ρ
∂φF

)
F dS +

∫
R2,m

(
1
ρ
∂φF

)
F dS

=
∫

R1,m

cotφ1

ρ
F 2 dS −

∫
R2,m

cotφ2

ρ
F 2 dS,

where the definition of the boundaries R1,m and R2,m can be found in Fig. 3. Noticing 
dS = 2πρ sinφ dρ, we find

∫
∂Dm

(∂nF )F dS = 2π
ρ2∫

ρ1

cosφ1 F
2 dρ− 2π

ρ2∫
ρ1

cosφ2 F
2 dρ.

Now applying the fundamental theorem of Calculus yields
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∫
∂Dm

(∂nF )F dS = −2π
ρ2∫

ρ1

φ2∫
φ1

∂φ(cosφF 2) dφ dρ

= 2π
ρ2∫

ρ1

φ2∫
φ1

sinφF 2 dφ dρ− 4π
ρ2∫

ρ1

φ2∫
φ1

cosφF∂φF dφ dρ

=
∫

Dm

F 2

ρ2 dx− 2
∫

Dm

cotφ
ρ2 F∂φF dx.

Substituting the above identity into (4.54) gives

T∫
0

∫
Dm

(ΔF )F dx dt = −
T∫

0

∫
Dm

|∇F |2 dx dt +
T∫

0

∫
Dm

F 2

ρ2 dx dt

− 2
T∫

0

∫
Dm

cotφ
ρ2 F∂φF dx dt.

(4.59)

We continue to deal with the first-order term in (4.54).

∫
Dm

2
ρ

(∂ρF )F dx = 2π
φ2∫

φ1

ρ2∫
ρ1

ρ sinφ∂ρ(F 2) dρ dφ.

Recalling F = 0 on ∂ADm, so we apply integration by parts to obtain

∫
Dm

2
ρ

(∂ρF )F dx = −2π
φ2∫

φ1

ρ2∫
ρ1

sinφF 2 dρ dφ = −
∫

Dm

F 2

ρ2 dx. (4.60)

Plugging (4.59) and (4.60) into (4.54) shows

L1 = −
T∫

0

∫
Dm

|∇F |2 dx dt +
T∫

0

∫
Dm

1 − cot2 φ
ρ2 F 2 dx dt− 2

T∫
0

∫
Dm

cotφ
ρ2 F∂φF dx dt.

(4.61)
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Next, we calculate L2. By divergence theorem, we have

L2 = 1
2

T∫
0

∫
Dm

b · ∇(F 2) dx dt

= 1
2

T∫
0

∫
∂Dm

(b · n)F 2 dS dt− 1
2

T∫
0

∫
Dm

(∇ · b)F 2 dx dt.

Noticing that b · n = v · n = 0 on ∂Dm and ∇ · b = ∇ · v = 0 in Dm, so

L2 = 0. (4.62)

Finally, the term L4 will be treated. Based on the formula (2.12) for ω,

ω · ∇
(vφ
ρ

)
= ωρ ∂ρ

(vφ
ρ

)
+ ωφ

1
ρ
∂φ

(vφ
ρ

)
= 1

ρ sinφ
∂φ(sinφ vθ) ∂ρ

(vφ
ρ

)
− 1

ρ2 ∂ρ(ρvθ) ∂φ
(vφ
ρ

)
.

Thus,

L4 = L41 − L42, (4.63)

where

L41 =
T∫

0

∫
Dm

1
ρ sinφ

∂φ(sinφ vθ) ∂ρ
(vφ
ρ

)
F dx dt,

= 2π
T∫

0

ρ2∫
ρ1

φ2∫
φ1

ρ ∂φ(sinφ vθ) ∂ρ
(vφ
ρ

)
F dφ dρ dt,

and

L42 =
T∫

0

∫
Dm

1
ρ2 ∂ρ(ρvθ) ∂φ

(vφ
ρ

)
F dx dt,

= 2π
T∫

0

φ2∫
φ1

ρ2∫
ρ1

sinφ∂ρ(ρvθ) ∂φ
(vφ
ρ

)
F dρ dφ dt.

For L41, since vφ = 0 on ∂RDm, then ∂ρvφ = 0 on ∂RDm, which further implies ∂ρ
(vφ

ρ

)
=

0 on ∂RDm. This enables one to do integration by parts with vanishing boundary terms 
to get
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φ2∫
φ1

ρ ∂φ(sinφ vθ) ∂ρ
(vφ
ρ

)
F dφ = −

φ2∫
φ1

ρ sinφ vθ ∂φ

[
∂ρ

(vφ
ρ

)
F
]
dφ

= −
φ2∫

φ1

ρ sinφ vθ

[
∂φ∂ρ

(vφ
ρ

)
F + ∂ρ

(vφ
ρ

)
∂φF

]
dφ.

Hence,

L41 = −2π
T∫

0

ρ2∫
ρ1

φ2∫
φ1

ρ sinφ vθ

[
∂φ∂ρ

(vφ
ρ

)
F + ∂ρ

(vφ
ρ

)
∂φF

]
dφ dρ dt

= −
T∫

0

∫
Dm

vθ
ρ

[
∂φ∂ρ

(vφ
ρ

)
F + ∂ρ

(vφ
ρ

)
∂φF

]
dx dt.

(4.64)

For L42, by taking advantage of the fact that F = 0 on ∂ADm, we can again apply 
integration by parts with vanishing boundary terms to obtain

ρ2∫
ρ1

sinφ∂ρ(ρvθ) ∂φ
(vφ
ρ

)
F dρ = −

ρ2∫
ρ1

sinφ ρvθ ∂ρ

[
∂φ

(vφ
ρ

)
F
]
dρ

= −
ρ2∫

ρ1

ρ sinφ vθ

[
∂ρ∂φ

(vφ
ρ

)
F + ∂φ

(vφ
ρ

)
∂ρF

]
dρ.

Hence,

L42 = −2π
T∫

0

φ2∫
φ1

ρ2∫
ρ1

ρ sinφ vθ

[
∂ρ∂φ

(vφ
ρ

)
F + ∂φ

(vφ
ρ

)
∂ρF

]
dρ dφ dt

= −
T∫

0

∫
Dm

vθ
ρ

[
∂ρ∂φ

(vφ
ρ

)
F + ∂φ

(vφ
ρ

)
∂ρF

]
dx dt.

(4.65)

By substituting (4.64) and (4.65) into (4.63), we see that the super-critical terms con-
taining ∂ρ∂φ

(
vφ
ρ

)
are canceled out and we find

L4 =
T∫

0

∫
Dm

vθ
ρ

[
∂φ

(vφ
ρ

)
∂ρF − ∂ρ

(vφ
ρ

)
∂φF

]
dx dt. (4.66)

Finally, putting (4.61), (4.62), (4.56) and (4.66) into (4.53) justifies (4.51). �
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In the next lemma, we close the energy estimate for K, F and Ω, which is the key 
result in this paper. Here, we would like to explain the reason of choosing 1

95 in (4.67)
instead of 1

100 which is the upper bound for Γ(·, 0) := rv0,θ in (1.17) in Theorem 1.5. 
Actually, in order to prove Theorem 1.5, we need to first choose a sequence of initial data 
v
(m)
0 on the approximating domains Dm which converges to v0, see Page 72 in Section 6. 

Then the size of rv(m)
0,θ may not be bounded by 1

100 any more, so we need a slightly larger 
bound, say 1

95 , to bound ‖rvm0,θ‖ on Dm, see (6.3).

Lemma 4.7. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Let Γ, K, F and Ω be defined as in (2.9) and (2.14). Assume

‖Γ(·, 0)‖L∞(Dm) ≤
1
95 . (4.67)

Then for any T > 0,

∫
Dm

(K2 + F 2 + Ω2)(x, T ) dx + 1
10

T∫
0

∫
Dm

(
|∇K|2 + |∇F |2 + |∇Ω|2

)
dx dt

≤
∫

Dm

(K2 + F 2 + Ω2)(x, 0) dx (4.68)

≤ C‖v0‖2
H2(Dm), (4.69)

where C = C(α).

Proof. We add (4.50), (4.51) and (4.52) together to obtain

1
2

∫
Dm

(K2 + F 2 + Ω2)(x, T ) dx− 1
2

∫
Dm

(K2 + F 2 + Ω2)(x, 0) dx

+
T∫

0

∫
Dm

|∇K|2 + |∇F |2 + |∇Ω|2 dx dt = S1 + S2 + S3,

(4.70)

where

S1 = 3
T∫

0

∫
Dm

K2

ρ2 dx dt− 2
T∫

0

∫
Dm

K

ρ
∂ρK dxdt,

S2 =
T∫

0

∫
Dm

1 − cot2 φ
ρ2 F 2 dx dt− 2

T∫
0

∫
Dm

cotφ
ρ2 F∂φF dx dt + 2

T∫
0

∫
Dm

(∂φK)F
ρ2 dx dt

and
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S3 =
T∫

0

∫
Dm

vθ
ρ

[
∂φ

(vρ
ρ

)
∂ρK − ∂ρ

(vρ
ρ

)
∂φK + ∂φ

(vφ
ρ

)
∂ρF − ∂ρ

(vφ
ρ

)
∂φF

− 2
sinφ

KΩ − 2 cosφ
sin2 φ

FΩ
]
dx dt.

(4.71)

We first estimate S1 and S2. By Cauchy Schwarz inequality, for any ε1, ε2, ε3 ∈ (0, 1), 
we have

S1 ≤ ε1

T∫
0

∫
Dm

(∂ρK)2 dx dt +
(
3 + 1

ε1

) T∫
0

∫
Dm

K2

ρ2 dx dt, (4.72)

and

S2 ≤ ε2

T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt + ε3

T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt

+
(
1 + 1

ε2

) T∫
0

∫
Dm

F 2

ρ2 dx dt +
( 1
ε3

− 1
) T∫

0

∫
Dm

cot2 φ
ρ2 F 2 dx dt.

Since α ∈
(
0, π6
]
, then φ ∈

[2π
3 , 4π3

]
and cot2 φ ≤ 1

3 . Therefore,

S2 ≤ ε2

T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt + ε3

T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt

+
(2

3 + 1
ε2

+ 1
3ε3

) T∫
0

∫
Dm

F 2

ρ2 dx dt.

(4.73)

Adding (4.72) and (4.73) together leads to

S1 + S2 ≤ ε1

T∫
0

∫
Dm

(∂ρK)2 dx dt + ε2

T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt + ε3

T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt

+
(
3 + 1

ε1

) T∫
0

∫
Dm

K2

ρ2 dx dt +
(2

3 + 1
ε2

+ 1
3ε3

) T∫
0

∫
Dm

F 2

ρ2 dx dt.

(4.74)

According to Lemma 2.1, K = 0 on ∂RDm, so similar to the derivation in (4.33), we 
deduce
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∫
Dm

K2

ρ2 dx ≤ Cα,B

∫
Dm

(
∂φK

ρ

)2

dx. (4.75)

On the other hand, since vθ is odd with respect to {φ = π
2 }, then we can derive from 

(2.12) that ωφ is also odd with respect to {φ = π
2 }. Thus, F is odd with respect to 

{φ = π
2 }, which implies

φ2∫
φ1

F sinφdφ = 0.

Then analogous to the estimate in (4.25), we get

∫
Dm

F 2

ρ2 dx ≤ Cα,A

∫
Dm

(
∂φF

ρ

)2

dx. (4.76)

Putting (4.75) and (4.76) into (4.74), and recalling Cα,A ≤ 2
19 and Cα,B ≤ 3

25 , we obtain

S1 + S2 ≤ ε1

T∫
0

∫
Dm

(∂ρK)2 dx dt + ε2

T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt + ε3

T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt

+ 3
25

(
3 + 1

ε1

) T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt

+ 2
19

(2
3 + 1

ε2
+ 1

3ε3

) T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt.

(4.77)

By choosing ε1 = 9
10 , ε2 = 1

3 and ε3 = 1
5 , we conclude

S1 + S2 ≤ 9
10

T∫
0

∫
Dm

(∂ρK)2 +
(
∂φK

ρ

)2

+
(
∂φF

ρ

)2

dx dt

≤ 9
10

T∫
0

∫
Dm

|∇K|2 + |∇F |2 dx dt.

(4.78)

Next, we estimate S3. Denote C∗ = 1
95 , then the assumption on Γ becomes 

‖Γ(·, 0)‖L∞(Dm) ≤ C∗. This enables one to derive from Lemma 2.10 that

‖Γ‖L∞(Dm×(0,T )) ≤ C∗.
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Recalling Γ = ρ sinφ vθ and α ∈
(
0, π6
]
, so φ ∈

[
2π/3, 4π/3

]
and

|vθ| ≤
C∗

ρ sinφ
≤ 2√

3
C∗

ρ
. (4.79)

Combining (4.79) with (4.71) yields

|S3| ≤
2C∗
√

3
(S31 + S32 + S33), (4.80)

where

S31 =
T∫

0

∫
Dm

1
ρ

∣∣∣∣1ρ∂φ(vρρ ) ∂ρK
∣∣∣∣+ 1

ρ

∣∣∣∣∂ρ(vρρ ) 1
ρ
∂φK

∣∣∣∣ dx dt,
S32 =

T∫
0

∫
Dm

1
ρ

∣∣∣∣1ρ∂φ(vφρ ) ∂ρF
∣∣∣∣+ 1

ρ

∣∣∣∣∂ρ(vφρ ) 1
ρ
∂φF

∣∣∣∣ dx dt,
S33 = 4√

3

T∫
0

∫
Dm

1
ρ2 |KΩ| dx dt + 4

3

T∫
0

∫
Dm

1
ρ2 |FΩ| dx dt.

By using Cauchy-Schwarz inequality,

S31 ≤
T∫

0

∫
Dm

∣∣∣∣1ρ∇(vρρ )
∣∣∣∣ |∇K| dx dt

≤
T∫

0

∥∥∥∥1
ρ
∇
(vρ
ρ

(·, t)
)∥∥∥∥

L2(Dm)
‖∇K(·, t)‖L2(Dm) dt.

Now applying Lemma 4.4 and Cauchy-Schwarz inequality, we deduce

S31 ≤
√

44
T∫

0

‖∇Ω(·, t)‖L2(Dm)‖∇K(·, t)‖L2(Dm) dt

≤ ε4

T∫
0

∫
Dm

|∇K|2 dx dt + 11
ε4

T∫
0

∫
Dm

|∇Ω|2 dx dt, (4.81)

where ε4 is any positive number. In a similar manner by using Cauchy-Schwarz inequality 
and Lemma 4.5, we have
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S32 ≤ ε5

T∫
0

∫
Dm

|∇F |2 dx dt + 100
ε5

T∫
0

∫
Dm

|∇Ω|2 dx dt, (4.82)

where ε5 is any positive number. For S33, it directly follows from Cauchy-Schwarz in-
equality that

S33 ≤
T∫

0

∫
Dm

K2

ρ2 dx dt +
T∫

0

∫
Dm

F 2

ρ2 dx dt + 16
9

T∫
0

∫
Dm

Ω2

ρ2 dx dt. (4.83)

Based on (4.75), we know

T∫
0

∫
Dm

K2

ρ2 dx dt ≤ Cα,B

T∫
0

∫
Dm

(
∂φK

ρ

)2

dx dt ≤ 3
25

T∫
0

∫
Dm

|∇K|2 dx dt.

Similarly,

T∫
0

∫
Dm

Ω2

ρ2 dx dt ≤ 3
25

T∫
0

∫
Dm

|∇Ω|2 dx dt.

On the other hand, according to (4.76) and the assumption that α ∈
(
0, π6
]
, we attain

T∫
0

∫
Dm

F 2

ρ2 dx dt ≤ Cα,A

T∫
0

∫
Dm

(
∂φF

ρ

)2

dx dt ≤ 2
19

T∫
0

∫
Dm

|∇F |2 dx dt.

Plugging the above estimates into (4.83) yields

S33 ≤ 3
25

T∫
0

∫
Dm

|∇K|2 dx dt + 2
19

T∫
0

∫
Dm

|∇F |2 dx dt + 16
75

T∫
0

∫
Dm

|∇Ω|2 dx dt. (4.84)

Putting (4.81), (4.82) and (4.84) into (4.80) leads to

|S3| ≤
2C∗
√

3

[(
ε4 + 3

25

) T∫
0

∫
Dm

|∇K|2 dx dt +
(
ε5 + 2

19

) T∫
0

∫
Dm

|∇F |2 dx dt

+
(11
ε4

+ 100
ε5

+ 16
75

) T∫
0

∫
Dm

|∇Ω|2 dx dt
]
.

By choosing ε4 = ε5 = 3, we derive from the above inequality that
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|S3| ≤
2C∗
√

3

(
4

T∫
0

∫
Dm

|∇K|2 + |∇F |2 dx dt + 40
T∫

0

∫
Dm

|∇Ω|2 dx dt
)
.

Recalling C∗ = 1
95 , so the above estimate implies that

|S3| ≤
1
20

T∫
0

∫
Dm

|∇K|2 + |∇F |2 dx dt + 1
2

T∫
0

∫
Dm

|∇Ω|2 dx dt. (4.85)

Finally, by plugging (4.78) and (4.85) into (4.70), we conclude that

1
2

∫
Dm

(K2 + F 2 + Ω2)(x, T ) dx− 1
2

∫
Dm

(K2 + F 2 + Ω2)(x, 0) dx

+ 1
20

T∫
0

∫
Dm

|∇K|2 + |∇F |2 + |∇Ω|2 dx dt ≤ 0,

which implies (4.68).
Now it remains to justify (4.69), we first use the Poincaré inequality in Corollary 2.6

and the fact that ωρ = 0 on ∂RDm to establish∫
Dm

K2(x, 0) dx =
∫

Dm

ω2
0,ρ

ρ2 dx ≤ C

∫
Dm

∣∣∣1
ρ
∂φω0,ρ

∣∣∣2 dx ≤ C‖v0‖2
H2(Dm),

where C = C(α). Then the term 
∫
Dm

Ω2(x, 0) dx can be handled in the same way. In 
order to treat F , we take advantage of the property that ωφ is odd with respect to 
{φ = π

2 } and then use the Poincaré inequality in Corollary 2.4 to obtain

∫
Dm

F 2(x, 0) dx =
∫

Dm

ω2
0,φ

ρ2 dx ≤ C

∫
Dm

∣∣∣1
ρ
∂φω0,φ

∣∣∣2 dx ≤ C‖v0‖2
H2(Dm).

Hence, (4.69) is verified. �
4.6. A uniform bound for ‖v/ρ‖L∞

t L6
x

In the previous Section 4.3 and Section 4.4, we have used the first two relations in the 
Biot-Savart law (4.12) to obtain estimates on some norms about vρ and vφ in Lemma 4.4
and Lemma 4.5 via ωθ. Now we will use the third relation in (4.12) to deduce similar 
estimates about vθ via ωρ and ωφ.

Lemma 4.8. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈
(0, π ]. Then for any T > 0 and for a.e. t ∈ [0, T ],
6
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∥∥∥∥∇(vθρ (·, t)
)∥∥∥∥

L2(Dm)
≤ 5
(
‖K(·, t)‖L2(Dm) + ‖F (·, t)‖L2(Dm)

)
, (4.86)

∥∥∥∥1
ρ
∇
(vθ
ρ

(·, t)
)∥∥∥∥

L2(Dm)
≤ 2

√
3
(
‖∇K(·, t)‖L2(Dm) + ‖∇F (·, t)‖L2(Dm)

)
. (4.87)

Proof. Since v ∈ Eσ,s
m,T ∩L2

tH
2
x ∩L∞

tx(Dm × [0, T ]) and ρ has the lower bound 1
m on Dm, 

we know ωρ, ωφ, K, F ∈ L2
tH

1
x(Dm × [0, T ]). So there exists a set ST ⊂ [0, T ] such that 

[0, T ] \ ST has measure 0 and for any t ∈ ST , all of ωρ, ωφ, K, F belong to H1(Dm). 
Fixing any t ∈ ST , it suffices to prove (4.86) for such t. For convenience of notation, we 
will drop all the temporal variables in the following proof.

Recall that the third equation in the Biot-Savart law (4.12) reads

(
Δ − 1

ρ2 sin2 φ

)
vθ = −1

ρ
∂ρ(ρωφ) + 1

ρ
∂φωρ in Dm.

Denote g = vθ
ρ . Then it follows from the above equation and the boundary condition for 

vθ in Lemma 2.1 that

⎧⎨⎩
(
Δ + 2

ρ∂ρ + 1−cot2 φ
ρ2

)
g = − 1

ρ2 ∂ρ(ρ2F ) + 1
ρ∂φK in Dm,

∂φg = −(cotφ)g on ∂RDm, ∂ρg = − 2
ρg on ∂ADm.

(4.88)

Testing (4.88) by g on Dm, then it follows from the integration by parts and the 
previous trick of converting boundary integrals into interior integrals that

∫
Dm

|∇g|2dx +
∫

Dm

cot2 φ
ρ2 g2 dx

= − 2
∫

Dm

1
ρ
g∂ρg dx− 2

∫
Dm

cotφ
ρ2 g∂φg dx +

∫
Dm

(
K

ρ
∂φg + K cotφ

ρ
g − F∂ρg

)
dx.

(4.89)

By Cauchy-Schwarz inequality, for any ε1, ε2, ε3 > 0,

RHS of (4.89) ≤ ε1

∫
Dm

(∂ρg)2 dx + 1
ε1

∫
Dm

g2

ρ2 dx + ε2

∫
Dm

(
1
ρ
∂φg

)2

dx

+ 1
ε2

∫
Dm

cot2 φ
ρ2 g2 dx + ε3

∫
Dm

[(
1
ρ
∂φg

)2

+ cot2 φ
ρ2 g2 + (∂ρg)2

]
dx

+ 1
ε3

∫ (
1
2K

2 + 1
4F

2
)
dx.
Dm
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Since g is odd with respect to the plane {φ = π
2 }, 
∫ π/2+α

π/2−α
g(ρ, φ) dφ = 0 for any ρ. As a 

consequence, it follows from the weighted Poincaré inequality in Corollary 2.4 that for 
any 0 < α ≤ π

6 ,

∫
Dm

g2

ρ2 dx ≤ 2
19

∫
Dm

(
1
ρ
∂φg

)2

dx

∫
Dm

cot2 φ
ρ2 g2 dx ≤ tan2 α

∫
Dm

g2

ρ2 dx ≤ 2
57

∫
Dm

(
1
ρ
∂φg

)2

dx.

Therefore.

RHS of (4.89) ≤ (ε1 + ε3)
∫

Dm

(∂ρg)2 dx +
(

2
19ε1

+ ε2 + 2
57ε2

+ 59
57ε3

) ∫
Dm

(
1
ρ
∂φg

)2

dx

+ 1
ε3

∫
Dm

(
1
2K

2 + 1
4F

2
)

dx.

Choosing ε1 = 3
5 , ε2 = 1

5 and ε3 = 1
10 . Then

RHS of (4.89) ≤ 0.7
∫

Dm

|∇g|2dx + 5
∫

Dm

(K2 + F 2) dx.

As a result,

∫
Dm

|∇g|2 dx ≤ 50
3

∫
Dm

(K2 + F 2) dx,

which implies (4.86).
Next, we will verify (4.87). Testing (4.88) by 1

ρ2 g on Dm, then it follows from the 
integration by parts and the previous trick of converting boundary integrals into interior 
integrals that

∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx =
∫

Dm

4 − cot2 φ
ρ4 g2dx− 2

∫
Dm

cotφ
ρ4 g∂φgdx

+
∫

Dm

(
1
ρ
∂ρg −

2g
ρ2

)
F

ρ
dx +

∫
Dm

(
1
ρ2 ∂φg + cotφ

ρ2 g

)
K

ρ
dx.

Then for any ε1, ε2 ∈ (0, 1), we apply Cauchy-Schwarz inequality to obtain
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∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 4
∫

Dm

g2

ρ4 dx +
( 1
ε1

− 1
) ∫
Dm

cot2 φ
ρ4 g2 dx + ε1

∫
Dm

(
1
ρ2 ∂φg

)2

dx

+ ε2

∫
Dm

[(
1
ρ
∂ρg −

2g
ρ2

)2

+
(

1
ρ2 ∂φg + cotφ

ρ
g

)2
]
dx

+ 1
4ε2

∫
Dm

F 2 + K2

ρ2 dx.

(4.90)

By Cauchy-Schwarz inequality again,

ε2

∫
Dm

[(
1
ρ
∂ρg −

2g
ρ2

)2

+
(

1
ρ2 ∂φg + cotφ

ρ
g

)2
]
dx

≤ 2ε2
∫

Dm

[(
1
ρ
∂ρg

)2

+ 4g2

ρ4 +
(

1
ρ2 ∂φg

)2

+ cot2 φ
ρ4 g2

]
dx.

(4.91)

Plugging (4.91) into (4.90) yields

∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 2ε2
∫

Dm

(
1
ρ
∂ρg

)2

dx + (ε1 + 2ε2)
∫

Dm

(
1
ρ2 ∂φg

)2

dx + (4 + 8ε2)
∫

Dm

g2

ρ4 dx

+
( 1
ε1

− 1 + 2ε2
) ∫
Dm

cot2 φ
ρ4 g2 dx + 1

4ε2

∫
Dm

F 2 + K2

ρ2 dx.

(4.92)

By choosing ε1 = 1
5 and ε2 = 1

40 , and noticing cot2 φ ≤ 1
3 , we obtain

∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 1
20

∫
Dm

(
1
ρ
∂ρg

)2

dx + 1
4

∫
Dm

(
1
ρ2 ∂φg

)2

dx + 6
∫

Dm

g2

ρ4 dx

+ 10
∫

Dm

F 2 + K2

ρ2 dx.

(4.93)

Since vθ is odd with respect to {φ = π
2 }, it then follows from the Poincaré inequality in 

Lemma 2.3 that ∫
Dm

g2

ρ4 dx ≤ 2
19

∫
Dm

(
1
ρ2 ∂φg

)2

dx. (4.94)

Putting (4.94) into (4.93) leads to
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∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 9
10

∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx + 10
∫

Dm

F 2 + K2

ρ2 dx,

which implies ∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 100
∫

Dm

F 2 + K2

ρ2 dx.

Combining this estimate with Poincaré inequalities in Lemma 2.3 and Lemma 2.5, we 
find ∫

Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 100
[

2
19

∫
Dm

(
1
ρ
∂φF

)2

dx + 3
25

∫
Dm

(
1
ρ
∂φK

)2

dx

]
.

So ∫
Dm

∣∣∣∣1ρ∇g

∣∣∣∣2 dx ≤ 12
( ∫
Dm

|∇F |2 dx +
∫

Dm

|∇K|2 dx
)
,

which results in (4.87). �
Before estimating the L∞

t L6
x norms of vρ/ρ, vφ/ρ and vθ/ρ, we need a uniform Sobolev 

embedding on regions {Dm}m≥2. The key point here is that the embedding constant s0
in (4.95) is independent of m. Since the regions {Dm}m≥2 are Lipschitz and their limiting 
region, as m → ∞, is also Lipschitz, the embedding result is essentially known. But for 
completeness, we still give a short illustration based on [1].

Lemma 4.9. Let Dm be the region in (2.17) with m ≥ 2 and the angle α ∈
(
0, π6
]
. Then 

there exist two constants s0 and s1, which depend on α but are independent of m, such 
that the following two estimates hold.

(a) For any f ∈ W 1,2 (Dm), ‖f‖L6(Dm) ≤ s0‖f‖H1(Dm).
(b) For any f ∈ W 1,2 (Dm) such that either f = 0 on ∂RDm or 

∫ π/2+α

π/2−α
f(ρ, φ) sinφ dφ =

0 for any ρ ∈
( 1
m , 1

)
,

‖f‖L6(Dm) ≤ s1‖∇f‖L2(Dm). (4.95)

Proof. Recall the cone condition in Definition 4.6 on Page 82 in [1]: a domain Ω satisfies 
the cone condition if there exists a finite cone C such that each x ∈ Ω is the vertex of a 
finite cone Cx contained in Ω and congruent to C.

Based on the above definition, it is readily seen that for any m ≥ 2, Dm satisfies the 
cone condition. Moreover, the cone C in the cone condition for Dm can be chosen as a 
uniform one (i.e. independent of m) since all Dm share the same angle α.
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Now we recall Theorem 4.12 (Part I, Case C) on Page 85 in [1] which implies that 
if Ω ∈ R3 satisfies the cone condition, then H1(Ω) is embedded in L6(Ω), where the 
embedding constant only depends on the dimensions of the cone C in the cone condition.

Thanks to this theorem and the fact that the cone C in the cone condition for Dm is 
uniform, we can find a constant s0, which only depends on α, such that

‖f‖L6(Dm) ≤ s0‖f‖H1(Dm). (4.96)

This justifies part (a).
For part (b), due to the extra assumption (i) or (ii) and the restriction α ≤ π/6, we 

are allowed to apply Poincaré inequality in the φ direction to conclude

∫
Dm

f2(x) dx = 2π
1∫

1/m

ρ2

π/2+α∫
π/2−α

f2(ρ, φ) sinφdρ dφ

≤ 2πλ1

1∫
1/m

ρ2

π/2+α∫
π/2−α

(∂φf)2(ρ, φ) sinφdρ dφ

≤ λ1

∫
Dm

|∇f(x)|2 dx,

where λ1 is a constant that only depends on α. Combining this inequality with (4.96)
leads to (4.95). �

Now we can take advantage of the above Sobolev embedding to control the L∞
t L6

x

norms of vρ/ρ, vφ/ρ and vθ/ρ.

Lemma 4.10. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle α ∈(
0, π6
]
. Then there exists some constant C = C(α) such that for any T > 0,∥∥∥∥ |vρ| + |vφ| + |vθ|

ρ

∥∥∥∥
L∞

t L6
x(Dm×[0,T ])

≤ C
∥∥|K| + |F | + |Ω|

∥∥
L∞

t L2
x(Dm×[0,T ]). (4.97)

Proof. Firstly, it follows from Lemma 4.4, Lemma 4.5 and Lemma 4.8 that for a.e. 
t ∈ [0, T ], ∥∥∥∥∇(vρρ (·, t)

)∥∥∥∥
L2(Dm)

+
∥∥∥∥∇(vφρ (·, t)

)∥∥∥∥
L2(Dm)

+
∥∥∥∥∇(vθρ (·, t)

)∥∥∥∥
L2(Dm)

≤ 5
(
‖Ω(·, t)‖L2(Dm) + ‖K(·, t)‖L2(Dm) + ‖F (·, t)‖L2(Dm)

)
.

Next, due to the property (4.15) of vρ, the boundary condition of vφ on ∂RDm, and the 
odd-symmetry of vθ with respect to {φ = π

2 }, we can apply part (b) in Lemma 4.9 to 
conclude
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∥∥∥∥vρρ (·, t)
∥∥∥∥
L6(Dm)

+
∥∥∥∥vφρ (·, t)

∥∥∥∥
L6(Dm)

+
∥∥∥∥vθρ (·, t)

∥∥∥∥
L6(Dm)

≤ C

(∥∥∥∥∇(vρρ (·, t)
)∥∥∥∥

L2(Dm)
+
∥∥∥∥∇(vφρ (·, t)

)∥∥∥∥
L2(Dm)

+
∥∥∥∥∇(vθρ (·, t)

)∥∥∥∥
L2(Dm)

)
.

Combining the above two estimates leads to (4.97). �
4.7. Uniform bounds for ‖v‖L∞

tx
and ‖ωθ‖L∞

tx

The goal of this subsection is to obtain uniform bounds on ‖v‖L∞
tx

and ‖ωθ‖L∞
tx

which 
are independent of the time T and only dependent on α and the initial value.

4.7.1. L∞ boundedness of vθ
We first derive an upper bound for the supremum norm of vθ.

Proposition 4.11. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Then for any T > 0,

‖vθ‖L∞
tx(Dm×[0,T ]) ≤ CC5

∗

(
‖v0‖L2(Dm) + ‖v0,θ‖L∞(Dm) + 1

)
, (4.98)

where C = C(α) and

C∗ = 2 +
∥∥∥∥ |vθ| + |vρ| + |vφ|

ρ

∥∥∥∥
L∞

t L6
x(Dm×[0,T ])

. (4.99)

Proof. Fix any T > 0 and let η : [0, T ] → [0, 1] be a smooth function in the time-variable. 
The specific choice of η will be determined later. For any rational number q ≥ 1 in the 
form of (2k − 1)/(2l − 1), where k and l are positive integers, denote

f = vqθ .

Based on equation (3.5) for vθ, we know f solves the following problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δf − q(q − 1)vq−2

θ |∇vθ|2 − q
ρ2 sin2 φf − b · ∇f − q

ρ (vρ + cotφ vφ)f − ∂tf = 0
in Dm × (0, T ];

∂φf = −q cotφ f on ∂RDm × (0, T ], ∂ρf = − q
ρf on ∂ADm × (0, T ];

f(x, 0) = vq0,θ(x), x ∈ Dm.

(4.100)
For any t ∈ (0, T ], we test (4.100) by η2f on Dm× [0, t]. By using integration by parts 

and then converting the boundary integral into the interior integral, we find
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t∫
0

η2
∫

Dm

fΔf dx dτ = −
t∫

0

η2
∫

Dm

|∇f |2 dx dτ − 2q
t∫

0

η2
∫

Dm

1
ρ
f(∂ρf) dx dτ

− 2q
t∫

0

η2
∫

Dm

cotφ
ρ2 f(∂φf) dx dτ.

As a result, we obtain

2q − 1
q

t∫
0

∫
Dm

|(∇f)η|2 dx dτ + q

t∫
0

∫
Dm

1
ρ2 sin2 φ

f2η2 dx dτ + 1
2η

2(t)
∫

Dm

f2(x, t) dx

=−2q
t∫

0

∫
Dm

1
ρ
f(∂ρf)η2 dx dτ − 2q

t∫
0

∫
Dm

cotφ
ρ2 f(∂φf)η2 dx dτ

︸ ︷︷ ︸
R1

− q

t∫
0

∫
Dm

vρ + cotφ vφ
ρ

f2η2 dx dτ + 1
2η

2(0)
∫

Dm

f2(x, 0) dx +
t∫

0

∫
Dm

f2ηη′ dx dτ.

(4.101)
Note when deriving the above equation, we used the fact that 

∫
Dm

(b ·∇f)f dx = 0 due to 
the incompressibility and the boundary condition of b. Using Cauchy-Schwarz inequality, 
we find

|R1| ≤ 2q
t∫

0

∫
Dm

∣∣∣∣1ρf∂ρf
∣∣∣∣ η2dx dτ + 2q

t∫
0

∫
Dm

∣∣∣∣cotφ
ρ2 f∂φf

∣∣∣∣ η2dx dτ

≤ 1
2

t∫
0

∫
Dm

|(∇f)η|2dx dτ + 2q2
t∫

0

∫
Dm

(
f2η2

ρ2 + cot2 φ
ρ2 f2η2

)
dx dτ.

When α ∈
(
0, π6
]
, cot2 φ ≤ tan2 α ≤ 1

3 , so

|R1| ≤
1
2

t∫
0

∫
Dm

|(∇f)η|2 dx dτ + 8
3q

2
t∫

0

∫
Dm

1
ρ2 f

2η2 dx dτ.

Combining with (4.101) and noticing 2q−1
q ≥ 1, we deduce

1
2

t∫ ∫
|(∇f)η|2 dx dτ + 1

2η
2(t)

∫
f2(x, t) dx
0 Dm Dm
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≤ 8
3q

2
t∫

0

∫
Dm

1
ρ2 f

2η2dx dτ + q

t∫
0

∫
Dm

|vρ| + |vφ|
ρ

f2η2dx dτ

+ 1
2η

2(0)
∫

Dm

f2(x, 0)dx +
t∫

0

∫
Dm

f2 |ηη′| dx dτ.

Taking supremum norm with respect to t ∈ [0, T ], we obtain

1
2

T∫
0

∫
Dm

|(∇f)η|2 dx dτ + 1
2 sup

t∈[0,T ]

∫
Dm

f2(x, t)η2(t) dx

≤ 16
3 q2

T∫
0

∫
Dm

1
ρ2 f

2η2dx dτ + 2q
T∫

0

∫
Dm

|vρ| + |vφ|
ρ

f2η2dx dτ

+ η2(0)
∫

Dm

f2(x, 0)dx + 2
T∫

0

∫
Dm

f2 |ηη′| dx dτ.

(4.102)

Since vθ is odd with respect to {φ = π
2 } and q is in the form of (2k−1)/(2l−1), where 

k and l are positive integers, we know f is also odd with respect to {φ = π
2 }. Therefore, 

it follows from part (b) in Lemma 4.9 that

‖f(·, τ)‖L6
x(Dm) ≤ s1

∥∥∇(f(·, τ)
)∥∥

L2
x(Dm), ∀ τ ∈ [0, T ],

where s1 is some constant that only depends on α. Hence, it follows from (4.102) that

1
s2
1
‖fη‖2

L2
tL

6
x(Dm×[0,T ]) + ‖fη‖2

L∞
t L2

x(Dm×[0,T ])

≤ 32
3 q2

∥∥∥fη
ρ

∥∥∥2
L2

tx(Dm×[0,T ])
+ 4q

∥∥∥∥ |vρ| + |vφ|
ρ

f2η2
∥∥∥∥
L1

tx(Dm×[0,T ])

+ 2η2(0) ‖f(·, 0)‖2
L2(Dm) + 4‖f2ηη′‖L1

tx(Dm×[0,T ]).

(4.103)

Denote C∗ as in (4.99) and define h as

h = |vθ|q ∨ 1 = (|vθ| ∨ 1)q, (4.104)

where “∨” means “max”. Then∥∥∥∥fηρ
∥∥∥∥
L2

tx(Dm×[0,T ])
=
∥∥∥∥vθρ · vq−1

θ η

∥∥∥∥
L2

tx(Dm×[0,T ])

≤
∥∥∥∥vθρ
∥∥∥∥

∞ 6

∥∥∥vq−1
θ η

∥∥∥
L2L3 (Dm×[0,T ])
Lt Lx(Dm×[0,T ]) t x
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≤ C∗‖hη‖L2
tL

3
x(Dm×[0,T ]),

and∥∥∥∥ |vρ| + |vφ|
ρ

f2η2
∥∥∥∥
L1

tx(Dm×[0,T ])
≤
∥∥∥∥ |vρ| + |vφ|

ρ

∥∥∥∥
L∞

t L6
x(Dm×[0,T ])

‖fη‖2
L2

tL
12/5
x (Dm×[0,T ])

≤ 2C∗‖fη‖2
L2

tL
12/5
x (Dm×[0,T ])

.

Plugging the above estimates into (4.103) yields

1
s2
1
‖fη‖2

L2
tL

6
x(Dm×[0,T ]) + ‖fη‖2

L∞
t L2

x(Dm×[0,T ])

≤ 12C2
∗q

2‖hη‖2
L2

tL
3
x(Dm×[0,T ]) + 8C∗q‖fη‖2

L2
tL

12/5
x (Dm×[0,T ])

+ 2η2(0) ‖f(·, 0)‖2
L2(Dm) + 4‖f2ηη′‖L1

tx(Dm×[0,T ]),

(4.105)

where f = vqθ and h = (|vθ| ∨ 1)q. Next, we have two cases to deal with.
Case 1: T ≤ 2. In this case, we take η ≡ 1 on [0, T ]. Putting this η into (4.105), we 

have

1
s2
1
‖f‖2

L2
tL

6
x(Dm×[0,T ]) + ‖f‖2

L∞
t L2

x(Dm×[0,T ])

≤ 12C2
∗q

2‖h‖2
L2

tL
3
x(Dm×[0,T ]) + 8C∗q‖f‖2

L2
tL

12/5
x (Dm×[0,T ])

+ 2‖f(·, 0)‖2
L2(Dm).

Recalling h = |f | ∨ 1, so there exists a constant C = C(α) such that

‖h‖2
L2

tL
6
x(Dm×[0,T ]) + ‖h‖2

L∞
t L2

x(Dm×[0,T ])

≤ C
(
C2

∗q
2‖h‖2

L2
tL

3
x(Dm×[0,T ]) + C∗q‖h‖2

L2
tL

12/5
x (Dm×[0,T ])

+ ‖h(·, 0)‖2
L2(Dm)

)
.

(4.106)

In order to estimate the right-hand side of (4.106), we interpolate L2
tL

3
x and L2

tL
12/5
x

between L2
tL

6
x and L2

tL
2
x, and then apply the Young’s inequality. Consequently, it follows 

from (4.106) that

‖h‖2
L2

tL
6
x(Dm×[0,T ]) + ‖h‖2

L∞
t L2

x(Dm×[0,T ]) ≤ C
(
C4

∗q
4‖h‖2

L2
tL

2
x(Dm×[0,T ]) + ‖h(·, 0)‖2

L2(Dm)

)
.

Again, by applying interpolation to the left-hand side of the above estimate, we obtain

‖h‖
L

10/3
tx (Dm×[0,T ]) ≤ C

(
C2

∗q
2‖h‖L2

tx(Dm×[0,T ]) + ‖h(·, 0)‖L2(Dm)

)
. (4.107)

Since h = ψq, where ψ := |vθ| ∨ 1, then it follows from the above relation that
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‖ψ‖q
L

10q/3
tx (Dm×[0,T ])

≤ CC2
∗q

2‖ψ‖q
L2q

tx(Dm×[0,T ] + C‖ψ(·, 0)‖qL2q(Dm)

≤ CC2
∗q

2‖ψ‖q
L2q

tx(Dm×[0,T ]) + C |Dm|
1
2 ‖ψ(·, 0)‖qL∞(Dm).

Hence, (
‖ψ‖

L
10q/3
tx (Dm×[0,T ]) ∨ ‖ψ(·, 0)‖L∞(Dm)

)
≤(CC2

∗)
1
q q

2
q

(
‖ψ‖L2q

tx(Dm×[0,T ]) ∨ ‖ψ(·, 0)‖L∞Dm)

)
.

(4.108)

By choosing q = qk =
( 5

3
)k for k = 0, 1, 2, · · · in (4.108), and applying Moser’s iteration, 

we find(
‖ψ‖L∞

tx(Dm×[0,T ]) ∨ ‖ψ(·, 0)‖L∞(Dm)

)
≤ CC5

∗

(
‖ψ‖L2

tx(Dm×[0,T ] ∨ ‖ψ(·, 0)‖L∞(Dm)

)
.

Since ψ = |vθ| ∨ 1 and T ≤ 2, we deduce that

‖vθ‖L∞
tx(Dm×[0,T ]) ≤ CC5

∗
(
‖vθ‖L2

tx(Dm×[0,T ]) + ‖vθ(·, 0)‖L∞(Dm) + 1
)
. (4.109)

Finally, thanks to the energy estimate (4.9), the above inequality implies that

‖vθ‖L∞
tx(Dm×[0,T ]) ≤ CC5

∗
(
‖v0‖L2(Dm) + ‖v0,θ‖L∞(Dm) + 1

)
, ∀ 0 < T ≤ 2. (4.110)

Case 2: T > 2. In this case, we take η ∈ C∞([0, T ]) such that 0 ≤ η ≤ 1 and

η(t) =
{

0, if 0 ≤ t ≤ T − 2,
1, if T − 1 ≤ t ≤ T.

Putting this η into (4.105), we know

1
s2
1
‖fη‖2

L2
tL

6
x(Dm×[T−2,T ]) + ‖fη‖2

L∞
t L2

x(Dm×[T−2,T ])

≤ 12C2
∗q

2‖hη‖2
L2

tL
3
x(Dm×[T−2,T ]) + 8C∗q‖fη‖2

L2
tL

12/5
x (Dm×[T−2,T ])

+ 4‖f2ηη′‖L1
tx(Dm×[T−2,T ]).

Then similar to the derivation of (4.107), we know there exists some constant C = C(α)
such that

‖hη‖2
L

10/3
tx (Dm×[T−2,T ])

≤ C
(
C4

∗q
4‖hη‖2

L2
tx(Dm×[T−2,T ]) + ‖h2ηη′‖L1

tx(Dm×[T−2,T ])

)
.

Recalling h = ψq, where ψ = |vθ| ∨ 1, so
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‖ψqη‖2
L

10/3
tx (Dm×[T−2,T ])

≤ C
(
C4

∗q
4‖ψqη‖2

L2
tx(Dm×[T−2,T ]) + ‖ψ2qηη′‖L1

tx(Dm×[T−2,T ])

)
.

(4.111)
For k = 0, 1, 2, · · · , we denote qk =

( 5
3
)k, Tk = T − 1 − 2−k. Meanwhile, we define 

ηk ∈ C∞([0, T ]) such that 0 ≤ ηk ≤ 1,

ηk(t) =
{

0, if 0 ≤ t ≤ Tk.

1, if Tk+1 ≤ t ≤ T,

and sup
t∈[0,T ]

|η′k(t)| ≤ 2k+2. Plugging q = qk and η = ηk into (4.111), we find

‖ψqk‖2
L

10/3
tx (Dm×[Tk+1,T ])

≤ C
(
C4

∗q
4
k‖ψqk‖2

L2
tx(Dm×[Tk,T ]) + 2k+2‖ψ2qk‖L1

tx(Dm×[Tk,T ])

)
.

Therefore,

‖ψ‖2qk
L

2qk+1
tx (Dm×[Tk+1,T ])

≤ CC4
∗q

4
k‖ψ‖2qk

L
2qk
tx (Dm×[Tk,T ])

.

Now we can apply Moser’s iteration to obtain

‖ψ‖L∞
tx(Dm×[T−1,T ]) ≤ CC5

∗‖ψ‖L2
tx(Dm×[T−2,T ]). (4.112)

This implies that

‖vθ‖L∞
tx(Dm×[T−1,T ]) ≤ CC5

∗
(
‖vθ‖L2

tx(Dm×[T−2,T ]) + ‖1‖L2
tx(Dm×[T−2,T ])

)
. (4.113)

Taking advantage of the energy estimate (4.9) again, we deduce from (4.113) that

‖vθ‖L∞
tx(Dm×[T−1,T ]) ≤ CC5

∗
(
‖v0‖L2(Dm) + 1

)
, ∀T > 2. (4.114)

Finally, by combining (4.110) in Case 1 and (4.114) in Case 2 together, we have 
justified (4.98). �
4.7.2. L∞ boundedness of ωθ

In this subsection, we will prove the L∞ bound of ωθ which is needed to establish the 
L∞ bounds of vρ and vφ in the next subsection.

Proposition 4.12. Let the region Dm be as defined in (2.17) with m ≥ 2 and α ∈ (0, π6 ]. 
Then for any T > 0,

‖ωθ‖L∞
tx(Dm×[0,T ]) ≤ CC10

∗

(
‖v0‖L2(Dm) + ‖ω0,θ‖L∞(Dm) + 1

)
, (4.115)

where C = C(α) and

C∗ = max
{∥∥∥∥ |vρ| + |vφ|

ρ

∥∥∥∥ , ‖vθ‖L∞
tx(Dm×[0,T ]) ,

∥∥|K| + |F |
∥∥
L∞

t L2
x(Dm×[0,T ]), 2

}
. (4.116)
L∞
t L6

x(Dm×[0,T ])
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Proof. Recall ωθ satisfies (3.59), i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Δ − 1

ρ2 sin2 φ

)
ωθ − b · ∇ωθ + 1

ρ (vρ + cotφ vφ)ωθ

− 1
ρ2 ∂φ

(
v2
θ

)
+ cotφ

ρ ∂ρ
(
v2
θ

)
− ∂tωθ = 0, in Dm × (0, T ],

ωθ = 0, on ∂Dm × (0, T ],
ωθ(x, 0) = ω0,θ(x), x ∈ Dm.

Noticing

− 1
ρ2 ∂φ

(
v2
θ

)
+ cotφ

ρ
∂ρ
(
v2
θ

)
= −2vθ

ρ
(ωρ + cotφωφ) = −2vθ(K + cotφF ),

so the above equation about ωθ can be written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
Δ − 1

ρ2 sin2 φ

)
ωθ − b · ∇ωθ + 1

ρ (vρ + cotφ vφ)ωθ

−2vθ(K + cotφF ) − ∂tωθ = 0, in Dm × (0, T ],
ωθ = 0, on ∂Dm × (0, T ],
ωθ(x, 0) = ω0,θ(x), x ∈ Dm.

(4.117)

Let η : [0, T ] −→ [0, 1] be a smooth function in the time variable. The specific choice of 
η will be determined later. For any rational number q ≥ 1 in the form of (2k−1)/(2l−1), 
where k and l are positive integers. Denote f = ωq

θ . Then for any t ∈ (0, T ], we test (4.117)
by qω2q−1

θ η2 on Dm × (0, t] to find

2q − 1
q

t∫
0

∫
Dm

|(∇f)η|2 dx dτ + q

t∫
0

∫
Dm

1
ρ2 sin2 φ

f2η2 dx dτ + 1
2η

2(t)
∫

Dm

f2(x, t) dx

= q

t∫
0

∫
Dm

1
ρ
(vρ + cotφ vφ)f2η2 dx dτ − 2q

t∫
0

∫
Dm

vθ(K + cotφF )ω2q−1
θ η2 dx dτ

+
t∫

0

∫
Dm

f2ηη′ dx dτ + 1
2η

2(0)
∫

Dm

f2(x, 0) dx.

As a consequence,

t∫
0

∫
Dm

|(∇f)η|2 dx dτ + 1
2η

2(t)
∫

Dm

f2(x, t) dx

≤ q

t∫ ∫ |vρ| + |vφ|
ρ

f2η2 dx dτ + 2q
t∫ ∫

|vθ|
(
|K| + |F |

)
|ωθ|2q−1η2 dx dτ
0 Dm 0 Dm
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+
t∫

0

∫
Dm

f2η|η′| dx dτ + 1
2η

2(0)
∫

Dm

f2(x, 0) dx.

Taking supremum with respect to t on [0, T ], then

T∫
0

∫
Dm

|(∇f)η|2 dx dτ + 1
2 sup

t∈[0,T ]

∫
Dm

f2(x, t)η2(t) dx

≤ 2q
T∫

0

∫
Dm

|vρ| + |vφ|
ρ

f2η2 dx dτ + 4q
T∫

0

∫
Dm

|vθ|
(
|K| + |F |

)
|ωθ|2q−1η2 dx dτ

+ 2
T∫

0

∫
Dm

f2η|η′| dx dτ + η2(0)
∫

Dm

f2(x, 0) dx.

(4.118)

Since f = 0 on ∂Dm, it follows from Lemma 4.9 that

‖f(·, τ)η(τ)‖L6
x(Dm) ≤ s1

∥∥∇(f(·, τ)η(τ)
)∥∥

L2
x(Dm), ∀ τ ∈ [0, T ],

where s1 = s1(α). Thus, it follows from (4.118) that

1
s2
1
‖fη‖2

L2
tL

6
x(Dm×[0,T ]) + 1

2‖fη‖
2
L∞

t L2
x(Dm×[0,T ])

≤ 2q
∥∥∥∥ |vρ| + |vφ|

ρ
f2η2

∥∥∥∥
L1

tx(Dm×[0,T ])
+ 4q

∥∥vθ(|K| + |F |)ω2q−1
θ η2∥∥

L1
tx(Dm×[0,T ])

+ 2‖f2ηη′‖L1
tx(Dm×[0,T ]) + η2(0)‖f(·, 0)‖2

L2(Dm).

(4.119)

Denote C∗ as in (4.116) and define h as

h = |ωθ|q ∨ 1 = (|ωθ| ∨ 1)q,

where “∨” means “max”. Then∥∥∥∥ |vρ| + |vφ|
ρ

f2η2
∥∥∥∥
L1

tx(Dm×[0,T ])
≤
∥∥∥∥ |vρ| + |vφ|

ρ

∥∥∥∥
L∞

t L6
x(Dm×[0,T ])

‖fη‖2
L2

tL
12/5
x (Dm×[0,T ])

≤ C∗‖fη‖2
L2

tL
12/5
x (Dm×[0,T ])

,

and ∥∥vθ(|K| + |F |)ω2q−1
θ η2∥∥

L1
tx(Dm×[0,T ])

≤ ‖vθ‖L∞
tx(Dm×[0,T ])

∥∥|K| + |F |
∥∥
L∞

t L2
x(Dm×[0,T ])‖hη‖

2
L2

tL
4
x(Dm×[0,T ])

≤ C2‖hη‖2
2 4 .
∗ LtLx(Dm×[0,T ])
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Plugging the above estimates into (4.119) yields

1
s2
1
‖fη‖2

L2
tL

6
x(Dm×[0,T ]) + 1

2‖fη‖
2
L∞

t L2
x(Dm×[0,T ])

≤ 2qC∗‖fη‖2
L2

tL
12/5
x (Dm×[0,T ])

+ 4qC2
∗‖hη‖2

L2
tL

4
x(Dm×[0,T ])

+ 2‖f2ηη′‖L1
tx(Dm×[0,T ]) + η2(0)‖f(·, 0)‖2

L2(Dm),

(4.120)

where f = ωq
θ and h = (|ωθ| ∨ 1)q. Then there are two cases to be dealt with.

Case 1: T ≤ 2. In this case, we follow the argument for (4.109) in Case 1 in the proof 
of Proposition 4.11 to obtain

‖ωθ‖L∞
tx(Dm×[0,T ]) ≤ CC10

∗
(
‖ωθ‖L2

tx(Dm×[0,T ]) + ‖ωθ(·, 0)‖L∞(Dm) + 1
)
.

Actually, the zero boundary condition of ωθ makes the argument simpler. Combining 
with the energy estimate (4.9), we find

‖ωθ‖L∞
tx(Dm×[0,T ]) ≤ CC10

∗
(
‖v0‖L2(Dm) + ‖ω0,θ‖L∞(Dm) + 1

)
. (4.121)

Case 2: T > 2. In this case, we follow the argument for (4.113) in Case 2 in the proof 
of Proposition 4.11 to find

‖ωθ‖L∞
tx(Dm×[T−1,T ]) ≤ CC10

∗
(
‖ωθ‖L2

tx(Dm×[T−2,T ]) + ‖1‖L2
tx(Dm×[T−2,T ])

)
.

Then due to the energy estimate (4.9) again, we conclude

‖ωθ‖L∞
tx(Dm×[T−1,T ]) ≤ CC10

∗
(
‖v0‖L2(Dm) + 1

)
. (4.122)

Finally, by combining (4.121) in Case 1 and (4.122) in Case 2 together, (4.115) is 
justified. �
4.7.3. L∞ boundedness of vρ and vφ

Proposition 4.13. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Then for any T > 0,

‖vρ‖L∞
tx(Dm×[0,T ]) + ‖vφ‖L∞

tx(Dm×[0,T ]) ≤ CC3
∗(‖v0‖L2(Dm) + 1), (4.123)

where C = C(α) and

C∗ = max
{∥∥∥∥ |vρ| + |vφ|

ρ

∥∥∥∥
∞ 6

, ‖ωθ‖L∞
tx(Dm×[0,T ]), 2

}
. (4.124)
Lt Lx(Dm×[0,T ])
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Proof. Fix any t ∈ [0, T ]. The following proof will be derived based on this fixed t and 
we will drop the temporal variable within the proof for simplicity.

We first estimate ‖vρ‖L∞
tx(Dm×[0,T ]). According to the Biot-Savart law (4.13) and the 

boundary conditions in Lemma 2.1, vρ satisfies the following equations.⎧⎨⎩
(
Δ + 2

ρ ∂ρ + 2
ρ2

)
vρ = − 1

ρ sinφ ∂φ(sinφωθ), in Dm;

∂φvρ = 0 on ∂RDm, vρ = 0 on ∂ADm.

For any integer q ≥ 1, we denote vqρ by f . Then f satisfies the equations below.

⎧⎨⎩Δf − q(q − 1)vq−2
ρ |∇vρ|2 + 2

ρ∂ρf + 2q
ρ2 f = − qvq−1

ρ

ρ sinφ∂φ(sinφωθ), in Dm;
∂φf = 0 on ∂RDm, f = 0 on ∂ADm.

Testing the above problem by f on Dm yields

−2q − 1
q

∫
Dm

|∇f |2 dx + 2
∫

Dm

1
ρ
f∂ρf dx + 2q

∫
Dm

1
ρ2 f

2 dx = −q

∫
Dm

v2q−1
ρ

ρ sinφ
∂φ(sinφωθ) dx.

(4.125)
By converting the integrals into the form of spherical coordinates, and then using inte-
gration by parts, we have

∫
Dm

2
ρ
f∂ρf dx = 2π

π
2 +α∫

π
2 −α

1∫
1
m

ρ sinφ∂ρ(f2) dρ dφ

= −2π

π
2 +α∫

π
2 −α

1∫
1
m

sinφ f2 dρ dφ = −
∫

Dm

f2

ρ2 dx;

and

−q

∫
Dm

v2q−1
ρ

ρ sinφ
∂φ(sinφωθ) dx = −2πq

1∫
1
m

π
2 +α∫

π
2 −α

ρv2q−1
ρ ∂φ(sinφωθ) dφ dρ

= 2πq(2q − 1)
1∫

1
m

π
2 +α∫

π
2 −α

ρ sinφ v2q−2
ρ (∂φvρ)ωθ dφ dρ

= (2q − 1)
∫

Dm

∂φf

ρ
vq−1
ρ ωθ dx.
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Putting the above estimates into (4.125) and then multiplying the equation by q
2q−1 , one 

deduces ∫
Dm

|∇f |2 dx = q

∫
Dm

f2

ρ2 dx− q

∫
Dm

∂φf

ρ
vq−1
ρ ωθ dx := I1 + I2. (4.126)

For I1, Hölder’s inequality shows that

|I1| = q

∥∥∥∥vρρ vq−1
ρ

∥∥∥∥2
L2(Dm)

≤ q

∥∥∥∥vρρ
∥∥∥∥2

L6(Dm)

∥∥vq−1
ρ

∥∥2
L3(Dm)

≤ q

∥∥∥∥vρρ
∥∥∥∥2

L6(Dm)

∥∥(|vρ| ∨ 1)q
∥∥2
L3(Dm).

(4.127)

For I2, applying Hölder inequality and Young’s inequality, we have

|I2| ≤ q

∥∥∥∥∂φfρ
∥∥∥∥
L2(Dm)

∥∥vq−1
ρ

∥∥
L2(Dm) ‖ωθ‖L∞(Dm)

≤ 1
4‖∇f‖2

L2(Dm) + q2 ‖(|vρ| ∨ 1)q‖2
L2(Dm) ‖ωθ‖2

L∞(Dm) .

(4.128)

Plugging (4.127) and (4.128) into (4.126), we know

3
4‖∇f‖2

L2(Dm) ≤ q

∥∥∥∥vρρ
∥∥∥∥2

L6(Dm)
‖h‖2

L3(Dm) + q2 ‖h‖2
L2(Dm) ‖ωθ‖2

L∞(Dm) ,

≤ C2
∗

(
q‖h‖2

L3(Dm) + q2‖h‖2
L2(Dm)

)
,

(4.129)

where h := (|vρ| ∨ 1)q and C∗ is as defined in (4.124). Then it follows from Lemma 4.9
that there exists some constant s0, which only depends on α, such that

‖f‖L6(Dm) ≤ s0‖f‖H1(Dm).

So (4.129) implies that

‖f‖2
L6(Dm) ≤ CC2

∗

(
q‖h‖2

L3(Dm) + q2‖h‖2
L2(Dm)

)
+ C‖f‖2

L2(Dm). (4.130)

In addition, since f = vqρ and h = |f | ∨ 1, we derive from (4.130) that

‖h‖2
L6(Dm) ≤ CC2

∗

(
q‖h‖2

L3(Dm) + q2‖h‖2
L2(Dm)

)
. (4.131)

Now we interpolate ‖h‖L3 between ‖h‖L6 and ‖h‖L2 to get

CC2
∗q‖h‖2

L3(D ) ≤
1‖h‖2

L6(D ) + C2C4
∗q

2‖h‖2
L2(D ).
m 4 m m
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Therefore, it follows from (4.131) that

‖h‖2
L6(Dm) ≤ CC4

∗q
2‖h‖2

L2(Dm).

By writing h = ψq, where ψ = |vρ| ∨ 1, the above estimate is converted into

‖ψ‖L6q(Dm) ≤ (CC4
∗)

1
2q q

1
q ‖ψ‖L2q(Dm). (4.132)

Now we choose q = qk = 3k in (4.132), where k = 0, 1, 2, · · · , then by iterative estimates, 
we obtain

‖ψ‖L∞(Dm) ≤ CC3
∗‖ψ‖L2(Dm),

where C = C(α). This result yields

‖vρ(·, t)‖L∞(Dm) ≤ CC3
∗(‖vρ(·, t)‖L2(Dm) + 1), ∀ t ∈ [0, T ].

Taking advantage of the energy estimate (4.9) and taking supremum with respect to t, 
we conclude

‖vρ‖L∞
tx(Dm×[0,T ]) ≤ CC3

∗(‖v0‖L2(Dm) + 1). (4.133)

Next, we use the similar method as above to estimate ‖vφ‖L∞
tx(Dm×[0,T ]). Based on 

the Biot-Savart law (4.13) and the boundary conditions in Lemma 2.1, vφ satisfies the 
following equations.{(

Δ + 2
ρ∂ρ + 1−cot2 φ

ρ2

)
vφ = 1

ρ3 ∂ρ(ρ3ωθ), in Dm;
vφ = 0 on ∂RDm, ∂ρvφ = − 1

ρvφ on ∂ADm.

For any integer q ≥ 1, we denote vqφ by g. Then g satisfies the equations below.

{
Δg − q(q − 1)vq−2

φ |∇vφ|2 + 2
ρ∂ρg + q(1−cot2 φ)

ρ2 g = q
ρ3 v

q−1
φ ∂ρ(ρ3ωθ), in Dm;

g = 0 on ∂RDm, ∂ρg = − q
ρ g on ∂ADm.

Testing this problem by g on Dm, we obtain∫
Dm

gΔg dx

︸ ︷︷ ︸
G1

−q − 1
q

∫
Dm

|∇g|2 dx +
∫

Dm

2
ρ
g∂ρg dx + q

∫
Dm

1 − cot2 φ
ρ2 g2 dx

= q

∫
v2q−1
φ

ρ3 ∂ρ(ρ3ωθ) dx.

(4.134)
Dm
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Using integration by parts and then converting the boundary integral to the interior 
integral, we see

G1 = −
∫

Dm

|∇g|2 dx− 2q
∫

Dm

g

ρ
∂ρg dx− q

∫
Dm

g2

ρ2 dx.

Substituting this identity into (4.134) leads to

2q − 1
q

∫
Dm

|∇g|2 dx + q

∫
Dm

cot2 φ
ρ2 g2 dx

= − (2q − 2)
∫

Dm

g

ρ
∂ρg dx− q

∫
Dm

v2q−1
φ

ρ3 ∂ρ(ρ3ωθ) dx.

This implies

∫
Dm

|∇g|2dx ≤ 2(q − 1)
∣∣∣∣ ∫
Dm

g

ρ
∂ρg dx

∣∣∣∣︸ ︷︷ ︸
G2

+ q

∣∣∣∣ ∫
Dm

v2q−1
φ

ρ3 ∂ρ(ρ3ωθ) dx
∣∣∣∣︸ ︷︷ ︸

G3

. (4.135)

Moreover, by applying Hölder’s inequality, we have

G2 ≤ 2q‖∇g‖L2(Dm)

∥∥∥∥vφρ
∥∥∥∥
L6(Dm)

‖vq−1
φ ‖L3(Dm)

≤ 1
4‖∇g‖2

L2(Dm) + 4q2
∥∥∥∥vφρ

∥∥∥∥2

L6(Dm)
‖(|vφ| ∨ 1)q‖2

L3(Dm)

≤ 1
4‖∇g‖2

L2(Dm) + 4C2
∗q

2‖h1‖2
L3(Dm),

(4.136)

where C∗ is as defined in (4.124) and h1 := (|vφ| ∨ 1)q. In order to estimate G3, we first 
use spherical coordinates and integration by parts to find

G3 = 2πq
∣∣∣∣

π
2 +α∫

π
2 −α

1∫
1
m

v2q−1
φ

ρ
∂ρ(ρ3ωθ) sinφdρ dφ

∣∣∣∣
= 2πq

∣∣∣∣
π
2 +α∫

π
2 −α

1∫
1
m

(
−

v2q−1
φ

ρ2 + 2q − 1
ρ

v2q−2
φ ∂ρvφ

)
ρ3ωθ sinφdφ dρ

∣∣∣∣
≤ q

∫
|ωθ|

∣∣∣∣vφρ
∣∣∣∣ |vφ|2q−2 dx + (2q − 1)

∫
|ωθ||∂ρg||vφ|q−1 dx.
Dm Dm



Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393 89
Using Hölder’s inequality,

G3 ≤ q‖ωθ‖L6(Dm)

∥∥∥vφ
ρ

∥∥∥
L6(Dm)

‖h1‖2
L3(Dm) + 2q‖ωθ‖L∞(Dm)‖∇g‖L2(Dm)‖h1‖L2(Dm)

≤ C2
∗q‖h1‖2

L3(Dm) + 2C∗q‖∇g‖L2(Dm)‖h1‖L2(Dm).

Applying Cauchy-Schwarz inequality,

G3 ≤ 1
4‖∇g‖2

L2(Dm) + 4C2
∗q

2‖h1‖2
L2(Dm) + C2

∗q‖h1‖2
L3(Dm). (4.137)

Substituting (4.136) and (4.137) in (4.135), one finds

‖∇g‖2
L2(Dm) ≤ CC2

∗q
2(‖h1‖2

L3(Dm) + ‖h1‖2
L2(Dm)

)
, (4.138)

where C is a numerical constant. Since g = vqφ = 0 on ∂RDm, it follows from Lemma 4.9
that there exists some constant s1, which only depends on α, such that

‖g‖L6(Dm) ≤ s1‖∇g‖L2(Dm).

Moreover, noticing h1 = |g| ∨ 1, so it follows from the above embedding and (4.138) that

‖h1‖L6(Dm) ≤ CC2
∗q

2(‖h1‖2
L3(Dm) + ‖h1‖2

L2(Dm)
)
.

This estimate is a parallel result to (4.131), so the remaining proof is similar to that for 
(4.133). Thus, we obtain

‖vφ‖L∞
tx(Dm×[0,T ]) ≤ CC3

∗(‖v0‖L2(Dm) + 1). (4.139)

The combination of (4.133) and (4.139) justifies (4.123). �
By tracing the constants in Lemma 4.7, Lemma 4.10, Propositions 4.11, 4.12 and 4.13, 

we can obtain the following corollary. The key is that both ‖v0‖H2(Dm) and ‖ω0,θ‖L∞(Dm)
are controlled by ‖v0‖C2(Dm).

Corollary 4.14. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Assume (4.67), that is ‖Γ(·, 0)‖L∞(Dm) ≤ 1

95 . Then for any T > 0,

‖v‖L∞
tx(Dm×[0,T ]) + ‖ωθ‖L∞

tx(Dm×[0,T ]) ≤ C∗
0 , (4.140)

where C∗
0 is a constant which only depends on α and ‖v0‖C2(D ).
m
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5. Uniform bounds for ‖v‖L2

tH
2
x

and ‖v‖H1

t L
2
x

on Dm × [0, T ]

The basic setup of this section is the same as that in the beginning of Section 4. More 
precisely, for any fixed m ≥ 2 and T > 0, we consider the initial data v0 which lies in the 
admissible class Am with the even-odd-odd symmetry. For such initial data, we denote 
by v the solution in Corollary 3.3 so that v ∈ Eσ,s

m,T ∩H1
t L

2
x ∩ L2

tH
2
x ∩ L∞

tx(Dm × [0, T ]). 
Moreover, we restrict the range of α within 

(
0, π6
]

and require ‖Γ(·, 0)‖L∞(Dm) ≤ 1
95 . 

Then by taking advantage of the results in Section 4, in particular Lemma 4.7 and 
Corollary 4.14, we will obtain uniform bounds, which are independent of T and dependent 
on m only via ‖v0‖C2(Dm), for ‖v‖L2

tH
2
x(Dm×[0,T ]) and ‖v‖H1

t L
2
x(Dm×[0,T ]). The strategy 

is as follows:

• Step 1: Based on the uniform boundedness of ‖∇K‖L2
tx

and ‖∇F‖L2
tx

on Dm× [0, T ], 
we will derive a uniform bound for ‖vθ‖L2

tH
2
x(Dm×[0,T ]). Then the uniform bound of 

‖∂tvθ‖L2
tx(Dm×[0,T ]) can be obtained via the equation of vθ.

• Step 2: Thanks to the Biot-Savart law and the uniform boundedness of ‖∇Ω‖L2
tx

, we 
manage to derive uniform bounds for ‖vρ‖L2

tH
2
x(Dm×[0,T ]) and ‖vφ‖L2

tH
2
x(Dm×[0,T ]).

• Step 3: The uniform boundedness of ‖∂tωθ‖L2
tx

can be verified by studying the equa-
tion of ωθ.

• Step 4: By taking advantage of the Biot-Savart law again and also utilizing the uni-
form boundedness of ‖∂tωθ‖L2

tx
, we are able to justify both ‖∂tvρ‖L2

tx
and ‖∂tvφ‖L2

tx

are uniformly bounded.

We first summarize some pertinent results from earlier sections with minor extensions 
which will be needed in the later proof.

Proposition 5.1. Let the region Dm be as defined in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Assume ‖Γ(·, 0)‖L∞(Dm) ≤ 1

95 . Then there exists a constant C, which only 
depends on α and ‖v0‖C2(Dm) such that for any T > 0,

‖
(
|K| + |F | + |Ω|

)
‖L∞

t L2
x

+ ‖
(
|∇K| + |∇F | + |∇Ω|

)
‖L2

tx
≤ C, (cf. Lemma 4.7) (5.1)

‖v‖L∞
tx

+
∥∥∥1
ρ
∇v
∥∥∥
L∞

t L2
x

+
∥∥∥ 1
ρ2∇v

∥∥∥
L2

tx

+
∥∥∥ 1
ρ3 v
∥∥∥
L2

tx

≤ C, (5.2)

‖ωθ‖L∞
tx

+
∥∥∥1
ρ
∇ωθ

∥∥∥
L2

tx

+
∥∥∥ 1
ρ2ωθ

∥∥∥
L2

tx

≤ C, (5.3)

where all the above space-time norms are taken on Dm × [0, T ].

Proof. Only (5.2) and (5.3) are required to be verified. We start with the estimate (5.2). 
Firstly, the uniform boundedness of v is due to Corollary 4.14. Then from Lemmas 4.4, 
4.5 and 4.8, we have
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∥∥∥∇(vρ
ρ

)∥∥∥
L∞

t L2
x

+
∥∥∥∇(vφ

ρ

)∥∥∥
L∞

t L2
x

+
∥∥∥∇(vθ

ρ

)∥∥∥
L∞

t L2
x

≤ 5‖
(
|K| + |F | + |Ω|

)
‖L∞

t L2
x
,

(5.4)∥∥∥1
ρ
∇
(vρ
ρ

)∥∥∥
L2

tx

+ 1
ρ

∥∥∥∇(vφ
ρ

)∥∥∥
L2

tx

+
∥∥∥1
ρ
∇
(vθ
ρ

)∥∥∥
L2

tx

≤ 40‖
(
|∇K| + |∇F | + |∇Ω|

)
‖L2

tx
.

(5.5)

Since 
∫ π

2 +α
π
2 −α

vρ(ρ, φ) sinφ dφ = 0 for any ρ ∈
( 1
m , 1

)
, it follows from the Poincaré inequal-

ity in Lemma 2.3 that

∥∥∥ 1
ρ2 vρ(·, t)

∥∥∥
L2

x

≤
√

2
19

∥∥∥ 1
ρ2 ∂φvρ(·, t)

∥∥∥
L2

x

≤ 1
3

∥∥∥ 1
ρ2 ∂φvρ(·, t)

∥∥∥
L2

x

, ∀ t ∈ [0, T ].

In addition, since

∇
(vρ
ρ

)
= 1

ρ
∇vρ −

(
1
ρ2 vρ

)
eρ,

we know that ∥∥∥1
ρ
∇vρ

∥∥∥
L∞

t L2
x

≤ 4
3

∥∥∥∇(vρ
ρ

)∥∥∥
L∞

t L2
x

. (5.6)

Similarly,∥∥∥1
ρ
∇vφ

∥∥∥
L∞

t L2
x

≤ 4
3

∥∥∥∇(vφ
ρ

)∥∥∥
L∞

t L2
x

and
∥∥∥1
ρ
∇vθ

∥∥∥
L∞

t L2
x

≤ 4
3

∥∥∥∇(vθ
ρ

)∥∥∥
L∞

t L2
x

. (5.7)

Plugging (5.6) and (5.7) into (5.4), and then using (5.1), we obtain 
∥∥1
ρ∇v

∥∥
L∞

t L2
x
≤ C. 

By an analogous argument, we can take advantage of (5.5) to show 
∥∥ 1
ρ2∇v

∥∥
L2

tx
≤ C, 

which further implies 
∥∥ 1
ρ3 v
∥∥
L∞

t L2
x
≤ C. Thus, (5.2) is justified.

We next investigate the estimate (5.3). Firstly, the uniform boundedness of ωθ is due 
to Corollary 4.14. Then by direct computation, we find

∇Ω = ∇
(

ωθ

ρ sinφ

)
= 1

ρ sinφ
∇ωθ −

ωθ

ρ2 sinφ
(eρ + cotφ eφ). (5.8)

Since 0 ≤ cotφ ≤ cotα ≤ 1/
√

3, then for any t ∈ [0, T ],∥∥∥∥ ωθ(·, t)
ρ2 sinφ

(eρ + cotφ eφ)
∥∥∥∥2

L2
x(Dm)

≤ 4
3

∥∥∥∥ ωθ(·, t)
ρ2 sinφ

∥∥∥∥2
L2

x(Dm)
. (5.9)

Thanks to the restriction that α ∈
(
0, π6
]
, we know 

√
3/2 ≤ sinφ ≤ 1 and therefore,

∥∥∥∥ ωθ(·, t)
ρ2 sinφ

∥∥∥∥2

L2
x(Dm)

= 2π
1∫

1

π
2 +α∫

π−α

ω2
θ

ρ2 sinφ
dφ dρ ≤ 2π 2√

3

1∫
1

π
2 +α∫

π−α

ω2
θ

ρ2 dφ dρ.
m 2 m 2
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Since ωθ vanishes on the boundary of Dm, we apply the Poincaré inequality in Lemma 2.5
to the right-hand side of the above inequality to obtain

∥∥∥∥ ωθ(·, t)
ρ2 sinφ

∥∥∥∥2

L2
x(Dm)

≤ 2π 2√
3

3
25

1∫
1
m

π
2 +α∫

π
2 −α

1
ρ2 (∂φωθ)2 dφ dρ

≤ 6
25

√
3

∥∥∥∥ 1
ρ sinφ

∇ωθ(·, t)
∥∥∥∥2

L2
x(Dm)

.

(5.10)

The combination of (5.9) and (5.10) yields∥∥∥∥ ωθ(·, t)
ρ2 sinφ

(eρ + cotφ eφ)
∥∥∥∥
L2

x(Dm)
≤ 1

2

∥∥∥∥ 1
ρ sinφ

∇ωθ(·, t)
∥∥∥∥
L2

x(Dm)
. (5.11)

Based on (5.11), it then follows from (5.8) that∥∥∥∥ 1
ρ sinφ

∇ωθ

∥∥∥∥
L2

tx

≤ 2‖∇Ω‖L2
tx
.

Hence, we conclude 
∥∥ 1
ρ∇ωθ

∥∥
L2

tx
≤ C, which further implies that 

∥∥ 1
ρ2ωθ

∥∥
L2

tx
≤ C. Thus, 

(5.3) is established. �
Based on Proposition 5.1, we will prove the main result of this section shown as below.

Proposition 5.2. Let the region Dm be defined as in (2.17) with m ≥ 2 and the angle 
α ∈

(
0, π6
]
. Assume ‖Γ(·, 0)‖L∞(Dm) ≤ 1

95 . Then there exists a constant C, which only 
depends on α and ‖v0‖C2(Dm), such that for any T > 0,

‖∇2v‖L2
tx(Dm×[0,T ]) + ‖∂tv‖L2

tx(Dm×[0,T ]) ≤ C. (5.12)

Proof. In the proof, C denotes constants which are independent of T , but may be de-
pendent on α and ‖v0‖C2(Dm). On the other hand, unless stated otherwise, all the norms 
in this proof are taken on the space-time domain Dm × [0, T ].

Step 1: Uniform bounds on ‖∇2vθ‖L2
tx

and ‖∂tvθ‖L2
tx

.
Firstly, since ∇vθ = (∂ρvθ)eρ +

(
1
ρ∂φvθ

)
eφ, it then follows from the formula (A.8)

that under the basis (A.7),

∇2vθ =

⎛⎜⎜⎝
∂2
ρvθ

1
ρ∂φ∂ρvθ −

1
ρ2 ∂φvθ 0

1
ρ∂ρ∂φvθ −

1
ρ2 ∂φvθ

1
ρ2 ∂

2
φvθ + 1

ρ∂ρvθ 0

0 0 1
ρ∂ρvθ + cotφ

ρ2 ∂φvθ

⎞⎟⎟⎠ . (5.13)

Thanks to (5.2) in Proposition 5.1, we infer from (5.13) that
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‖∇2vθ‖L2
tx

≤ 2
(∥∥∂2

ρvθ
∥∥
L2

tx
+
∥∥∥ 1
ρ2 ∂

2
φvθ

∥∥∥
L2

tx

+
∥∥∥1
ρ
∂ρ∂φvθ

∥∥∥
L2

tx

)
+ C. (5.14)

Recall

∇K = ∇
(ωρ

ρ

)
= K1eρ + K2eφ,

where ⎧⎪⎪⎨⎪⎪⎩
K1 = 1

ρ2 ∂ρ∂φvθ −
2
ρ3 ∂φvθ + cotφ

ρ2 ∂ρvθ −
2 cotφ
ρ3 vθ,

K2 = 1
ρ3 ∂

2
φvθ + cotφ

ρ3 ∂φvθ −
1

ρ3 sin2 φ
vθ.

Equivalently, ⎧⎪⎪⎨⎪⎪⎩
1
ρ2 ∂ρ∂φvθ = K1 + 2

ρ3 ∂φvθ −
cotφ
ρ2 ∂ρvθ + 2 cotφ

ρ3 vθ,

1
ρ3 ∂

2
φvθ = K2 −

cotφ
ρ3 ∂φvθ + 1

ρ3 sin2 φ
vθ.

Based on the above expressions, we obtain from (5.1) and (5.2) that∥∥∥ 1
ρ2 ∂ρ∂φvθ

∥∥∥
L2

tx

+
∥∥∥ 1
ρ3 ∂

2
φvθ

∥∥∥
L2

tx

≤ C. (5.15)

In a similar way, by analyzing ∇F = ∇
(

ωφ

ρ

)
= −∇

(
1
ρ∂ρvθ + 1

ρ2 vθ

)
, we find

∥∥∥1
ρ
∂2
ρvθ

∥∥∥
L2

tx

≤ C. (5.16)

Combining (5.14), (5.15) and (5.16) together leads to

‖∇2vθ‖L2
tx

≤ C. (5.17)

Next, we rewrite the equation (3.5) for vθ as

∂tvθ =
(

Δ − 1
ρ2 sin2 φ

)
vθ − b · ∇vθ −

1
ρ

(
vρ + cotφ vφ

)
vθ.

Then we deduce from (5.17) and Proposition 5.1 that

‖∂tvθ‖L2
tx

≤ C. (5.18)

Step 2: Uniform bounds on ‖∇2vρ‖L2 and ‖∇2vφ‖L2 .

tx tx
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According to the Biot-Savart law (4.12), we know

(
Δ + 2

ρ
∂ρ + 2

ρ2

)
vρ = − 1

ρ sinφ
∂φ(sinφωθ).

By writing Δvρ into spherical coordinates, it holds that

∂2
ρvρ + 1

ρ2 ∂
2
φvρ = R1, (5.19)

where

R1 = −4
ρ
∂ρvρ −

cotφ
ρ2 ∂φvρ −

2
ρ2 vρ −

1
ρ sinφ

∂φ(sinφωθ).

It is readily seen that ‖R1‖L2
tx

≤ C due to Proposition 5.1. Then we take L2(Dm× [0, T ])
norm on both sides of (5.19) to obtain, after rearranging terms,

T∫
0

∫
Dm

[(
∂2
ρvρ
)2 + 1

ρ4

(
∂2
φvρ
)2]

dx dt + 2
T∫

0

∫
Dm

1
ρ2 ∂2

ρvρ ∂
2
φvρ dx dt

︸ ︷︷ ︸
I1

≤ C. (5.20)

By using spherical coordinates,

I1 = 2π
T∫

0

1∫
1
m

π
2 +α∫

π
2 −α

sinφ∂2
ρvρ ∂

2
φvρ dφ dρ.

Recalling the boundary conditions in Lemma 2.1 for vρ: ∂φvρ = 0 on ∂RDm and vρ = 0
on ∂ADm, we further deduce that ∂φvρ = 0 on ∂RDm ∪ ∂ADm. Consequently, one can 
use integration by parts to find

I1 = − 2π
T∫

0

1∫
1
m

π
2 +α∫

π
2 −α

cosφ∂2
ρvρ ∂φvρ dφ dρ

− 2π
T∫

0

1∫
1
m

π
2 +α∫

π
2 −α

sinφ∂φ∂
2
ρvρ ∂φvρ dφ dρ

:=I11 + I12.

(5.21)

For I11, we change back to Euclidean coordinates to get
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I11 = −
T∫

0

∫
Dm

cotφ
ρ2 ∂2

ρvρ ∂φvρ dx dt.

For I12, we apply integration by parts again to infer that

I12 = −2π
T∫

0

π
2 +α∫

π
2 −α

sinφ

1∫
1
m

∂ρ(∂φ∂ρvρ) ∂φvρ dρ dφ dt

= 2π
T∫

0

π
2 +α∫

π
2 −α

sinφ

1∫
1
m

(∂φ∂ρvρ)2 dρ dφ dt

=
T∫

0

∫
Dm

1
ρ2 (∂φ∂ρvρ)2 dx dt.

Plugging the above expressions for I11 and I12 into (5.21), it then follows from (5.20)
that

T∫
0

∫
Dm

[(
∂2
ρvρ
)2 + 1

ρ4

(
∂2
φvρ
)2]

dx dt + 2
T∫

0

∫
Dm

1
ρ2 (∂φ∂ρvρ)2 dx dt

≤ C + 2
T∫

0

∫
Dm

cotφ
ρ2 ∂2

ρvρ ∂φvρ dx dt.

Using Cauchy-Schwarz inequality, the above estimate further implies that

1
2

T∫
0

∫
Dm

[(
∂2
ρvρ
)2 + 1

ρ4

(
∂2
φvρ
)2]

dx dt + 2
T∫

0

∫
Dm

1
ρ2 (∂φ∂ρvρ)2 dx dt

≤ C + 2
T∫

0

∫
Dm

cot2 φ
ρ4 (∂φvρ)2 dx dt.

(5.22)

Thanks to Proposition 5.1 and the fact that 0 ≤ cotφ ≤ 1/
√

3,

T∫
0

∫
Dm

cot2 φ
ρ4 (∂φvρ)2 dx dt ≤

1
3

∥∥∥1
ρ
∇vρ

∥∥∥
L2

tx

≤ C.

Putting this estimate into (5.22) and using Proposition 5.1 again, we conclude
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‖∇2vρ‖L2
tx

≤ C. (5.23)

In order to estimate ‖∇2vφ‖L2
tx

, we make use of the incompressible condition ∇ ·v = 0, 
which can be written as

1
ρ
∂φvφ = −∂ρvρ −

2
ρ
vρ −

cotφ
ρ

vφ. (5.24)

By taking derivatives ∂ρ and 1
ρ∂φ of (5.24), it follows from (5.23) and Proposition 5.1

that ∥∥∥1
ρ
∂ρ∂φvφ

∥∥∥
L2

tx

+
∥∥∥ 1
ρ2 ∂

2
φvφ

∥∥∥
L2

tx

≤ C. (5.25)

Then according to the Biot-Savart law (4.12) again,(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ = 1
ρ
∂ρ(ρωθ).

Writing Δvφ in spherical coordinates, we know

∂2
ρvφ = − 1

ρ2 ∂
2
φvφ − 2

ρ
∂ρvφ − cotφ

ρ2 ∂φvφ + 1
ρ2 sin2 φ

vφ − 2
ρ2 ∂φvρ + 1

ρ
∂ρ(ρωθ).

Based on (5.25) and Proposition 5.1, we infer from the above expression that

‖∂2
ρvφ‖L2

tx
≤ C. (5.26)

Combining (5.25), (5.26) with Proposition 5.1 yields

‖∇2vφ‖L2
tx

≤ C. (5.27)

Step 3: Uniform bound on ‖∂tωθ‖L2
tx

.
By rearranging the equation (3.59) for ωθ, we have⎧⎪⎨⎪⎩

Δωθ − ∂tωθ = R2, in Dm × (0, T ];
ωθ = 0, on ∂Dm × (0, T ];
ωθ(x, 0) = ω0,θ(x), in Dm,

(5.28)

where

R2 = 1
ρ2 sin2 φ

ωθ + b · ∇ωθ −
1
ρ
(vρ + cotφ vφ)ωθ + 1

ρ2 ∂φ(v2
θ) −

cotφ
ρ

∂ρ(v2
θ).

Firstly, we deduce from the above expression and Proposition 5.1 that ‖R2‖L2
tx

≤ C. 
Then according to (5.28),
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T∫
0

∫
Dm

(Δωθ − ∂tωθ)2 dx dt =
T∫

0

∫
Dm

R2
2 dx dt ≤ C.

Equivalently,

T∫
0

∫
Dm

(Δωθ)2 + (∂tωθ)2 dx dt ≤ C + 2
T∫

0

∫
Dm

(Δωθ)(∂tωθ) dx dt. (5.29)

Since ωθ = 0 on ∂Dm, which implies ∂tωθ = 0 on ∂Dm, we can apply integration by 
parts to obtain

RHS of (5.29) = C − 2
T∫

0

∫
Dm

(∇ωθ) · ∂t(∇ωθ) dx dt

= C −
∫

Dm

T∫
0

∂t
(
|∇ωθ|2

)
dt dx.

By fundamental theorem of Calculus, the above relation further yields

RHS of (5.29) ≤ C +
∫

Dm

|∇ω0,θ|2 dx ≤ C + C‖v0‖2
H2(Dm) ≤ C.

Then we infer from (5.29) that

‖∂tωθ‖L2
tx

≤ C. (5.30)

Step 4: Uniform bounds on ‖∂tvρ‖L2
tx

and ‖∂tvφ‖L2
tx

.
We first estimate ‖∂tvρ‖L2

tx
. Recall by the Biot-Savart law, vρ solves the following 

problem: ⎧⎨⎩
(
Δ + 2

ρ∂ρ + 2
ρ2

)
vρ = − 1

ρ sinφ ∂φ(sinφωθ) in Dm,

∂φvρ = 0 on ∂RDm, vρ = 0 on ∂ADm.

By taking derivative with respect to t, we find ∂tvρ satisfies the equations below:⎧⎨⎩
(
Δ + 2

ρ∂ρ + 2
ρ2

)
(∂tvρ) = − 1

ρ sinφ ∂φ(sinφ∂tωθ) in Dm,

∂φ(∂tvρ) = 0 on ∂RDm, ∂tvρ = 0 on ∂ADm.

We emphasize that the above equation can be made rigorously by firstly considering the 
finite difference in time or the Steklov average of vρ and ωθ instead of ∂tvρ and ∂tωθ, 
and then taking the limit. Meanwhile, we have
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π
2 +α∫

π
2 −α

(∂tvρ) sinφdφ = ∂t

( π
2 +α∫

π
2 −α

vρ sinφdφ

)
= 0. (5.31)

Then we can argue in an analogous way as that for the proof of Lemma 4.4 to deduce

‖∇∂tvρ‖L2
tx

≤ C‖∂tωθ‖L2
tx

≤ C,

where the last inequality is due to (5.30). Now, by taking advantage of (5.31), it follows 
from the Poincaré inequality in Lemma 2.3 that

‖∂tvρ‖L2
tx

≤ C‖∇∂tvρ‖L2
tx

≤ C. (5.32)

Similar to the above argument, we are also able to justify

‖∂tvφ‖L2
tx

≤ C. (5.33)

After establishing the previous Step 1-4, the desired estimate (5.12) will be readily 
proved. Firstly, the uniform bound ‖∂tv‖L2

tx
≤ C follows from (5.18), (5.32) and (5.33). 

Secondly, since

‖∇2v‖L2
tx

≤ C

(
‖∇2vρ‖L2

tx
+ ‖∇2vφ‖L2

tx
+ ‖∇2vθ‖L2

tx
+
∥∥∥1
ρ
∇v
∥∥∥
L2

tx

+
∥∥∥ 1
ρ2 v
∥∥∥
L2

tx

)
,

the uniform bound ‖∇2v‖L2
tx

≤ C follows from (5.17), (5.23), (5.27) and Proposi-
tion 5.1. �
6. Completion of the proof of Theorem 1.5: existence and uniqueness of strong 
solutions

In this section, we will establish the main result of this paper by utilizing the uniform 
bounds derived in the previous Section 4 and Section 5.

Proof of Theorem 1.5. We first show the existence of a strong solution (v, P ) which has 
the even-odd-odd symmetry and satisfies (1.18) and (1.19). Pick any v0 in the admissible 
class A that satisfies the properties (i) and (ii) in Theorem 1.5. By Definition 1.4, there 
exists a sequence {v(m)

0 }m≥2 such that v(m)
0 ∈ Am and

lim
m→∞

‖v0 − v
(m)
0 ‖C2(Dm) = 0. (6.1)

Since v0 has the even-odd-odd symmetry due to property (i), we can modify v(m)
0 so that 

it enjoys the same symmetry as well. In fact, by setting

ṽ
(m)
0 = ṽ

(m)
0,ρ eρ + ṽ

(m)
0,φ eφ + ṽ

(m)
0,θ eθ,
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where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṽ
(m)
0,ρ (ρ, φ) =

[
v
(m)
0,ρ (ρ, φ) + v

(m)
0,ρ (ρ, π − φ)

]
/2,

ṽ
(m)
0,φ (ρ, φ) =

[
v
(m)
0,φ (ρ, φ) − v

(m)
0,φ (ρ, π − φ)

]
/2,

ṽ
(m)
0,θ (ρ, φ) =

[
v
(m)
0,θ (ρ, φ) − v

(m)
0,θ (ρ, π − φ)

]
/2,

then one can directly check that ṽ(m)
0 possesses the even-odd-odd symmetry and ṽ(m)

0 ∈
Am. In addition, the convergence (6.1) is still valid by replacing v(m)

0 with ṽ(m)
0 . For ease 

of notation, we still denote ṽ(m)
0 to be v(m)

0 . On the other hand, due to the convergence 
(6.1) and the fact that ‖rv0,θ‖L∞(D) ≤ 1

100 due to property (ii), there exists some m0
such that for any m ≥ m0,

‖v(m)
0 ‖C2(Dm) ≤ ‖v0‖C2(D) + 1, (6.2)

‖rv(m)
0,θ ‖L∞(Dm) ≤

1
95 . (6.3)

In the following, we will only consider those v(m)
0 for m ≥ m0.

Now we fix any time T > 0. According to Corollary 3.3, for each m, there exists a 
strong solution (vm, P (m)) of (2.7) on Dm × [0, T ] with the initial data v(m)

0 and the 
NHL boundary condition (2.18). In addition, v(m) is bounded and has the even-odd-odd 
symmetry. On the other hand, we can assume∫

Dm

P (m)(x, t) dx = 0, ∀ t ∈ [0, T ]. (6.4)

Actually, if we define P̃ (m)(x, t) = P (m)(x, t) − 1
|Dm|

∫
Dm

P (m)(x, t) dx, then P̃ (m) satisfies 
(6.4) and (vm, P̃ (m)) is also a strong solution.

Next, according to Proposition 5.1 and Proposition 5.2, there exists some constant 
Cm, only depending on α and ‖v(m)

0 ‖C2(Dm) such that

‖v(m)‖L∞
tx(Dm×[0,T ]) + ‖v(m)‖H1

t L
2
x(Dm×[0,T ]) + ‖v(m)‖L2

tH
2
x(Dm×[0,T ]) ≤ Cm. (6.5)

Meanwhile, since (vm, Pm) is a strong solution of (2.7), then⎧⎨⎩ ∂ρP =
(
Δ + 2

ρ ∂ρ + 2
ρ2

)
vρ − b · ∇vρ + 1

ρ (v2
φ + v2

θ) − ∂tvρ,

1
ρ∂φP =

(
Δ − 1

ρ2 sin2 φ

)
vφ − b · ∇vφ + 2

ρ2 ∂φvρ − 1
ρvρvφ + cotφ

ρ v2
θ − ∂tvφ.

By applying Proposition 5.1 and 5.2 again, we find that

‖∇P (m)‖L2 (Dm×[0,T ]) ≤ Cm.

tx
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Thanks to (6.4), the above estimate further implies that

‖P (m)‖L2
tH

1
x(Dm×[0,T ]) ≤ Cm. (6.6)

Now taking advantage of the uniform bound (6.2), we infer from (6.5) and (6.6) that

‖v(m)‖L∞
tx(Dm×[0,T ]) + ‖v(m)‖H1

t L
2
x(Dm×[0,T ]) + ‖v(m)‖L2

tH
2
x(Dm×[0,T ]) + ‖P (m)‖L2

tH
1
x(Dm×[0,T ]) ≤ C,

(6.7)
where C is a constant that only depends on α and ‖v0‖C2(D). Meanwhile, recalling 
Proposition 4.3, the following energy inequality for v(m) holds:

∫
Dm

|v(m)(x, T )|2 dx + 2
3

T∫
0

∫
Dm

|∇v(m)(x, t)|2 dx dt ≤
∫

Dm

|v(m)
0 (x)|2 dx. (6.8)

Thanks to the uniform bound (6.7) and the fact that Dm is increasing to D with 
respect to containment, we can extract a subsequence, still denoted as 

{
(v(m), P (m))

}
, 

and a vector field v ∈ L∞
tx∩H1

t L
2
x∩L2

tH
2
x(D× [0, T ]) and a pressure term P ∈ L2

tH
1
x(D×

[0, T ]) such that

v(m) → v pointwisely on D × [0, T ], (6.9)

v(m) → v weakly in H1
t L

2
x ∩ L2

tH
2
x(D × [0, T ]),

P (m) → P weakly in L2
tH

1
x(D × [0, T ]),

(6.10)

v(m) → v, ∇v(m) → ∇v, ∇× v(m) → ∇× v weakly in L2
tx(∂D × [0, T ]), (6.11)

v(m)(·, t) → v(·, 0), v(m)(·, T ) → v(·, T ) weakly in L2(D). (6.12)

Based on (6.9), (6.10), we infer from (6.7) that

‖v‖L∞
tx(D×[0,T ]) + ‖v‖H1

t L
2
x(D×[0,T ]) + ‖v‖L2

tH
2
x(D×[0,T ]) + ‖P‖L2

tH
1
x(D×[0,T ]) ≤ C, (6.13)

where C is a constant that only depends on α and ‖v0‖C2(D). Meanwhile, we can also 
deduce from (6.9) that v enjoys the even-odd-odd symmetry.

Since (v(m), P (m)) satisfies (2.7) in L2
tx sense on Dm×[0, T ] with initial data v0 and the 

NHL boundary condition (2.18), by changing back to Euclidean coordinates, we know 
that (v(m), P (m)) solves (1.3) in L2

tx sense on Dm × [0, T ] with initial data v0 and the 
NHL boundary condition (1.16). More precisely,

Δv(m) − (v(m) · ∇)v(m) −∇P (m) − ∂tv
(m) = 0, in L2(Dm × (0, T ]

)
, (6.14)

∇ · v(m) = 0, in L2(Dm × [0, T ]
)
, (6.15)

v(m)(·, 0) = v
(m)
0 , in L2(Dm), (6.16)

v(m) · n = 0, (∇× v(m)) × n = 0, on L2(∂Dm × [0, T ]
)
. (6.17)
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According to (6.9) and (6.10), we have

[
Δv(m) − (v(m) · ∇)v(m) −∇P (m) − ∂tv

(m)] →
[
Δv − (v · ∇)v −∇P − ∂tv

]
weakly in L2

tx(D × [0, T ]). It then follows from (6.14) that

Δv − (v · ∇)v −∇P − ∂tv = 0, in L2(D × (0, T ]
)
. (6.18)

Similarly, by using the convergence (6.9)–(6.12) and (6.1), we can deduce from the iden-
tities (6.15)–(6.17) that

⎧⎪⎪⎨⎪⎪⎩
∇ · v = 0, in L2(D × [0, T ]

)
,

v(·, 0) = v0, in L2(D),

v · n = 0, (∇× v) × n = 0, on L2(∂D × (0, T ]
)
.

(6.19)

Hence, the combination of (6.18) and (6.19) shows that (v, P ) is a strong solution of 
(1.3) (or equivalently (1.1)) on D× [0, T ] with the initial data v0 and the NHL boundary 
condition (1.5). Moreover, it follows from (6.8), (6.10) and (6.12) that

∫
D

|v(x, T )|2 dx + 2
3

T∫
0

∫
D

|∇v(x, t)|2 dx dt ≤ lim inf
m→∞

∫
Dm

|v(m)
0 (x)|2 dx =

∫
D

|v0(x)|2 dx,

where the last equality is due to (6.1). Thus, we indeed find a strong solution (v, P )
which has the even-odd-odd symmetry and satisfies (1.18) and (1.19).

It remains to verify the uniqueness of the strong solution v. Suppose (ṽ, P̃ ) is another 
strong solution, with even-odd-odd symmetry, of (1.3) with the same initial data v0 and 
the NHL boundary condition (1.5) on D × [0, T ]. We will prove that ṽ coincides with v. 
Let f = v − ṽ and g = P − P̃ . Then f satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δf − (f · ∇)v − (ṽ · ∇)f −∇g − ∂tf = 0 in D × (0, T ],

∇ · f = 0 in D × (0, T ],

f · n = 0, (∇× f) × n = 0 on ∂D × (0, T ],

f(·, 0) = 0 in D.

(6.20)

Since both v and ṽ are strong solutions, f belongs to the space ST of test functions 
defined in (1.12). For any 0 < T1 < T , we test the first equation in (6.20) by f on 
D × [0, T1] to find
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T1∫
0

∫
D

(Δf) · f dx dt−
T1∫
0

∫
D

[(f · ∇)v] · f dx dt

=
T1∫
0

∫
D

[(ṽ · ∇)f ] · f dx dt +
T1∫
0

∫
D

(∇g) · f dx dt +
T1∫
0

∫
D

(∂tf) · f dx dt.

Thanks to the boundary condition and the incompressibility condition of ṽ and f , we 
know 

∫ T1
0
∫
D

[(ṽ · ∇)f ] · f dx dt =
∫ T1
0
∫
D

(∇g) · f dx dt = 0, so

T1∫
0

∫
D

(Δf) · f dx dt−
T1∫
0

∫
D

[(f · ∇)v] · f dx dt = 1
2

∫
D

f2(x, T1) dx. (6.21)

Then by the similar computation as that in Section A.4, we know

T1∫
0

∫
D

(Δf) · f dx dt = −
T1∫
0

∫
D

|∇ × f |2 dx dt.

On the other hand, by definition,

T1∫
0

∫
D

[(f · ∇)v] · f dx dt =
3∑

i,j=1

T1∫
0

∫
D

fj(∂xj
vi)fi dx dt.

Then using integration by parts and taking advantage of the boundary condition and 
the incompressibility condition of f , we infer that

T1∫
0

∫
D

[(f · ∇)v] · f dx dt = −
3∑

i,j=1

T1∫
0

∫
D

fjvi(∂xj
fi) dx dt.

Plugging the above results into (6.21) yields

1
2

∫
D

|f(x, T1)|2 dx +
T1∫
0

∫
D

|∇ × f |2 dx dt =
3∑

i,j=1

T1∫
0

∫
D

fjvi(∂xj
fi) dx dt. (6.22)

Since v ∈ L∞
tx and f ∈ L2

tH
1
x on D × [0, T ], we deduce from (6.22) that

1
2

∫
D

|f(x, T1)|2 dx +
T1∫
0

∫
D

|∇ × f |2 dx dt

≤ C

T1∫ ∫
|f(x, t)|2 dx dt + 1

6

T1∫ ∫
|∇f |2 dx dt,

(6.23)
0 D 0 D
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where C only depends on ‖v‖L∞
tx(D×[0,T ]). Since both v and ṽ own the even-odd-odd 

symmetry, then so does f . Therefore, we are able to take advantage of the estimate in 
Remark 4.2 to find

T1∫
0

∫
D

|∇f |2 dx dt ≤ 3
T1∫
0

∫
D

|∇ × f |2 dx dt.

Putting this estimate into (6.23) yields

∫
D

|f(x, T1)|2 dx ≤ 2C
T1∫
0

∫
D

|f(x, t)|2 dx dt, ∀ 0 < T1 ≤ T. (6.24)

Finally, since both v and ṽ has the same initial data, f(x, 0) = 0 on D. As a result, it 
follows from (6.24) and Grönwall’s inequality that f = 0 on D × [0, T ]. So ṽ = v on 
D × [0, T ], which justifies the uniqueness of the strong solution v. This completes the 
proof of Theorem 1.5. �
7. Blowup solutions with finite energy on special cusp domains

As a byproduct of studying the NHL boundary condition (1.5), we will construct a 
class of blowup solutions to the ASNS (1.1) with finite energy on some cusp domains D∗. 
This type of domains was considered in [42] to establish the global existence of bounded 
solutions to (1.1) with finite energy for any smooth initial data under the Navier slip 
boundary condition as below:

v · n = 0, (S(v)n)tan = 0, on ∂D∗. (7.1)

Here, n is the unit outward normal of the smooth part of ∂D∗, S(v) = 1
2
[
∇v + (∇v)T

]
is the strain tensor and (S(v)n)tan stands for the tangential component of the vector 
S(v)n. Now we give a precise description of the domain D∗.

Definition 7.1. Let β ∈ (1, ∞) be any number. Define the domain D∗ as follows (also see 
Fig. 5).

D∗ :=
∞⋃

m=1
Dm, with Dm :=

m⋃
j=1

Sj ,

Sj := {(r, x3) | 2−j ≤ r < 2−(j−1), 0 < x3 < 2−β(j−1)}.

(7.2)

In [42], one of us chose the parameter β in Definition 7.1 to lie in (1, 1.1) and proved 
that no finite-time blowup occurs under the Navier slip boundary condition (7.1). Now 
our observation is that when the domain D∗ is sufficiently thin (say when β > 2), then a 
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Fig. 5. Domain D∗ in cylindrical coordinates.

mildly singular forcing term in the standard regularity class can generate infinite speed 
for the fluid under the NHL boundary condition (1.5).

Note that the boundary ∂D∗ can be written as the union of horizontal and vertical 
parts, which are denoted by ∂HD∗ and ∂V D∗ respectively. Namely,

∂D∗ = ∂HD∗ ∪ ∂V D∗. (7.3)

From (1.5), one sees that the NHL boundary condition can be expressed explicitly as

v3 = 0, ωr = ωθ = 0, on ∂HD∗,

vr = 0, ω3 = ωθ = 0, on ∂V D∗.
(7.4)

Proposition 7.2. Let D∗ be the cusp domain in Definition 7.1 with β > 2. Let η = η(t)
be a smooth function of time t ≥ 0 such that

η(t)
{

= 0 for t ∈ [0, 1],
= 1 for t ≥ 2.

Then v := η(t)
r eθ is an unbounded solution of the forced axially symmetric Navier-Stokes 

equation:

Δv − v∇v −∇P − ∂tv = −η′(t)
eθ on D∗ × [0,∞), (7.5)
r
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which satisfies the NHL boundary condition (1.5). Moreover, for any T > 0, v is in the 
energy space with respect to the space time domain D∗ × [0, T ] and the forcing term is 
in the standard regularity class L∞

t L1.5+
x

(
D∗ × [0, T ]

)
.

Proof. After setting vr = 0 and v3 = 0, (7.5) is reduced to:

⎧⎪⎪⎨⎪⎪⎩
(vθ)2

r − ∂rP = 0,(
Δ − 1

r2

)
vθ − ∂tvθ = −η′(t)

r ,

∂x3P = 0.
(7.6)

Then by choosing P = −η2(t)
2r2 , we see that vθ = η(t)

r solves (7.6). As a result, v := η(t)
r eθ

is a solution of (7.5). Meanwhile, it is readily seen that ∇ × v = 0, so the NHL boundary 
condition (7.4) is satisfied.

Thanks to the condition β > 2 in the definition of D∗, one can easily deduce

∫
D∗

|v|2(x, t) dx ≤ η2(t)
∫
D∗

1
r2 dx ≤ η2(t) 2π

1∫
0

2βrβ∫
0

1
r
dx3 dr < ∞,

T∫
0

∫
D∗

|∇v|2(x, t) dx ≤ sup
t≥0

η2(t)
∫
D∗

1
r4 dx dt ≤ sup

t≥0
η2(t) 2π

1∫
0

2βrβ∫
0

1
r3 dx3 dr < ∞.

Therefore, v is in the energy space with respect to D∗ × [0, T ]. It is also clear that the 
forcing term −η′(t)

r eθ is in L∞
t L2

x ⊂ L∞
t L1.5+

x which is the standard regularity class. This 
proves the proposition. �

Finally, we recall the remarkable paper [2] in which nonuniqueness is established 
for the Navier-Stokes equations with a supercritical forcing term in R3. In contrast, in 
the aforementioned Proposition 7.2, the forcing term, with a scaling factor of −1, is 
subcritical, but the domains are special. It confirms the intuition that if the channel of 
a fluid is very thin, arbitrarily high speed in the classical sense can be attained under a 
mildly singular force which is physically reasonable in view that Newtonian gravity and 
Coulomb force have scaling factor −2. Actually, it is a standard physics fact that the 
force in (7.5) can be realized by the magnetic force generated by an electric current in a 
long and straight wire (i.e. Ampère force).
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Appendix A. Derivations of equations in spherical coordinates

The main purpose of this appendix is to give a short derivation for the equations 
of the key quantities K, F and Ω (see (2.14)) which are necessary in the proof of the 
boundedness of the velocity.

But at first, we will give an alternative derivation of the equations for the velocity 
and the vorticity of the Navier-Stokes system in the spherical coordinate system by using 
the tensor notation which seems succinct and accessible. Moreover, the equations of the 
velocity v and the vorticity ω may be slightly different from the classical ones since we 
will rewrite them using the divergence free condition to fit our purpose.

A.1. Velocity equation (2.7)

We will derive (2.7) from the results obtained for the cylindrical coordinates. First, it 
follows from (2.3) that

{
er = sinφ eρ + cosφ eφ,

e3 = cosφ eρ − sinφ eφ,

{
vr = sinφ vρ + cosφ vφ,

v3 = cosφ vρ − sinφ vφ,
(A.1)

where the basis (er, eθ, e3) and (eρ, eφ, eθ) are defined as in (1.2) and (2.2) respectively. 
In addition, due to relation (2.1), we know

⎧⎨⎩∂r = sinφ∂ρ + cosφ
ρ ∂φ,

∂x3 = cosφ∂ρ − sinφ
ρ ∂φ.

(A.2)

Consequently,
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div v =
(
∂r + 1

r

)
vr + ∂x3v3 =

(
∂ρ + 2

ρ

)
vρ + 1

ρ
(∂φ + cotφ)vφ

= 1
ρ2 ∂ρ(ρ

2vρ) + 1
ρ sinφ

∂φ(sinφ vφ),
(A.3)

and

∇ = ∂r ⊗ er + 1
r
∂θ ⊗ eθ + ∂x3 ⊗ e3 = ∂ρ ⊗ eρ + 1

ρ
∂φ ⊗ eφ + 1

ρ sinφ
∂θ ⊗ eθ. (A.4)

Furthermore,

Δ = 1
r
∂r(r∂r) + 1

r2 ∂
2
θ + ∂2

x3

= 1
ρ2 ∂ρ(ρ

2∂ρ) + 1
ρ2 sinφ

∂φ(sinφ∂φ) + 1
ρ2 sin2 φ

∂2
θ .

= ∂2
ρ + 2

ρ
∂ρ + 1

ρ2 ∂2
φ + cotφ

ρ2 ∂φ + 1
ρ2 sin2 φ

∂2
θ .

(A.5)

Noticing ⎧⎪⎨⎪⎩
∂φeρ = eφ
∂φeφ = −eρ
∂φeθ = 0

and

⎧⎪⎨⎪⎩
∂θeρ = sinφ eθ
∂θeφ = cosφ eθ
∂θeθ = − sinφ eρ − cosφ eφ.

(A.6)

Under tensor notations and doing vector calculus under the spherical coordinates, one 
finds

∇v = (∂ρv) ⊗ eρ + 1
ρ
∂φv ⊗ eφ + 1

ρ sinφ
∂θv ⊗ eθ

= (∂ρvρ eρ + ∂ρvφ eφ + ∂ρvθ eθ) ⊗ eρ

+ 1
ρ

[
(∂φvρ − vφ) eρ + (vρ + ∂φvφ) eφ + ∂φvθ eθ

]
⊗ eφ

+ 1
ρ

[
− vθ eρ − vθ cotφ eφ + (vρ + vφ cotφ) eθ

]
⊗ eθ.

It is convenient to denote eρ ⊗ eρ, eρ ⊗ eφ, eρ ⊗ eθ, · · · , eθ ⊗ eθ by the nine single-entry 
matrices in the standard basis for 3 × 3 matrices:

⎛⎝�eρ ⊗ �eρ �eρ ⊗ �eφ �eρ ⊗ �eθ

�eφ ⊗ �eρ �eφ ⊗ �eφ �eφ ⊗ �eθ

�eθ ⊗ �eρ �eθ ⊗ �eφ �eθ ⊗ �eθ

⎞⎠ . (A.7)

Under this basis, ∇v is given by the following 3 × 3 matrix:
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∇v =

⎛⎜⎜⎝
∂ρvρ

1
ρ (∂φvρ − vφ) − 1

ρ vθ

∂ρvφ
1
ρ (∂φvφ + vρ) − cotφ

ρ vθ

∂ρvθ
1
ρ∂φvθ

1
ρ (vρ + cotφ vφ)

⎞⎟⎟⎠ . (A.8)

As a result, the coordinate of (v · ∇)v under the basis {eρ, eφ, eθ} is given by

(v · ∇)v = (∇v)v

=

⎛⎜⎜⎝
∂ρvρ

1
ρ (∂φvρ − vφ) − 1

ρ vθ

∂ρvφ
1
ρ (∂φvφ + vρ) − cotφ

ρ vθ

∂ρvθ
1
ρ∂φvθ

1
ρ (vρ + cotφ vφ)

⎞⎟⎟⎠
⎛⎝vρ

vφ

vθ

⎞⎠ . (A.9)

In other words,

(v · ∇)v =
[(

vρ∂ρ + 1
ρ
vφ∂φ

)
vρ −

1
ρ

(v2
φ + v2

θ)
]
eρ

+
([

vρ

(
∂ρ + 1

ρ

)
+ 1

ρ
vφ∂φ

]
vφ − cotφ

ρ
v2
θ

)
eφ

+
[
vρ

(
∂ρ + 1

ρ

)
vθ + 1

ρ
vφ(∂φ + cotφ)vθ

]
eθ.

(A.10)

Moreover,

Δv =
(
∂2
ρ + 2

ρ
∂ρ + 1

ρ2 ∂2
φ + cotφ

ρ2 ∂φ + 1
ρ2 sin2 φ

∂2
θ

)
(vρeρ + vφeφ + vθeθ)

=
[(

Δ − 2
ρ2

)
vρ −

2
ρ2 (∂φ + cotφ)vφ

]
eρ +

[(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ

]
eφ

+
(
Δ − 1

ρ2 sin2 φ

)
vθ eθ.

(A.11)

If v is divergence free, that is div v = 0, then it follows from (A.3) that

(∂φ + cotφ)vφ = 1
sinφ

∂φ(sinφ vφ) = −1
ρ
∂ρ(ρ2vρ) = −2vρ − ρ∂ρvρ.

Putting this relation into (A.11) yields

Δv =
(
Δ + 2

ρ
∂ρ + 2

ρ2

)
vρeρ +

[(
Δ − 1

ρ2 sin2 φ

)
vφ + 2

ρ2 ∂φvρ

]
eφ +

(
Δ − 1

ρ2 sin2 φ

)
vθeθ.

(A.12)
Recalling that b = vρeρ+vφeφ, then the combination of (A.10), (A.12) and (A.3) yields 

(2.7) which is the equivalent expression of (1.1) or (1.3) under the spherical coordinates.



Z. Li et al. / Journal of Functional Analysis 286 (2024) 110393 109
A.2. Vorticity field (2.12) and vorticity equation (2.13)

Recall the vorticity ω = ∇ × v. In cylindrical coordinates, ω = ωrer + ωθeθ + ω3e3, 
where

ωr = −∂x3vθ, ωθ = ∂x3vr − ∂rv3, ω3 = ∂rvθ + 1
r
vθ. (A.13)

In spherical coordinates, ω = ωρeρ + ωφeφ + ωθeθ. According to the relation (2.3), ωρ =
sinφ ωr + cosφ ω3. Then the combination of (A.13) and the relation (A.2) yields

ωρ = − sinφ∂x3vθ + cosφ
(
∂r + 1

r

)
vθ

= − sinφ
(

cosφ∂ρ −
sinφ

ρ
∂φ

)
vθ + cosφ

(
sinφ∂ρ + cosφ

ρ
∂φ + 1

ρ sinφ

)
vθ

= 1
ρ
(∂φ + cotφ)vθ.

In a similar way, we can compute ωφ and ωθ in the spherical coordinates to verify (2.12).
Next, we will justify the vorticity equations (2.13) in spherical coordinates. First, we 

recall that the vorticity equation in the Cartesian coordinates is{
Δω − (v · ∇)ω + (ω · ∇)v − ∂tω = 0,
divω = 0.

(A.14)

Since divω = 0, it follows from (A.12) that

Δω =
(
Δ + 2

ρ
∂ρ + 2

ρ2

)
ωρeρ +

[(
Δ− 1

ρ2 sin2 φ

)
ωφ + 2

ρ2 ∂φωρ

]
eφ +

(
Δ− 1

ρ2 sin2 φ

)
ωθeθ.

(A.15)
Then analogous to (A.8), the coordinate of (ω · ∇)v under the basis {eρ, eφ, eθ} is 

given by

(ω · ∇)v = (∇v)ω

=

⎛⎜⎜⎝
∂ρvρ

1
ρ (∂φvρ − vφ) − 1

ρ vθ

∂ρvφ
1
ρ (∂φvφ + vρ) − cotφ

ρ vθ

∂ρvθ
1
ρ∂φvθ

1
ρ (vρ + cotφ vφ)

⎞⎟⎟⎠
⎛⎝ωρ

ωφ

ωθ

⎞⎠ . (A.16)

In other words,

(ω · ∇)v =
[
(∂ρvρ)ωρ + 1

ρ
(∂φvρ − vφ)ωφ − 1

ρ
vθωθ

]
eρ

+
[
(∂ρvφ)ωρ + 1 (∂φvφ + vρ)ωφ − cotφ

vθωθ

]
eφ
ρ ρ
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+
[
(∂ρvθ)ωρ + 1

ρ
(∂φvθ)ωφ + 1

ρ
(vρ + cotφ vφ)ωθ

]
eθ.

By switching ω and v,

(v · ∇)ω =
[
(∂ρωρ)vρ + 1

ρ
(∂φωρ − ωφ)vφ − 1

ρ
ωθvθ

]
eρ

+
[
(∂ρωφ)vρ + 1

ρ
(∂φωφ + ωρ)vφ − cotφ

ρ
ωθvθ

]
eφ

+
[
(∂ρωθ)vρ + 1

ρ
(∂φωθ)vφ + 1

ρ
(ωρ + cotφωφ)vθ

]
eθ.

Consequently,

− (v · ∇)ω + (ω · ∇)v

=
[
−
(
vρ∂ρ + 1

ρ
vφ∂φ

)
ωρ +

(
ωρ∂ρ + 1

ρ
ωφ∂φ

)
vρ

]
eρ

+
[
−
(
vρ∂ρ + 1

ρ
vφ∂φ

)
ωφ +

(
ωρ∂ρ + 1

ρ
ωφ∂φ

)
vφ + 1

ρ

(
vρωφ − ωρvφ

)]
eφ

+
[
−
(
vρ∂ρ + 1

ρ
vφ∂φ

)
ωθ +

(
ωρ∂ρ + 1

ρ
ωφ∂φ

)
vθ + 1

ρ
(vρωθ − ωρvθ)

+ cotφ
ρ

(vφωθ − ωφvθ)
]
eθ.

By taking advantage of the formulas for ωρ and ωφ in (2.12), we are able to discover 
some cancellation and therefore simplify the above eθ component. Actually,

(ωρ∂ρ + 1
ρ
ωφ∂φ)vθ + 1

ρ
(vρωθ − ωρvθ) + cotφ

ρ
(vφωθ − ωφvθ)

=1
ρ
(vρ + cotφ vφ)ωθ + (ωρ∂ρ + 1

ρ
ωφ∂φ)vθ −

1
ρ
(ωρ + cotφωφ)vθ

=1
ρ
(vρ + cotφ vφ)ωθ −

1
ρ2 ∂φ(v2

θ) + cotφ
ρ

∂ρ(v2
θ).

Meanwhile, recall b = vρeρ + vφeφ, so

− (v · ∇)ω + (ω · ∇)v

=
[
− b · ∇ωρ + ω · ∇vρ

]
eρ +

[
− b · ∇ωφ + ω · ∇vφ + 1

ρ

(
vρωφ − ωρvφ

)]
eφ

+
[
− b · ∇ωθ + 1

ρ
(vρ + cotφ vφ)ωθ −

1
ρ2 ∂φ(v2

θ) + cotφ
ρ

∂ρ(v2
θ)
]
eθ.

(A.17)

Putting the above formulas (A.15) and (A.17) into (A.14) leads to the following (A.18)
which is exactly the same as (2.13).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Δ + 2

ρ ∂ρ + 2
ρ2

)
ωρ − b · ∇ωρ + ω · ∇vρ − ∂tωρ = 0,(

Δ − 1
ρ2 sin2 φ

)
ωφ − b · ∇ωφ + 2

ρ2 ∂φωρ + ω · ∇vφ + 1
ρ (vρωφ − ωρvφ) − ∂tωφ = 0,(

Δ − 1
ρ2 sin2 φ

)
ωθ − b · ∇ωθ + 1

ρ (vρ + cotφ vφ)ωθ − 1
ρ2 ∂φ(v2

θ) + cotφ
ρ ∂ρ(v2

θ) − ∂tωθ = 0,

1
ρ2 ∂ρ(ρ2ωρ) + 1

ρ sinφ∂φ(sinφωφ) = 0.
(A.18)

A.3. System (2.15) of K, F and Ω

Recall the definition (2.14) for K, F and Ω: K = ωρ

ρ , F = ωφ

ρ and Ω = ωθ

ρ sinφ . In other 
words,

ωρ = ρK, ωφ = ρF, ωθ = ρ sinφΩ. (A.19)

Let’s first deal with K. Based on the first equation in (A.18), we have

0 =
(
Δ + 2

ρ
∂ρ + 2

ρ2

)
ωρ −

(
vρ∂ρ + 1

ρ
vφ∂φ

)
ωρ +

(
ωρ∂ρ + 1

ρ
ωφ∂φ

)
vρ − ∂tωρ.

Putting the relation (A.19) into this equation yields

0 =
(
Δ + 2

ρ
∂ρ + 2

ρ2

)
(ρK) −

(
vρ∂ρ + 1

ρ
vφ∂φ

)
(ρK) +

(
ρK∂ρ + F∂φ

)
vρ − ∂t(ρK).

(A.20)

Noticing

Δ(ρK) = ρΔK + 2∂ρK + 2
ρ
K,

−
(
vρ∂ρ + 1

ρ
vφ∂φ

)
(ρK) + vρK = −ρvρ∂ρK − vφ∂φK = −ρb · ∇K,

and (
ρK∂ρ + F∂φ

)
vρ −Kvρ = K(ρ∂ρvρ − vρ) + F∂φvρ

= ρωρ∂ρ

(vρ
ρ

)
+ ρωφ

1
ρ
∂φ

(vρ
ρ

)
= ρω · ∇

(vρ
ρ

)
.

Putting all these identities into (A.20) yields

0 =
(
ρΔ + 4∂ρ + 6

ρ

)
K − ρb · ∇K + ρω · ∇

(vρ
ρ

)
− ∂t(ρK).

Dividing by ρ leads to
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0 =
(
Δ + 4

ρ
∂ρ + 6

ρ2

)
K − b · ∇K + ω · ∇

(vρ
ρ

)
− ∂tK.

This verifies the K equation in (2.15).
Now we will continue to discuss the case for F . Based on the second equation in 

(A.18), we know

0 =
(
Δ − 1

ρ2 sin2 φ

)
ωφ −

(
vρ∂ρ + 1

ρ
vφ∂φ

)
ωφ + 2

ρ2 ∂φωρ

+
(
ωρ∂ρ + 1

ρ
ωφ∂φ

)
vφ + 1

ρ
(vρωφ − ωρvφ) − ∂tωφ.

Putting the relation (A.19) into this equation yields

0 =
(
Δ − 1

ρ2 sin2 φ

)
(ρF ) −

(
vρ∂ρ + 1

ρ
vφ∂φ

)
(ρF ) + 2

ρ2 ∂φ(ρK)

+
(
ρK∂ρ + F∂φ

)
vφ + (vρF −Kvφ) − ∂t(ρF ).

(A.21)

Noticing

Δ(ρF ) = ρΔF + 2∂ρF + 2
ρ
F,

−
(
vρ∂ρ + 1

ρ
vφ∂φ

)
(ρF ) + vρF = −ρvρ∂ρF − vφ∂ρF = −ρb · ∇F,

and (
ρK∂ρ + F∂φ

)
vφ −Kvφ = K(ρ∂ρvφ − vφ) + F∂φvφ

= ρωρ∂ρ

(vφ
ρ

)
+ ρωφ

1
ρ
∂φ

(vφ
ρ

)
= ρω · ∇

(vφ
ρ

)
.

Putting all these identities into (A.21) yields

0 =
(
ρΔ + 2∂ρ + 2

ρ
− 1

ρ sin2 φ

)
F − ρb · ∇F + 2

ρ2 ∂φ(ρK) + ρω · ∇
(vφ
ρ

)
− ∂t(ρF ).

Dividing by ρ leads to

0 =
(
Δ + 2

ρ
∂ρ + 1 − cot2 φ

ρ2

)
F − b · ∇F + 2

ρ2 ∂φK + ω · ∇
(vφ
ρ

)
− ∂tF.

This verifies the F equation in (2.15).
Finally, the equation for Ω in spherical coordinates will be deduced. Rather than 

deriving its equation directly, it is helpful to take advantage of the result in the cylindrical 
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coordinates case. In fact, it has already been known that Ω satisfies the following equation 
(see [39]).

ΔΩ − b · ∇Ω + 2
r
∂rΩ − 2

r2 vθωr − ∂tΩ = 0. (A.22)

Based on (A.2), we have

2
r
∂rΩ = 2

ρ sinφ

(
sinφ∂ρ + cosφ

ρ
∂φ

)
Ω = 2

ρ

(
∂ρ + cotφ

ρ
∂φ

)
Ω.

Applying the relation (A.1) to ω,

2
r2 vθωr = 2vθ

ρ2 sin2 φ
(sinφωρ + cosφωφ) = 2vθ

ρ sinφ
(K + cotφF ).

Putting the above two identities into (A.22) gives(
Δ + 2

ρ
∂ρ + 2 cotφ

ρ2 ∂φ

)
Ω − b · ∇Ω − 2vθ

ρ sinφ
(K + cotφF ) − ∂tΩ = 0.

This verifies the Ω equation in (2.15).
The last equation (2.15)4 can be derived immediately from the divergence free condi-

tion (2.13)4 of ω.

A.4. Integration identity for strong solutions of (1.3) under the NHL boundary 
condition

The purpose of this subsection is to justify the integration identity (1.13). Assume 
v ∈ ST (see (1.12)) and P ∈ L2

tH
1
x(D × [0, T ]) such that (v, P ) satisfies the following 

equations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δv − (v · ∇)v −∇P − ∂tv = 0 in D × (0, T ],

∇ · v = 0 in D × (0, T ],

v · n = 0, ω × n = 0 on ∂D × (0, T ],

v(·, 0) = v0(·) in D.

(A.23)

Then for any vector field f ∈ ST , we will prove the following integration identity:

∫
D

v(x, T ) · f(x, T ) dx +
T∫

0

∫
D

(∇× v) · (∇× f) dx dt

=
∫

v0(x) · f(x, 0) dx−
T∫ ∫

[(v · ∇)v] · f dx dt +
T∫ ∫

v · (∂tf) dx dt.

(A.24)
D 0 D 0 D
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Proof. Testing the first equation in (A.23) by f , we find

T∫
0

∫
D

f · (Δv) dx dt

︸ ︷︷ ︸
I1

=
T∫

0

∫
D

[(v · ∇)v] · f dx dt

︸ ︷︷ ︸
I2

+
T∫

0

∫
D

f · ∇P dx dt

︸ ︷︷ ︸
I3

+
T∫

0

∫
D

f · (∂tv) dx dt

︸ ︷︷ ︸
I4

.

(A.25)

We first compute I1. Since ∇ · v = 0, it holds that

∫
D

f · Δv dx =
3∑

i,j=1

∫
D

fi∂
2
j vi dx =

3∑
i,j=1

∫
D

fi∂j(∂jvi − ∂ivj) dx +
3∑

i,j=1

∫
D

fi∂i(∂jvj) dx

=
3∑

i,j=1

∫
D

fi∂j(∂jvi − ∂ivj) dx.

Then using integration by parts,

3∑
i,j=1

∫
D

fi∂j(∂jvi−∂ivj) dx =
3∑

i,j=1

∫
∂D

fi(∂jvi−∂ivj)nj dS−
3∑

i,j=1

∫
D

(∂jfi)(∂jvi−∂ivj) dx.

Since ω×n = 0 on ∂D, then 
3∑

j=1
(∂jvi−∂ivj)nj = 0 for any fixed i. Therefore, the above 

surface integral on the boundary ∂D vanishes and the equation reduces to

3∑
i,j=1

∫
D

fi∂j(∂jvi − ∂ivj) dx = −
3∑

i,j=1

∫
D

(∂jfi)(∂jvi − ∂ivj) dx.

Denote J1 =
3∑

i,j=1

∫
D

(∂jfi)(∂jvi − ∂ivj) dx. Then we can split J1 to be J1 = J11 + J12, 

where

J11 =
3∑

i,j=1

∫
D

(∂jfi − ∂ifj)(∂jvi − ∂ivj) dx, J12 =
3∑

i,j=1

∫
D

(∂ifj)(∂jvi − ∂ivj) dx.

Noticing that J11 = 2 
∫
D

(∇ × f) · (∇ × v) dx and J12 = −J1, we obtain J1 =
∫
D

(∇ × f) ·
(∇ × v) dx. As a result,
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I1 = −
T∫

0

∫
D

(∇× f) · (∇× v) dx.

Next, we compute the RHS of (A.25). For I2, it is kept unchanged. For I3, it follows 
from integration by parts and the property of the set ST that

I3 =
T∫

0

∫
∂D

(f · n)P dS −
T∫

0

∫
D

(∇ · f)P dx = 0.

For I4, using integration by parts in the temporal variable yields

I4 =
∫
D

v(x, T ) · f(x, T ) dx−
∫
D

v0(x) · f(x, 0) dx−
T∫

0

∫
D

v · (∂tf) dx dt.

Plugging the above computations of I1-I4 into (A.25) leads to (A.24). �
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