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Abstract
In this paper, we consider the global existence and convergence of smooth
solutions for the three dimensional spherically symmetric compressible Euler
equations with time-dependent damping and physical vacuum. The damping
coefficient decays with time and the sound speed is C1/2-Hölder continuous
across the physical vacuum boundary. Both the degeneration of the damping
coefficient at time infinity and the non C1 continuity of the sound speed across
the vacuum boundary will cause difficulty in proving the global existence of
smooth solutions. Under suitable assumptions on the decayed damping coeffi-
cients, the globally in-time smooth solutions and convergence to the modified
Barenblatt solution will be given. Also obtained are the pointwise convergence
rate of the density, velocity and the expanding rate of the physical vacuum
boundary. Our result extends that in Zeng (2017 Arch. Ration. Mech. Anal. 226
33–82) by considering the degenerate damping coefficient instead of the con-
stant damping coefficient and that in Pan (2021 Calc. Var. Partial Differ. Equ. 60
5) from the one dimensional case to the three dimensional case with spherically
symmetric data.
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1. Introduction

In this paper, the following 3D compressible Euler equations with time-dependent damping
and physical vacuum will be considered.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div (ρu) = 0 in Ω(t),

(ρu)t + div (ρu ⊗ u) +∇xp (ρ) = − μ

(1 + t)λ
ρu in Ω(t),

ρ > 0 in Ω(t),

ρ = 0 on Γ(t) := ∂Ω(t),

V(Γ(t)) = u · n,

(ρ, u)|t=0 = (ρ0, u0) on Ω :=Ω(0).

(1.1)

Here ρ, u, and p represent the density, velocity, and pressure, respectively.Ω(t),Γ(t),V(Γ(t)),
and n denote the domain where the gas exists, the physical vacuum boundary, the normal
velocity on Γ(t) and the unit outward normal vector on Γ(t), respectively. The term − μ

(1+t)λ
ρu,

which decays with power −λ in time, is the frictional damping. The gas is assumed to be
isentropic, which means the pressure satisfies the γ law:

p (ρ) = ργ for γ > 1.

Then the sound speed c :=
√

p′(ρ). If

−∞ <
∂c2

∂n
< 0 (1.2)

in a small neighborhood of the boundary, we call that a vacuum boundary is physical.
Damping can affect the asymptotic behavior of solutions of the Euler equations. When the

damping vanishes (the damping coefficientμ ≡ 0), shock will form. See [1, 2, 42, 44] and refer-
ences therein for more details. While for the Euler equations with constant-coefficient damping
(λ = 0, 0 < μ), global existence and asymptotic behavior of smooth solutions away from vac-
uum can be founded in [15, 34, 47] and references therein. It is natural to ask whether there
are some global or blow-up results of solutions of the Euler equations with variant-coefficient
damping, which decays in time. A typical type of time decayed damping coefficient is μ

(1+t)λ
.

Actually now there are already numerous works concerning on the global existence, finite-time
blow up, and asymptotic behaviors of smooth solutions for system (1.1) with initial data away
from vacuum. A critical couple of numbers (λ, μ), depending on the space dimension, is given
to separate the global existence and finite-time blow up of smooth solutions in Hou–Witt–Yin
[18, 19] and Pan [35–37]. Later, various results are shown in this aspect. Reader can refer to
[3, 7, 12, 23, 24, 30, 41] and references therein.

If the initial data contains physical vacuum, Luo–Zeng [33] and Zeng [48] proved the global
existence of smooth solutions and convergence to the Barenblatt solutions of the porous media
equation for the one dimensional and three dimensional spherically symmetric Euler equations
with constant-coefficient damping. Recently the result in [33] was extended in [38] to the time
decayed damping system. Also a stability results of smooth solutions for system (1.1) with one
side physical vacuum was established in [39]. Our main purpose of this paper is to extend the
result in [48] to system (1.1) with spherically initial data and 0 < λ.
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As shown in Pan [38] in one dimensional case, system (1.1) is closedly related to the related
porous media equations with time-dependent dissipation, read as follows

⎧⎨
⎩

ρt +∇x · (ρu) = 0,

∇xp(ρ) = − μ

(1 + t)λ
ρu.

(1.3)

Actually, the above equations enjoys the following space and time variables scaling and
translation.

For any constant c > 0, set

ρ̃(x̃, t̃) = c
2λ
γ−1 ρ(cx̃, c2̃t) = c

2λ
γ−1 ρ(x, t − 1), (1.4)

and

ũ(x̃, t̃) = cu(cx̃, c2 t̃) = cu(x, t − 1), (1.5)

then we can see that ρ̃ and ũ satisfy⎧⎨
⎩

ρ̃̃t +∇x̃ · (ρ̃ũ) = 0,

∇x̃p(ρ̃) = − μ

t̃λ
ρ̃ũ.

(1.6)

If we make the same scaling and translation (1.4) and (1.5) to system (1.1), we can see that the
first two equations of system (1.1) are transformed to⎧⎨

⎩
ρ̃̃t +∇x̃ · (ρ̃ũ) = 0

c2(λ−1) [(ρ̃ũ)̃t +∇x̃ · (ρ̃ũ ⊗ ũ)] +∇x̃p (ρ̃) = − μ

t̃λ
ρ̃.

(1.7)

Since we are considering the global existence and large time behavior of solutions, when
λ < 1, letting c→+∞ indicates that solutions of (1.7) approach to solutions of (1.6) formally.
So we can conjecture that solutions of system (1.1) will asymptotically converge to that of (1.3)
if their initial data is close. Actually we will see the convergence is still valid for λ = 1 and
suitably large μ.

Let M ∈ (0,∞) be the initial total mass of system (1.1). Taking ‘div’ to (1.3)2 and then
inserting it to (1.3)1, we have

⎧⎪⎪⎨
⎪⎪⎩

ρt −
(1 + t)λ

μ
Δp (ρ) = 0,

∇xp (ρ) = − μ

(1 + t)λ
ρu.

(1.8)

The self-similar solution of (1.8)1 with finite mass M is given by

ρ̄(x, t) = ρ̄(r, t) = (1 + t)−
3(λ+1)
3γ−1

[
A − B(1 + t)−

2(λ+1)
3γ−1 r2

] 1
γ−1

with r = |x|, (1.9)
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where

B =
μ(λ+ 1)(γ − 1)

2γ(3γ − 1)
and (γA)

3γ−1
2(γ−1)

= Mγ
1

γ−1 (γB)
3
2

(∫ 1

0
y2
(
1 − y2

) 1
γ−1 dy

)−1

. (1.10)

We call this solution (1.9) to be the modified Barenblatt solution since it comes from the Baren-
blatt solution of the porous media equation ρt −Δp(ρ) = 0. Here the constant A is chosen such
that it has the same total mass as that for the solution of (1.1):

∫ R̄(t)

0
r2ρ̄(r, t)dr = M for t � 0 and R̄(t) =

√
A/B(1 + t)

λ+1
3γ−1 . (1.11)

Here we give a calculation of the equality (1.11) by using the relation between A and B in
(1.10). By using a variable change, we have

Here at the last line of the above equality, the exponent on γA is zero.
From (1.8)2, the corresponding velocity is calculated by

ū(x, t) = − (1 + t)λ

μ

∇xp(ρ̄)
ρ̄

= ū(r, t)
x
r

, (1.12)

where ū(r, t) = (λ+1)r
(3γ−1)(1+t) and ū(0, t) = 0.

(ρ̄, ū), defined in (1.9) and (1.12), have a physical vacuum boundary r = R̄(t). Our main
purpose of this paper is to prove convergence of spherically symmetric smooth solutions for
system (1.1) to (ρ̄, ū) if their initial data are close and have the same total mass.

Since the modified Barenblatt solution (1.9) and (1.12) are spherically symmetric solutions,
it is reasonable first to study spherically symmetric solutions of system (1.1) and to pursue the
more generalized case in the future.

For this purpose, we seek solutions with symmetry to problem (1.1) of the form:

Ω(t) = BR(t)(0), ρ(x, t) = ρ(r, t), u(x, t) = u(r, t)
x
r

with r = |x|.
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Then problem (1.1) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r2ρ

)
t
+
(
r2ρu

)
r
= 0 in (0, R(t)),

ρ (ut + uur) + pr = − μ

(1 + t)λ
ρu in (0, R(t)),

ρ > 0 in [0, R(t)),

ρ(R(t), t) = 0, u(0, t) = 0,

Ṙ(t) = u(R(t), t) with R(0) = R0,

(ρ, u)(r, t)|t=0 = (ρ0, u0) (r) on (0, R0) ,

(1.13)

so that R(t) is the radius of the domain occupied by the gas at time t and r = R(t) represents
the vacuum boundary which issues from r = R0 and moves with the fluid velocity.

In the spherically symmetric setting, the physical vacuum boundary condition (1.2) reduces
to −∞ <

(
c2
)

r
< 0 in a small neighborhood of the boundary. To capture this singularity, the

initial domain is taken to be a ball {0 � r � R0} and the initial density is assumed to satisfy

⎧⎨
⎩

ρ0(r) > 0 for r ∈ [0, R0), ρ0 (R0) = 0,

−∞ <
(
ργ−1

0

)
r
(R0) < 0.

Since we have assumed the initial total mass of the Euler equation is M, according to the
mass conversation equation (1.13)1, we have for t � 0,

∫ R(t)

0
r2ρ(r, t)(r)dr =

∫ R0

0
r2ρ0(r)dr =

∫ R̄(0)

0
r2ρ̄0(r)dr = M.

The physical vacuum problem of the compressible Euler equations is a challenging and
interesting problem in the study of free boundary problems for compressible fluids since stan-
dard methods of symmetric hyperbolic systems developed in [8, 25, 28] do not apply. Since
system (1.1) is a degenerate and characteristic hyperbolic system, near the vacuum boundary of
which the uniform Kreiss–Lopatinskii condition (see [26]) is violated, even the local-in-time
existence theory is hard to prove. Only recently, the local well-posedness theory has been estab-
lished for the compressible Euler equations with physical vacuum in one and three dimensions
by the space weighted energy estimate. See Coutand et al [4–6] and Jang–Masmoudi [21, 22].
In order to understand the behavior and long-time dynamics of physical vacuum boundaries,
study on the global-in-time regularity of solutions is essential.

For the compressible Euler equations with damping and physical vacuum, there already exist
some results concerning on the global existence of solutions. See [9, 16, 17, 33, 38, 48]. In one
space dimension, the authors in [9, 16, 17] gave the L∞ weak solutions and Lp convergence
to the Barenblatt solutions by using the method based on entropy-type estimates. The global
existence of smooth solutions and pointwise convergence was proved in [33]. This result was
extended to the time-dependent damping system in [38]. In three space dimensions, [48] proved
convergence of smooth solutions to the Barenblatt solutions with spherically symmetric data
for system (1.1) with constant-coefficient damping λ = 0. In [33, 48], the authors introduced
the space and time weighted energy to characterize the large-time behavior of solutions. The
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a prior estimates for the weighted energy there can be closed globally in time relies heavily
on the constant-coefficient damping term −ρu. Based on some refined analysis, in this paper,
we will consider the generalized case of system (1.1) with spherically symmetric data and
0 < λ, which corresponds to a degenerate damping coefficient as t →+∞. This issue is more
challenging since both the vacuum boundary and the damping coefficient are degenerate.

At last, we mention some other results on vacuum free boundary problems in the author’s
interest. When the degeneration near the boundary is mild, which means the sound is
cα (0 < α � 1) smooth across the boundary, the local existence theory was proved in Liu–Yang
[32] for the one-dimensional Euler equations with constant coefficient damping. The local exis-
tence and uniqueness for the three dimensional compressible Euler equations modeling the
liquid rather than the gas with vacuum boundary were established in [29] by using Lagrangian
variables and Nash–Moser iteration. An alternative proof under Eulerian coordinates and
extension to that of non-isentropic case can be found in [45]. Gu–Lei [10, 11] investigated
the local-in-time well-posedness of the physical vacuum free boundary problem for the one-
dimensional and three dimensional Euler–Poisson equations, respectively. The stabilizing and
unstabilizing mechanism for the Euler and Euler–Poisson equations with physical vacuum
have been shown in [13, 14, 20, 40] and references therein. See also [49, 50] for recent progress
on the compressible Euler equations with constant-coefficient damping.

Throughout the rest of paper, Cα,β,γ,... denotes a positive constant depending on α, β, γ, . . .
which may be different from line to line. We will employ the notation a �α,β,γ,... b to denote
a � Cα,β,γ,...b and a ≈α,β,γ,... b to denote C−1

α,β,γ,...b � a � Cα,β,γ,...b. Usually α, β, γ, . . . in the
constant Cα,β,γ ,... will be ignored if no confusion is caused.

2. Reformulation of the problem and main results

2.1. Reformulation to Lagrangian variables

Define a diffeomorphism

η0 :
(
0, R̄(0)

)
→ (0, R0)

by

∫ η0(r)

0
s2ρ0(s)ds =

∫ r

0
s2ρ̄0(s)ds for r ∈

(
0, R̄(0)

)

where
(
0, R̄(0)

)
is the initial interval of the modified Barenblatt solution (1.9), taken as

reference interval, and ρ̄0(r) := ρ̄(r, 0) is the initial density of the solution (1.9).
Taking derivative of the above equality on r indicates

η2
0(r)ρ0 (η0(r)) η0,r(r) = r2ρ̄0(r) for r ∈

(
0, R̄(0)

)
. (2.1)

Here ,r means derivative on r. Set the reference interval

I :=
(
0, R̄(0)

)
=
(

0,
√

AB−1
)
.
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For r ∈ I, we define the Lagrangian variable η(r, t) by{
ηt(r, t) = u(η(r, t), t) for t > 0,

η(r, 0) = η0(r),

and set the Lagrangian density and velocity by

f (r, t) = ρ(η(r, t), t) and v(r, t) = u(η(r, t), t).

Then in Lagrangian variables, system (1.13) has fixed boundary and can be written on the
reference domain I as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(η2 f )t + η2 f vr/ηr = 0 in I × (0,∞),

f vt + ( f γ)r/ηr = − μ

(1 + t)λ
f v in I × (0,∞),

f > 0 in I × (0,∞), f
(√

AB−1, t
)
= 0 on (0,∞),

v(0, t) = 0 on (0,∞),

( f , v) = (ρ0 (η0) , u0 (η0)) on I × {t = 0}.
(2.2)

The map η(·, t) defined above can be extended to I =
[
0,
√

AB−1
]
. In the setting, the vacuum

free boundary for problem (1.13) is given by

R(t) = η
(
R̄(0), t

)
= η(

√
AB−1, t) for t � 0.

By solving (2.2)1 and using (2.1), we see that

f (r, t)η2(r, t)ηr(r, t) = ρ0 (η0(r)) η2
0(r)η0,r(r) = r2ρ̄0(r), r ∈ I. (2.3)

It should be noticed that we need ηr(r, t) > 0 for r ∈ I and t � 0 to make the Lagrangian
transformation reasonable, which will be verified later. Inserting (2.3) into (2.2)2, we can get
the following (2.4)1. Then the initial density, ρ̄0, can be regarded as a parameter, and system
(2.2) can be rewritten as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ̄0ηtt +

μ

(1 + t)λ
ρ̄0ηt +

(η
r

)2
[(

r2

η2

ρ̄0

ηr

)γ]
r

= 0 in I × (0,∞),

η(0, t) = 0 on (0,∞),

(η, ηt) = (η0, u0 (η0)) on I × {t = 0}.

(2.4)

2.2. Correction of the modified Barenblatt solutions

The Lagrangian variable η̄(r, t) for the modified Barenblatt flow in I is defined by

η̄t(r, t) = ū(η̄(r, t), t) =
(λ+ 1)η̄(r, t)

(3γ − 1)(1 + t)
for t > 0 and η̄(r, 0) = r.
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Solving the above ODE gives that

η̄(r, t) = r(1 + t)
λ+1
3γ−1 for (r, t) ∈ I × [0,∞), (2.5)

and by direct calculation, it satisfies

μ

(1 + t)λ
ρ̄0η̄t +

( η̄
r

)2
[(

r2

η̄2

ρ̄0

η̄r

)γ]
r

= 0 in I × (0,∞).

Since η̄ does not solve (2.4)1 exactly, we introduce a correction h(t), and set

η̃(r, t) := η̄(r, t) + rh(t), (2.6)

so that ⎧⎪⎨
⎪⎩

ρ̄0η̃tt +
μ

(1 + t)λ
ρ̄0η̃t +

(
η̃

r

)2[( r2

η̃2

ρ̄0

η̃r

)γ]
r

= 0 in I × (0,∞),

η̃(r, 0) = η̄(r, 0), η̃t(r, 0) = η̄t(r, 0).

(2.7)

Then h(t) is the solution of the following initial value problem of ordinary differential
equations: ⎧⎪⎨

⎪⎩
htt +

μ

(1 + t)λ
ht −

μ(λ+ 1)
3γ − 1

(η̄r + h)2−3γ + η̄rtt +
μ

(1 + t)λ
η̄rt = 0,

h|t=0 = ht|t=0 = 0.

Notice that from (2.5), η̄r, η̄rt, and η̄rtt are independent of r.
Actually h is a positive bounded function and η̃ behaves similarly to η̄. That is, there exist

positive constants L and ck independent of time t such that for all t � 0,
If 0 < λ < 1:

(1 + t)
λ+1
3γ−1 � η̃r(t) � L(1 + t)

λ+1
3γ−1 , η̃rt(t) � 0,∣∣∣∣dkη̃r(t)

dtk

∣∣∣∣ � ck(1 + t)
λ+1
3γ−1−k for k ∈ N.

(2.8)

If λ = 1:

(1 + t)
2

3γ−1 � η̃r(t) � L(1 + t)
2

3γ−1 , η̃rt(t) � 0,

∣∣∣∣dkη̃r(t)
dtk

∣∣∣∣ �
⎧⎪⎪⎨
⎪⎪⎩

ck(1 + t)
2

3γ−1−k for k < μ+
2

3γ − 1
and k ∈ N,

ck(1 + t)−μ ln(1 + t) for k � μ+
2

3γ − 1
and k ∈ N.

(2.9)

The proofs of (2.8) and (2.9) are almost the same as that in [38, appendix] with γ + 1 there
replaced by 3γ − 1 here. Here we omit the details.

2.3. Main results

Let

w(r, t) =
η(r, t)

r
− η̃(r, t)

r
. (2.10)
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Then subtract (2.7) from (2.4)1, we see that w satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rρ̄0wtt +
μ

(1 + t)λ
rρ̄0wt − η̃2−3γ

r (ρ̄γ0)r

+ (η̃r + w)2
[
ρ̄γ0(η̃r + w)−2γ(η̃r + w + rwr)

−γ
]

r = 0
in I × (0,∞),

(w,wt) =

(
η0

r
− 1,

u0 (η0)
r

− λ+ 1
3γ − 1

)
on I × {t = 0}.

(2.11)

Denote α = 1
γ−1 and set m := 4 + [α]. Let δ ∈ (0, 2(λ+1)

3γ−1 ). For j = 0, . . . , m and
i = 0, . . . , m − j, we set

E j(t) := (1 + t)2 j−δ1λ<1

∫
I

[
r4ρ̄0(∂ j

t w)2 + r2ρ̄γ0

(
(∂ j

t w)2 + (r∂ j
t wr)

2
)

+ (1 + t)λ+1r4ρ̄0(∂ j+1
t w)2

]
(r, t)dr,

E j,i(t) := (1 + t)2 j−δ1λ<1

∫
I

[
r2ρ̄1+(i−1)(γ−1)

0 (∂ j
t ∂

i
rw)2

+ r4ρ̄1+(i+1)(γ−1)
0 (∂ j

t ∂
i+1
r w)2

]
(r, t)dr,

(2.12)

where 1λ<1 is the characteristic function on the set {λ < 1}, which means

1λ<1 =

{
1, if λ < 1,

0, if λ = 1.

If we set

σ(x) := ρ̄γ−1
0 (x) = A − Br2, r ∈ I,

then E j and E j,i can be rewritten as

E j(t) = (1 + t)2 j−δ1λ<1

∫
I

[
r4σα(∂ j

t w)2 + r2σα+1
(

(∂ j
t w)2 + (r∂ j

t wr)
2
)

+ (1 + t)λ+1r4σα(∂ j+1
t w)2

]
(r, t)dr,

E j,i(t) = (1 + t)2 j−δ1λ<1

∫
I

[
r2σα+i−1(∂ j

t ∂
i
rw)2 + r4σα+i+1(∂ j

t ∂
i+1
r w)2

]
(r, t)dr.

(2.13)

The total energy is defined by

E(t) :=
m∑

j=0

(
E j(t) +

m− j∑
i=1

E j,i(t)

)
. (2.14)
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Now, we give the following main result.

Theorem 2.1. Let λ = 1,μ+ 2
3γ−1 > m or 0 < λ < 1, μ > 0. Then there exists a constant

ε0 such that if E(0) � ε0, the problem (2.11) admits a globally unique smooth solution in
I × [0,∞), satisfying for all t � 0

E(t) � CE(0),

where C is a positive constant independent of t.

Remark 2.2. When λ = 1, the assumption μ+ 2
3γ−1 > m can be relaxed to μ > 2. See the

basic nonlinear energy estimates in lemma 3.7. However due to the decay estimates in (2.9)
for η̃, the time weight (1 + t)2 j in the energy functionals E j(t) and E j,i(t) in (2.12) and (2.13)
need to be adjusted to (1 + t)2̃ j, where

j̃ =

⎧⎪⎪⎨
⎪⎪⎩

j, j < μ+
2

3γ − 2
,(

μ+
2

3γ − 2

)−
, j � μ+

2
3γ − 2

.

Here for a constant a, a− denote a constant which is smaller than but can be arbitrarily close
to a.

Remark 2.3. When λ < 1, the damping coefficient in this case is stronger than that for
λ = 1. However the time weight in our energy functionals in (2.13) seems to be weaker by
an order δ. Actually, by an elaborated analysis and refined calculation, the time weight can
be replaced by (1 + t)2 j+δ̃ with some positive δ̃. The strategy is to perform weighted energy

estimates for equation (3.9) in lemma 3.7 by multiplying an additional weight e
a r2

(1+t)1+λ for a
suitable constant a. This exponent weight is equivalent to 1 for r ∈ [0,

√
AB−1]. The idea can

date back to [43, 46]. See also [37, appendix]. Since the computation is more complicated and
involved, but the optimal time-decay estimate is not our main target, we do not pursue this
energy estimates any further.

If we go back to the Eulerian coordinates from the Lagrangian coordinates, from theorem
2.1, we have the following theorem for solutions to the original vacuum free boundary problem
(1.1).

Theorem 2.4. Let λ = 1,μ+ 2
3γ−1 > m or 0 < λ < 1, μ > 0. Then there exists a con-

stant ε0 > 0 such that if E(0) � ε0, the problem (1.1) admits a global unique smooth solution
(ρ, u, R(t)) for t ∈ [0,∞) satisfying

|ρ(η(r, t), t) − ρ̄(η̄(r, t), t)|

�
(
A − Br2

) 1
γ−1 (1 + t)−

4(λ+1)
3γ−1

(
(1 + t)

δ
2 1λ<1

√
E(0) + 1

)
,

(2.15)

|u(η(x, t), t) − ū(η̄(x, t), t)| � r(1 + t)−1
(

(1 + t)
δ
2 1λ<1

√
E(0) + 1

)
, (2.16)

R(t) ≈ (1 + t)
λ+1
3γ−1 , (2.17)∣∣∣∣dkR(t)

dtk

∣∣∣∣ � C(1 + t)
λ+1
3γ−1−k, k = 1, 2, 3, (2.18)

3218



Nonlinearity 35 (2022) 3209 X Pan

for all r ∈ I and t � 0. Here C is a positive constant, depending on ε0 and the upper bound
of h but independent of t.

Here (2.15) and (2.16) give the pointwise convergence of the density and velocity for the
vacuum free boundary problem (1.1) to that of the modified Barenblatt solution, respectively.
The precise expanding rate of the vacuum boundaries, which is the same as that for the modified
Barenblatt solution is given in (2.17).

2.4. Notations and Hardy inequality

In this subsection, we present some embedding estimates for weighted Sobolev spaces that will
be used later.

Set

d(r) := dist(r, ∂I) = min{r,
√

AB−1 − r},

r ∈ I = (0,
√

AB−1).

For any a > 0 and nonnegative integer b, the weighted Sobolev space Ha,b(I) is defined by

Ha,b(I) :=

{
da/2F ∈ L2(I) :

∫
I
da
∣∣∂k

r F
∣∣2dr < ∞, 0 � k � b

}

with the norm

‖F‖2
Ha,b(I) :=

b∑
k=0

∫
I
da
∣∣∂k

r F
∣∣2dr.

Then for b � a/2, the following embedding of weighted Sobolev spaces holds (cf [27]):

Ha,b(I) ↪→ Hb−a/2(I)

with the estimate

‖F‖Hb−a/2(I) � Ca,b‖F‖Ha,b(I) (2.19)

for some positive constant Ca,b.
The following general version of the Hardy inequality, whose proof can be found in [27],

will also be used frequently in this paper. Let θ > 1 be a given real number and F be a function
satisfying

∫ L

0
rθ
(
F2 + F2

r

)
dr < ∞,

where L is a positive constant; then it holds that

∫ L

0
rθ−2F2 dr � Cθ,L

∫ L

0
rθ
(
F2 + F2

r

)
dr. (2.20)
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It is easy to note that σ≈ A,B

√
A/B − r. If we divide I into I1 := (0,

√
A/4B) and

I2 := (
√

A/4B,
√

A/B), as a consequence of (2.20) and by making a simple variable change,
we have ∫

I2

σθ−2F2 dr ≈ A,B

∫
I2

(
√

A/B − r)θ−2F2 dr

� A,B

∫
I2

(
√

A/B − r)θ(F2 + F2
r )dr

≈ A,B

∫
I2

σθ(F2 + F2
r )dr.

(2.21)

Remark 2.5. In later calculation for the weighted energy estimates, (2.20) and (2.21) will
be frequently used. The choice of m := [α] + 4 is due to the restriction of θ > 1.

In the rest of the paper, we will use the notation∫
= :

∫
I
, ‖ · ‖ = :‖ · ‖L2(I), and ‖ · ‖L∞ = :‖ · ‖L∞(I).

For a function f (t, r), sometimes for simplicity, we use
∫

f (t, r) and
∫ t

0

∫
f (τ , r) to denote∫

f (t, r)dr and
∫ t

0

∫
f (τ , r)dr dτ , respectively if no confusion is caused.

3. Proof of theorem 2.1

At the beginning, we give a weighted Sobolev L∞ embedding lemma for later use.

Lemma 3.1. Let E∞(t) be the following weighted L∞ norm

E∞(t) :=
∑

2i+ j�2

(1 + t)2 j−δ1λ<1

∥∥∥∂ j
t ∂

i
rw(·, t)

∥∥∥2

∞

+
∑

i+ j�m−2
2i+ j�3

(1 + t)2 j−δ1λ<1

∥∥∥σ 2i+ j−3
2 ∂ j

t ∂
i
rw(·, t)

∥∥∥2

∞

+
∑

i+ j=m−1

(1 + t)2 j−δ1λ<1

∥∥∥rσ
2i+ j−3

2 ∂ j
t ∂

i
rw(·, t)

∥∥∥2

∞

+
∑

i+ j=m

(1 + t)2 j−δ1λ<1

∥∥∥r2σ
2i+ j−3

2 ∂ j
t ∂

i
rw(·, t)

∥∥∥2

∞
.

(3.1)

Assume that E(t) is finite, then it holds that

E∞(t) � CE(t).

The proof of lemma 3.1 can follow the same line with that in [48, p 69, lemma 3.7] by using
(2.19) repeatedly. Here we omit the details.

The proof of theorem 2.1 is based on the local existence and uniqueness of smooth solutions
(cf [5, 21, 31]) and continuation arguments. In order to prove the global existence of smooth
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solutions, we need to obtain the uniform-in-time a priori estimates on any given time interval
[0, T] satisfying supt∈[0,T] E(t) < ∞. To this end, we use a bootstrap argument by making the
following a priori assumption: there exists a suitably small fixed positive number ε0 ∈ (0, 1)
independent of t such that

sup
0�t�T

E(t) � Mε0, (3.2)

for some constant M, independent of ε0, to be determined later. Under this a priori assumption,
and by using lemma 3.1, we see that for 0 � t � T,

E∞(t) � CMε0. (3.3)

By assuming that Mε0 is sufficiently small such that Mε0  1, then the following elliptic
estimates:

E j,i(t) � C
i+ j∑
�=0

E�(t) when i, j � 0, i + j � m, (3.4)

will be shown in subsection 3.1, where C is a positive constant independent of t.
With (3.3) and elliptic estimates (3.4), we show in subsection 3.2 the following nonlinear

weighted energy estimate: for some positive constant C independent of t

E j(t) � C
j∑

�=0

E�(0), j = 0, 1, . . . , m. (3.5)

Remembering the definition of the total energy E(t) in (2.14) and combining (3.4) and (3.5),
we see that

E(t) � C∗E(0), (3.6)

for some constant C∗ independent of t and M. By choosing M = 2C∗, we see that

E(t) � 1
2

Mε0,

which closes energy estimates.
In order to simplify the presentation, we will extract the main term in the equation (2.11)1

and perform our elliptic and nonlinear weighted energy estimates in the next two subsections
on the simplified equation. See (3.9) below.

Under the assumption of (3.2) and using lemma 3.1, we see η̃−1
r w and η̃−1

r rwr is small since

η̃−1
r ≈ (1 + t)−

λ+1
3γ−1 and δ/2 ∈ (0, λ+1

3γ−1 ). First we rewrite (2.11)1 as follows by remembering

that ρ̄0 = σα and ρ̄γ0 = σα+1,

rσαwtt +
μ

(1 + t)λ
rσαwt − η̃2−3γ

r (σα+1)r

+ (η̃r + w)2
[
σα+1(η̃r + w)−2γ(η̃r + w + rwr)−γ

]
r
= 0.

(3.7)
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Then for the space derivative term, by using Taylor expansion and smallness of η̃−1
r w and

η̃−1
r rwr , we have

(1 + η̃−1
r w)2 =

(
1 + 2η̃−1

r w + o(η̃−1
r |w|)

)
,

(1 + η̃−1
r w)−2γ = 1 − 2γη̃−1

r w + o(η̃−1
r |w|),(

1 + η̃−1
r (w + rwr)

)−γ
= 1 − γη̃−1

r (w + rwr) + o(η̃−1
r |w, rwr|).

Inserting the above Taylor expansion into (3.7), we have

(η̃r + w)2
[
σα+1(η̃r + w)−2γ(η̃r + w + rwr)

−γ
]

r − η̃2−3γ
r (σα+1)r

= η̃2−3γ
r (1 + η̃−1

r w)2
[
σα+1(1 + η̃−1

r w)−2γ
(
1 + η̃−1

r (w + rwr)
)−γ

]
r

− η̃2−3γ
r (σα+1)r

= η̃2−3γ
r

(
1 + 2η̃−1

r w + o(η̃−1
r |w|)

) [
σα+1

(
1 − 2γη̃−1

r w − γη̃−1
r (w + rwr)

+ o(η̃−1
r |w, rwr|)

)]
r
− η̃2−3γ

r (σα+1)r

= −η̃1−3γ
r

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
+ η̃2−3γ

r o(η̃−1
r |w, rwr|).

(3.8)

Then (3.7) is simplified to

rσαwtt +
μ

(1 + t)λ
rσαwt − (1 + o(1))η̃1−3γ

r

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
= 0.

(3.9)

Remark 3.2. The exact formulation of the quadratic term η̃2−3γ
r o(η̃−1

r |w, rwr|) in (3.8) can
be traced to the terms J1 and J1 in reference [48, p 47]. When we perform higher order elliptic
estimates and nonlinear energy estimates in subsections 3.1 and 3.2, we need to first take deriva-
tives ∂ j

t ∂
i−1
r and ∂ j

t to the equation (3.7), and then apply the Taylor expansion rather than take
derivatives on equations (3.8) or (3.9) directly since small ‘o’ term may not be small after tak-
ing derivatives. Actually, when we take derivatives on the quadratic term η̃2−3γ

r o(η̃−1
r |w, rwr|),

it corresponds to the term B2 in [p 49, equation (3.20)] and the terms K1, K2 and K3 in
[p 58, equation (3.38)] of reference [48]. Handing of these terms are almost the same as that in
reference [48] with the only difference being that here we have a little different time weight,
which cause no problem for the corresponding estimates. So in the following, when we perform
higher order estimates, we will formally take derivatives on equation (3.9) directly and only
take care of the linear highest order derivative term. The linear highest order derivative term
reveals the essential structure of equation (3.7). The nonlinear quadratic and multi-power’s
lower order derivative terms coming from Taylor’s expansion of (3.7) can be handled by the
weighted L2 norm multiplied by the weighted L∞ norm in lemma 3.1. Then it can be absorbed
by the linear higher order weighted L2 norm due to the smallness of the energy assumption
(3.2). Readers can refer to Zeng [48, lemmas 3.3 and 3.6] for more details on how to performing
the low order derivative estimates.
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3.1. Elliptic Estimates

We prove the following elliptic estimates in this subsection.

Proposition 3.3. Under the assumption of (3.2) for suitably small positive number
ε0 ∈ (0, 1), then for 0 � t � T, we have

E j,i(t) �
i+ j∑
�=0

E�(t) when i, j � 0, i + j � m.

The proof of this proposition consists of lemmas 3.4 and 3.5.
First-order elliptic estimates
Divide (3.9) by σα to obtain

γη̃1−3γ
r [rσwrr + 4σwr + (α+ 1)rwrσr]

=(1 + o(1))

[
rwtt +

μ

(1 + t)λ
rwt + (α+ 1)(2 − 3γ)σrη̃

1−3γ
r w

]
.

(3.10)

Lemma 3.4. Under the assumption of (3.2) for suitably small positive number ε0 ∈ (0, 1),
we have

E0,0(t) + E1,0(t) + E0,1(t) � E0(t) + E1(t), 0 � t � T.

Proof. When i = 0, first we see that

E j,0(t) := (1 + t)2 j−δ1λ<1

∫ [
r4σα+1(∂ j

t wr)2 + r2σα−1(∂ j
t w)2

]
� E j(t) + (1 + t)2 j−δ1λ<1

∫
r2σα−1(∂ j

t w)2

= E j(t) + (1 + t)2 j−δ1λ<1

{∫
I1

+

∫
I2

}
r2σα−1(∂ j

t w)2.

(3.11)

In I1, σ ≈A,B 1, then

∫
I1

r2σα−1(∂ j
t w)2 �

∫
I1

r2σα+1(∂ j
t w)2.

And in I2, r ≈A,B 1, by using (2.21), we have

∫
I2

r2σα−1(∂ j
t w)2 �

∫
I2

σα+1

(
(r∂ j

t w)2 +
(

(r∂ j
t w)r

)2
)

�
∫
I2

r2σα+1
(

(∂ j
t w)2 + (r∂ j

t wr)2
)
.

Inserting the above two inequalities into (3.11) implies that E0,0(t) + E1,0(t) � E0(t) + E1(t).
We mainly focus on the proof of E0,1(t) � E0(t) + E1(t).
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Remembering that η̃3γ−1
r ≈ (1 + t)λ+1, multiply equation (3.10) by η̃3γ−1

r rσα/2 and perform
the spatial L2-norm to obtain

∥∥∥r2σ1+ α
2 wrr + 4rσ1+α

2 wr + (α+ 1)r2σ
α
2 σrwr

∥∥∥2

� (1 + t)2(λ+1)
∥∥∥r2σ

α
2 wtt

∥∥∥2
+ (1 + t)2

∥∥∥r2σ
α
2 wt

∥∥∥2
+
∥∥∥r2σ

α
2 w

∥∥∥2

� (1 + t)δ1λ<1 (E0 + E1) .

(3.12)

In what follows, we analyze the left-hand side of (3.12), which can be expanded as

∥∥∥r2σ1+ α
2 wrr + 4rσ1+α

2 wr + (α+ 1)r2σ
α
2 σrwr

∥∥∥2

=
∥∥∥r2σ1+ α

2 wrr

∥∥∥2
+ 16

∥∥∥rσ1+ α
2 wr

∥∥∥2
+ (α+ 1)2

∥∥∥r2σ
α
2 σrwr

∥∥∥2

+

∫ [
4r3σ2+α + (α+ 1)r4σ1+ασr

] (
w2

r

)
r
+ 8(α+ 1)

∫
r3σ1+ασrw

2
r .

(3.13)

With the help of the integration by parts and the fact σr = −2Br, one has

∫ [
4r3σ2+α + (α+ 1)r4σ1+ασr

] (
w2

r

)
r

=− 12
∫

r2σ2+αw2
r − (α+ 1)2

∫
r4σασ2

rw
2
r + 8B(2α+ 3)

∫
r4σ1+αw2

r .

Substitute this into (3.13) and use σr = −2Br to give

∥∥∥r2σ1+ α
2 wrr + 4rσ1+ α

2 wr + (α+ 1)r2σ
α
2 σrwr

∥∥∥2

=
∥∥∥r2σ1+ α

2 wrr

∥∥∥2
+ 4

∥∥∥rσ1+ α
2 wr

∥∥∥2
+ 8B

∫
r4σ1+αw2

r .

In view of (3.12), we then see that

∥∥∥r2σ1+ α
2 wrr

∥∥∥2
+ 4

∥∥∥rσ1+ α
2 wr

∥∥∥2
� (1 + t)δ1λ<1 (E0 + E1) . (3.14)

Besides, by using (2.21), we have

∫
I
r2σαw2

r =

∫
I1

r2σαw2
r +

∫
I2

r2σαw2
r

�
∫
I1

r2σα+2w2
r +

∫
I2

σα+2
(
r2w2

r + w2
r + r2w2

rr

)
�
∥∥∥rσ1+ α

2 wr

∥∥∥2
+
∥∥∥r2σ1+ α

2 wrr

∥∥∥2
.

(3.15)
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Combining (3.14) and (3.15), we get

E0,1(t) � E0(t) + E1(t).

�

Higher-order elliptic estimates
For i � 1 and j � 0, applying ∂ j

t ∂
i−1
r to (3.10) yields that

γη̃1−3γ
r

[
rσ∂ j

t ∂
i+1
r w + (i + 3)σ∂ i

rw + (α+ i) rσr∂
j
t ∂

i
rw
]

= (1 + o(1))

[
r∂ j+2

t ∂ i−1
r w +

μ

(1 + t)λ
r∂ j+1

t ∂ i−1
r w

]
+A1 + (1 + o(1))A2,

(3.16)

where A1 and A2 are defined as follows

A1 := − γ

j∑
�=1

[
∂�

t

(
η̃1−3γ

r

)]
∂ j−�

t

[
rσ∂ i+1

r w + (i + 3)σ∂ i
rw + (α+ i) rσr∂

i
rw
]

−γ∂ j
t

{
η̃1−3γ

r

[
i−1∑
�=1

C�
i−1∂

�
r (rσ)∂ i+1−�

r w + 4
i−1∑
�=1

C�
i−1∂

�
rσ∂

i−�
r w

+ (α+ 1)
i−1∑
�=1

C�
i−1∂

�
r (rσr)∂

i−�
r w

]}
,

A2 := (i − 1)

(
∂ j+2

t ∂ i−2
r w +

μ

(1 + t)λ
∂ j+1

t ∂ i−2
r w

)
−2B(α+ 1)(2 − 3γ)∂ j

t

[
η̃1−3γ

r

(
r∂ i−1

r w + (i − 1)∂ i−2
r w

)]
+μ

j∑
�=1

C�
j∂

�
t (1 + t)−λ

[
r∂ j+1−�

t ∂ i−1
r w + (i − 1)∂ j+1−�

t ∂ i−2
r w

]
.

(3.17)

Summations
∑i−1

�=1 is set to be 0 when i = 1.
Multiply equation (3.16) by η̃3γ−1

r rσ(α+i−1)/2 and perform the spatial L2-norm of the product
to give

∥∥∥r2σ
α+i+1

2 ∂ j
t ∂

i+1
r w + (i + 3)rσ

α+i+1
2 ∂ j

t ∂
i
rw

+ (α+ i)r2σ
α+i−1

2 σr∂
j
t ∂

i
rw
∥∥∥2

� (1 + t)2(λ+1)
∥∥∥r2σ

α+i−1
2 ∂ j+2

t ∂ i−1
r w

∥∥∥2
+ (1 + t)2

∥∥∥r2σ
α+i−1

2 ∂ j+1
t ∂ i−1

r w
∥∥∥2

+ (1 + t)2(λ+1)
∥∥∥rσ

α+i−1
2 (A1,A2)

∥∥∥2
.
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Similar to the derivation of (3.12) to (3.15), we can then obtain

(1 + t)−2 j+δ1λ<1E j,i

=
∥∥∥r2σ

α+i+1
2 ∂ j

t ∂
i+1
r w

∥∥∥2
+
∥∥∥rσ

α+i−1
2 ∂ j

t ∂
i
rw
∥∥∥2

� (1 + t)2(λ+1)
∥∥∥r2σ

α+i−1
2 ∂ j+2

t ∂ i−1
r w

∥∥∥2
+ (1 + t)2

∥∥∥r2σ
α+i−1

2 ∂ j+1
t ∂ i−1

r w
∥∥∥2

+ (1 + t)2(λ+1)
∥∥∥rσ

α+i−1
2 (A1,A2)

∥∥∥2

� (1 + t)−2 j+δ1λ<1
(
E j+2,i−21i�2 + E j+11i=1 + E j+1,i−21i�2 + E j1i=1

)
+ (1 + t)2(λ+1)

∥∥∥rσ
α+i−1

2 (A1,A2)
∥∥∥2
.

(3.18)

We will use this estimate to prove the following lemma by mathematical induction.

Lemma 3.5. Under the assumption of (3.2) for suitably small positive number ε0 ∈ (0, 1),
then for j � 0, i � 1, and 0 � i + j � m

E j,i(t) �
i+ j∑
�=0

E�(t), t ∈ [0, T]. (3.19)

Proof. We prove this lemma by induction on i + j. As shown in lemma 3.4, (3.19) holds
for i + j � 1. For 1 � k � m − 1, we make the following induction hypothesis that for all
i � 1, j � 0, and i + j � k,

E j,i(t) �
i+ j∑
�=0

E�(t), i � 1, j � 0, i + j � k, (3.20)

it then suffices to prove (3.19) for i � 1, j � 0, and i + j = k + 1. We will bound Ek+1−�,� from
� = 1 to k + 1 step by step.

We estimateA1 andA2 given by (3.17) as follows. It follows from (2.8), (2.9) and remember
that σ = A − Br2 and σr = −2Br, after a rearrangement of the index �, then we have that

|A1| �
j∑

�=1

(1 + t)−(λ+1)−�
(

rσ
∣∣∣∂ j−�

t ∂ i+1
r w

∣∣∣+ ∣∣∣∂ j−�
t ∂ i

rw
∣∣∣)

+

j∑
�=0

(1 + t)−(λ+1)−�
(

r
∣∣∣∂ j−�

t ∂ i−1
r w

∣∣∣+ ∣∣∣∂ j−�
t ∂ i−2

r w
∣∣∣)

and

|A2| �
∣∣∣∂ j+2

t ∂ i−2
r w

∣∣∣+ (1 + t)−λ
∣∣∣∂ j+1

t ∂ i−2
r w

∣∣∣
+

j+1∑
�=1

(1 + t)−λ−�
(∣∣∣r∂ j+1−�

t ∂ i−1
r w

∣∣∣+ ∣∣∣∂ j+1−�
t ∂ i−2

r w
∣∣∣) .
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So by the definition of E j and E j,i and boundedness of σ, we can get

∥∥∥rσ
α+i−1

2 A1

∥∥∥2
�

j∑
�=1

(1 + t)−2(λ+1)−2�

(∥∥∥r2σ
α+i+1

2 ∂ j−�
t ∂ i+1

r w
∥∥∥2

+
∥∥∥rσ

α+i−1
2 ∂ j−�

t ∂ i
rw
∥∥∥2
)

+

j∑
�=0

(1 + t)−2(λ+1)−2�

(∥∥∥r2σ
α+i−1

2 ∂ j−�
t ∂ i−1

r w
∥∥∥2

+
∥∥∥rσ

α+i−1
2 ∂ j−�

t ∂ i−2
r w

∥∥∥2
)

� (1 + t)−2 j−2(λ+1)+δ1λ<1

j∑
�=1

E j−�,i

+

j∑
�=0

(1 + t)−2(λ+1)−2�

(∥∥∥r2σ
α+i−1

2 ∂ j−�
t ∂ i−1

r w
∥∥∥2

+
∥∥∥rσ

α+i−3
2 ∂ j−�

t ∂ i−2
r w

∥∥∥2
)

� (1 + t)−2 j−2(λ+1)+δ1λ<1

(
j∑

�=1

E j−�,i +

j∑
�=0

(
E j−�,i−21i�2 + E j−�1i=1

))
.

And by applying the estimate of A2, the same as above gives

∥∥∥rσ
α+i−1

2 A2

∥∥∥2

�
∥∥∥rσ

α+i−1
2 ∂ j+2

t ∂ i−2
r w

∥∥∥2
+ (1 + t)−2λ

∥∥∥rσ
α+i−1

2 ∂ j+1
t ∂ i−2

r w
∥∥∥2

+

j+1∑
�=1

(1 + t)−2λ−2�

(∥∥∥r2σ
α+i−1

2 ∂ j+1−�
t ∂ i−1

r w
∥∥∥2

+
∥∥∥rσ

α+i−1
2 ∂ j+1−�

t ∂ i−2
r w

∥∥∥2
)

�
∥∥∥rσ

α+i−3
2 ∂ j+2

t ∂ i−2
r w

∥∥∥2
+ (1 + t)−2λ

∥∥∥rσ
α+i−3

2 ∂ j+1
t ∂ i−2

r w
∥∥∥2

+

j+1∑
�=1

(1 + t)−2λ−2�

(∥∥∥r2σ
α+i−1

2 ∂ j+1−�
t ∂ i−1

r w
∥∥∥2

+
∥∥∥rσ

α+i−3
2 ∂ j+1−�

t ∂ i−2
r w

∥∥∥2
)

� (1 + t)−2 j−2(λ+1)+δ1λ<1
(
E j+2,i−21i�2 + E j+1,i−21i�2

)
+ (1 + t)−2 j−2(λ+1)+δ1λ<1

j+1∑
�=1

(
E j+1−�,i−21i�2 + E j+1−�1i=1

)
.
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Now combining all the above estimates for A1 and A2, we get∥∥∥σ α+i−1
2 (A1,A2)

∥∥∥2

�(1 + t)−2 j−2(λ+1)+δ1λ<1
(
E j+2,i−21i�2 + E j+1,i−21i�2

)

+ (1 + t)−2 j−2(λ+1)+δ1λ<1

⎛
⎜⎝ j∑

�=0

E� +
∑

0��� j
�+ι�i+ j−1

E�,ι

⎞
⎟⎠ .

Substituting this into (3.18), we get

E j,i �
(
E j+2,i−21i�2 + E j+1,i−21i�2

)
+

∑
0��� j

�+ι�i+ j−1

E�,ι +
j∑

�=0

E�.
(3.21)

In particularly, when i � 2, we have

E j,i � E j+2,i−2 + E j+1,i−2 +
∑

0��� j
�+ι�i+ j−1

E�,ι +
j∑

�=0

E�. (3.22)

In what follows, we use (3.22) and the induction hypothesis (3.20) to show that (3.19) holds
for i + j = k + 1. First, choosing j = k and i = 1 in (3.21) gives

Ek,1(t) �
∑

0���k
�+ι�k

E�,ι +
k∑

�=0

E�

which, together with (3.20) implies

Ek,1(t) �
k+1∑
�=0

E�(t). (3.23)

Similarly, in (3.22), by choosing j = k − 1, i = 2 and remembering that (3.11) indicates that
Ek+1,0 � Ek+1 and Ek,0 � Ek, then we have

Ek−1,2(t) � Ek+1(t) + Ek(t) +
∑

0���k−1
�+ι�k

E�,ι +
k−1∑
�=0

E� �
k+1∑
�=0

E�(t).

For Ek−2,3, it follows from (3.22), assumption (3.20) and (3.23) that

Ek−2,3(t) � Ek,1(t) + Ek−1,1(t) +
∑

0���k−2
�+ι�k

E�,ι +
k−2∑
�=0

E� �
k+1∑
�=0

E�(t).

The other cases can be handled similarly. So we have proved (3.19) when i + j = k + 1. This
finishes the proof of lemma 3.5. �
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3.2. Nonlinear Weighted Energy Estimates

In this subsection, we prove that the weighted energy E j(t) can be bounded by the initial data
for t ∈ [0, T].

Proposition 3.6. Suppose that (3.2) holds for a suitably small positive number ε0 ∈ (0, 1),
then for t ∈ [0, T]

E j(t) �
j∑

�=0

E�(0), j = 0, 1, . . . , m.

The proof of proposition 3.6 contains lemmas 3.7 and 3.8.
Basic energy estimates

Lemma 3.7. Suppose that (3.2) holds for a suitably small positive number ε0 ∈ (0, 1), then

E0(t) +
∫ t

0

∫ [
(1 + τ )1−δ1λ<1r4σαw2

τ

+ (1 + τ )−1−δ1λ<1r2σα+1
(
w2 + (rwr)2

)]
�E0(0), t ∈ [0, T].

(3.24)

Proof. The proof will be divided into two parts. One is for 0 < λ < 1, μ > 0 and the other
is for λ = 1, μ > 2.

Case 1: 0 < λ < 1, μ > 0
Multiplying (3.9) by (κ+ t)λr3wt, whereκ > 1 is a suitably large constant, to be determined

later, and integrating the product with respect to the spatial variable, then we can get

1
2

d
dt

∫
(κ+ t)λr4σαw2

t −
λ

2
(κ+ t)λ−1

∫
r4σαw2

t + μ

(
κ+ t
1 + t

)λ ∫
r4σαw2

t

+ (1 + o(1))(κ+ t)λη̃1−3γ
r

∫
σα+1

[
(3γw + γrwr)(r3wt)r − (2r3wwt)r

]
= 0.

(3.25)

A direct computation indicates that

(3γw + γrwr)(r3wt)r − (2r3wwt)r

= r2

[
3
2

(3γ − 2)w2 + (3γ − 2)wrwr +
γ

2
(rwr)

2

]
t

:= r2 1
2

[D(w)]t,

where by using γ > 1, we have

D(w) := (9γ − 6)w2 + (6γ − 4)wrwr + γ(rwr)
2 ≈ w2 + (rwr)

2.
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Inserting the above two inequalities into (3.25), we can get

1
2

d
dt

∫
(κ+ t)λ

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1D(w)

]

+

[
μ

(
κ+ t
1 + t

)λ

− λ

2
(κ+ t)λ−1

]∫
r4σαw2

t

− (1 + o(1))
1
2
∂t

(
(κ+ t)λη̃1−3γ

r

) ∫
r2σα+1D(w) = 0.

(3.26)

Using the fact that η̃rt � 0 and throwing the η̃rt term in (3.26), we simplify it to be

1
2

d
dt

∫
(κ+ t)λ

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1

D(w)
]

+

[
μ

(
κ+ t
1 + t

)λ

− λ

2
(κ+ t)λ−1

]∫
r4σαw2

t

− (1 + o(1))
λ

2
(κ+ t)λ−1η̃1−3γ

r

∫
r2σα+1D(w) � 0.

(3.27)

Now multiplying (3.9) by νr3w for some small ν > 0, to be determined later, and integrating
the product with respect to the spatial variable, then we can get

ν
d
dt

∫
r4σαwtw − ν

∫
r4σαw2

t +
νμ

2
d
dt

∫
1

(1 + t)λ
r4σαw2

+
νμλ

2(1 + t)λ+1

∫
r4σαw2

+ ν(1 + o(1))η̃1−3γ
r

∫
r2σα+1D(w) = 0.

(3.28)

Adding (3.27) and (3.28), we have

d
dt

∫
Ẽ0(r, t) +

νμλ

2(1 + t)λ+1

∫
r4σαw2

+

[
μ− λ

2
(κ+ t)λ−1 − ν

] ∫
r4σαw2

t

+ (1 + o(1))η̃1−3γ
r

(
ν − λ

2
(κ+ t)λ−1

)∫
r2σα+1D(w) � 0.

(3.29)

Here

Ẽ0(r, t) :=
(κ+ t)λ

2

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r σα+1

D(w)
]

+ νr4σαwtw +
νμ

2(1 + t)λ
r4σαw2.
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By using Cauchy–Schwartz inequality, we have

(κ+ t)λ

4

[
r4σαw2

t + η̃1−3γ
r r2σα+1D(w)

]
+
(νμ

2
− ν2

) r4

(1 + t)λ
σαw2

� Ẽ0(r, t) �

3(κ+ t)λ

4

[
r4σαw2

t + η̃1−3γ
r r2σα+1D(w)

]
+
(νμ

2
+ ν2

) r4

(1 + t)λ
σαw2.

(3.30)

Since λ < 1, by first choosing small ν and then large κ, we can get from (3.29) that

d
dt

∫
Ẽ0(r, t) +

νμλ

2(1 + t)λ+1

∫
r4σαw2

+
ν

2

∫
r4σαw2

t +
ν

2
η̃1−3γ

r

∫
r2σα+1D(w) � 0.

(3.31)

Now multiplying (3.31) by (κ+ t)λ−δ, we can achieve

d
dt

∫
(κ+ t)λ−δẼ0(r, t) − (λ− δ)(κ+ t)λ−1−δẼ0(r, t)

+
νμλ(κ+ t)λ−δ

2(1 + t)λ+1

∫
r4σαw2

+
ν(κ+ t)λ−δ

2

{∫
r4σαw2

t + η̃1−3γ
r

∫
r2σα+1D(w)

}
� 0.

(3.32)

By inserting the right side of (3.30) into (3.32), we have

d
dt

∫
(κ+ t)λ−δ

Ẽ0(r, t)

+
νμ(κ+ t)λ−δ

2(1 + t)λ+1

(
λ− (λ− δ)(1 +

2ν
μ

)

)
︸ ︷︷ ︸

L1

∫
r4σαw2

+ (κ+ t)λ−δ

(
ν

2
− 3

4
(κ+ t)λ−1

)
︸ ︷︷ ︸

L2

{∫
r4σαw2

t + η̃1−3γ
r

∫
σα+1D(w)

}
� 0.

Again, by choosing small ν and largeκ, for any δ > 0, we can assure that L1 and L2 are positive.
Then we have for some constant cλ,μ

d
dt

∫
(κ+ t)λ−δ

Ẽ0(r, t)

+ cλ,μ(κ+ t)λ−δ

{∫
r4σαw2

t + η̃1−3γ
r

∫
r2σα+1

D(w)

}
� 0.

(3.33)
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Now we multiply (3.27) by (κ+ t)1−δ to achieve that

1
2

d
dt

∫
(κ+ t)1+λ−δ

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1

D(w)
]

+ cλ,μ(κ+ t)1−δ

∫
r4σαw2

t

− cλ,μ(κ+ t)λ−δ

∫
η̃1−3γ

r r2σα+1
D(w) + r4σαw2

t � 0.

(3.34)

Multiplying a small number ν1 to (3.34) and then adding the resulting equation to (3.33), we
can get

d
dt

∫
E0(r, t) + cλ,μ(1 + t)1−δ

∫
r4σαw2

t

+ cλ,μ(1 + t)−1−δ

∫
r2σα+1(w2 + (rwr)

2) � 0,

(3.35)

where we have used the facts that D(w) ≈ w2 + (rwr)2 and η̃1−3γ ≈ (1 + t)−(λ+1). Here

E0(r, t) := (κ+ t)λ−δẼ0(r, t)

+ ν1(κ+ t)1+λ−δ
[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1D(w)

]
≈ (1 + t)1+λ−δr4σαw2

t + (1 + t)−δr4σαw2

+ (1 + t)−δr2σα+1(w2 + (rwr)2),

and
∫
E0(r, t)dr ≈ E0(t).

Now integrating (3.35) with respect to time variable from 0 to t. We get (3.24) in case of
0 < λ < 1, μ > 0.

Case 2: λ = 1, μ > 2
Multiplying (3.9) by (1 + t)2r3wt and integrating the product with respect to the spatial

variable, then we can get

1
2

d
dt

∫
(1 + t)2r4σαw2

t + (μ− 1)(1 + t)
∫

r4σαw2
t

+ (1 + o(1))(1 + t)2η̃1−3γ
r

∫
1
2

r2σα+1[D(w)]t = 0.

By using that η̃rt � 0, we then have

d
dt

∫
1
2

(1 + t)2
[
r4σαw2

t + (1 + o(1))r2σα+1η̃1−3γ
r D(w)

]
+ (μ− 1)(1 + t)

∫
r4σαw2

t

− (1 + o(1))(1 + t)η̃1−3γ
r

∫
r2σα+1D(w) � 0.

(3.36)
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Now multiplying (3.9) by ν(1 + t)r3w for some positive ν to be determined later, and
integrating the product with respect to the spatial variable, then we can get

ν
d
dt

∫
(1 + t)r4σαwtw − ν(1 + t)

∫
r4σαw2

t +
ν(μ− 1)

2
∂t

∫
r4σαw2

+ ν(1 + o(1))(1 + t)η̃1−3γ
r

∫
r2σα+1D(w) = 0.

(3.37)

Adding (3.36) and (3.37), we have

d
dt

∫
E0(r, t) + (μ− 1 − ν)(1 + t)

∫
r4σαw2

t

+ (ν − 1)(1 + o(1))(1+ t)η̃1−3γ
r

∫
r2σα+1D(w) � 0.

(3.38)

Here

E0(r, t) :=
(1 + t)2

2

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1D(w)

]
+ ν(1 + t)r4σαwtw +

ν(μ− 1)
2

r4σαw2.

Now, since μ > 2, we assume μ = 2 + 2κ for some positive κ. Choosing ν = 1 + κ, we can
achieve

E0(r, t) :=
(1 + t)2

2

[
r4σαw2

t + (1 + o(1))η̃1−3γ
r r2σα+1D(w)

]
+ (1 + κ)(1 + t)r4σαwtw +

(1 + κ)(1 + 2κ)
2

r4σαw2.

By using Cauchy–Shwartz inequality to absorb the term involving wtw and remembering that
η̃1−3γ

r ≈ (1 + t)−2, it is not hard to deduce that

E0(r, t) ≈ (1 + t)2r4σαw2
t + r2σα+1

(
w2 + (rwr)

2
)
+ r4σαw2,

∫
E0(r, t)dx ≈ E0(t).
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Then (3.38) becomes

d
dt

∫
E0(r, t) + κ(1 + t)

∫
r4σαw2

t

+ κ(1 + t)(1 + o(1))η̃1−3γ
r

∫
r2σα+1D(w) � 0.

(3.39)

Now integrating (3.39) with respect to time variable from 0 to t. We get (3.24) in the case of
λ = 1, μ > 2. �

Higher-order energy estimates
For k � 1, applying ∂k

t to (3.9) yields that

rσα∂k+2
t w +

μ

(1 + t)λ
rσα∂k+1

t w + μrσα
k∑

�=1

C�
k∂

�
t (1 + t)−λ∂k+1−�

t w

− (1 + o(1))η̃1−3γ
r

{[
σα+1(3γ∂k

t w + γr∂k
t wr)

]
r
− 2∂k

t w[σα+1]r

}
= (1 + o(1))

k∑
�=1

C�
k∂

�
t

(
η̃1−3γ

r

)
∂k−�

t

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
.

After rearrangement, we rewrite it as

rσα∂k+2
t w +

μ

(1 + t)λ
rσα∂k+1

t w

− (1 + o(1))η̃1−3γ
r

{[
σα+1(3γ∂k

t w + γr∂k
t wr)

]
r
− 2∂k

t w[σα+1]r

}
:=B1 + B2,

where

B1: = −μrσα
k∑

�=1

C�
k∂

�
t (1 + t)−λ∂k+1−�

t w,

B2: = (1 + o(1))
k∑

�=1

C�
k∂

�
t

(
η̃1−3γ

r

)
∂k−�

t

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
.

Lemma 3.8. Suppose that (3.2) holds for some small positive number ε0 ∈ (0, 1), then for
all j = 1, . . . , m

E j(t) +
∫ t

0

∫ [
(1 + τ )2 j+1−δ1λ<1r4σα

(
∂ j+1
τ w

)2

+ (1 + τ )2 j−1−δ1λ<1r2σα+1
(
(∂ j

τw)2 + (r∂ j
τwr)

2
)]

dr dτ

�
j∑

�=0

E�(0), t ∈ [0, T].

(3.40)

Proof. We use induction to prove (3.40). As shown in lemma 3.7 we know that (3.40)
holds for j = 0. For 1 � k � m, we make the induction hypothesis that (3.40) holds for all
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j = 0, 1, . . . , k − 1, i.e.

E j(t) +
∫ t

0

∫ [
(1 + τ )2 j+1−δ1λ<1r4σα

(
∂ j+1
τ w

)2

+ (1 + τ )2 j−1−δ1λ<1r2σα+1
(
(∂ j

τw)2 + (r∂ j
τwr)2

)]
d rdτ

�
j∑

�=0

E�(0), t ∈ [0, T], 0 � j � k − 1.

(3.41)

It suffices to prove (3.40) holds for j = k under the induction hypothesis (3.41). We divide
the proof into three steps.

Step one: setup of the linearized main term
If we view ∂k

t w as w in the proof of lemma 3.7, we can get a similar formula with (3.35)
and (3.39) as follows

d
dt

∫
Ek(t)dx + (1 + t)1−δ1λ<1

∫
r4σα(∂k+1

t w)2dx

+ (1 + t)−1−δ1λ<1

∫
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)2

)
� (1 + t)1+λ−δ1λ<1

∫
(B1 + B2) r3∂k+1

t w + (1 + t)λ−δ1λ<1

∫
(B1 + B2) r3∂k

t w

:=
4∑

i=1

Ji

(3.42)

where

Ek(r, t) ≈ (1 + t)1+λ−δ1λ<1r4σα(∂k+1
t w)2

+ (1 + t)−δ1λ<1
[
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)2

)
+ r4σα(∂k

t w)2
]

,
(3.43)

and

(1 + t)2k

∫
Ek(r, t) ≈ Ek(t).

Step two: estimates of the right hand terms in (3.42)
Next we show that the right hand terms in (3.42) can be bounded by the left hand of (3.42)

and the induction assumption (3.41).
In the process of performing estimates for Ji, J1 and J3 are the easiest terms, J2 is the most

difficult term which will be handled by integration by parts both on the space variable r and
the time variable t, and estimate of J4 is a consequence of that for J2.

It is easy to see that

|B1| � rσα
k∑

�=1

(1 + t)−λ−�|∂k+1−�
t w|.
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Then by using Cauchy–Schwartz inequality, we have

J1 �
k∑

�=1

(1 + t)1−δ1λ<1−�

∫
r4σα|∂k+1−�

t w‖∂k+1
t w|

� ε(1 + t)1−δ1λ<1

∫
r4σα|∂k+1

t w|2

+Cε

k∑
�=1

(1 + t)1−δ1λ<1−2�
∫

r4σα|∂k+1−�
t w|2

� ε(1 + t)1−δ1λ<1

∫
r4σα|∂k+1

t w|2

+Cε(1 + t)−2k
k∑

�=1

(1 + t)2(k−�)+1−δ1λ<1

∫
r4σα|∂k+1−�

t w|2,

and also the same estimate applied to J3 gives

J3 � ε(1 + t)1−δ1λ<1

∫
r4σα|∂k+1

t w|2

+Cε(1 + t)−2k
k∑

�=1

(1 + t)2(k−�)−1−δ1λ<1

∫
r4σα|∂k−�

t w|2.

Combining the above two estimates, we have

|J1|+ |J3| � ε(1 + t)1−δ1λ<1

∫
r4σα|∂k+1

t w|2

� (1 + t)−2k
k−1∑
�=0

(1 + t)2�+1−δ1λ<1

∫
r4σα|∂�+1

t w|2.

The first term on the right-hand of the above inequality can be absorbed by the left of (3.42),
while the second term on the right-hand can be controlled by the induction assumption.

For J2, we need to use integration by parts. First we use integration by parts on r to get

J2 = (1 + t)1+λ−δ1λ<1 (1 + o(1))
k∑

�=1

C�
k∂

�
t

(
η̃1−3γ

r

)
×
∫

∂k−�
t

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
r3∂k+1

t w

�
k∑

�=1

(1 + t)−�−δ1λ<1

∣∣∣∣
∫

σα+1
{

(3γ∂k−�
t w + γr∂k−�

t wr)
(
r3∂k+1

t w
)

r

− 2
(
r3∂k−�

t w∂k+1
t w

)
r

}∣∣
=

k∑
�=1

(1 + t)−�−δ1λ<1

∣∣∣∣
∫

r2σα+1
{

(9γ − 6)∂k−�
t w∂k+1

t w

+(3γ − 2)r∂k−�
t w∂k+1

t wr + (3γ − 2)r∂k−�
t wr∂

k+1
t w

+ γr2∂k−�
t wr∂

k+1
t wr

}∣∣ .
Then, we extract a time derivative term (denoted below by J2wave), which can be absorbed by
the first term of the left side of (3.42). Continuous calculation of the above inequality implies
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that

The same estimates as J1 and J3 imply that

J2line � ε(1 + t)−1−δ1λ<1

∫
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)

2
)

+ (1 + t)−2k
k−1∑
�=0

(1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)
.

For simplicity, we denote for � � 1,

F� := r2σα+1
{

(9γ − 6)∂k−�
t w∂k

t w

+ (3γ − 2)r∂k−�
t w∂k

t wr + (3γ − 2)r∂k−�
t wr∂

k
t w

+ γr2∂k−�
t wr∂

k
t wr

}
.

Then J2wave can be estimated as follows.

J2wave �
∣∣∣∣ d
dt

∫
(1 + t)−�−δ1λ<1F�

∣∣∣∣
+ (�+ δ1λ<1)(1 + t)−1−�−δ1λ<1

∣∣∣∣
∫

F�

∣∣∣∣ .
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The second term in the above have the same estimate as J1, J3 and J2line. So at last we get

J2 �
∣∣∣∣∣ d
dt

k∑
�=1

∫
(1 + t)−�−δ1λ<1F�

∣∣∣∣∣
+ ε(1 + t)−1−δ1λ<1

∫
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)

2
)

+ (1 + t)−2k
k−1∑
�=0

(1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)
.

For J4, after integration by parts on r, it will have the same estimates as J1, J3 and J2line. We
proceed it as follows.

J4 = (1 + t)λ−δ1λ<1 (1 + o(1))
k∑

�=1

∂�
t

(
η̃1−3γ

r

)

×
∫

∂k−�
t

{[
σα+1(3γw + γrwr)

]
r
− 2w[σα+1]r

}
r3∂k

t w

�
k∑

�=1

(1 + t)−1−�−δ1λ<1

∣∣∣∣
∫

σα+1
{

(3γ∂k−�
t w + γr∂k−�

t wr)
(
r3∂k

t w
)

r

− 2
(
r3∂k−�

t w∂k
t w

)
r

}∣∣
=

k∑
�=1

(1 + t)−1−�−δ1λ<1

∣∣∣∣
∫

r2σα+1
{

(9γ − 6)∂k−�
t w∂k

t w

+ (3γ − 2)r∂k−�
t w∂k

t wr + (3γ − 2)r∂k−�
t wr∂

k
t w

+ γr2∂k−�
t wr∂

k
t wr

}∣∣ .
J4 has the same estimates as J2line.

Combining all the above estimates for terms Ji, we can arrive from (3.42) that

d
dt

{∫
Ek(t) ±

k∑
�=1

∫
(1 + t)−�−δ1λ<1F�

}
+ (1 + t)1−δ1λ<1

∫
r4σα(∂k+1

t w)2dx

+ (1 + t)−1−δ1λ<1

∫
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)

2
)

� (1 + t)−2k
k−1∑
�=0

{
(1 + t)2�+1−δ1λ<1

∫
r4σα|∂�+1

t w|2

+ (1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)}
.
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Step three: finishing proof of lemma 3.8
Multiplying the above inequality by (1 + t)2k, we can get

d
dt

{
(1 + t)2k

∫
Ek(t) ±

k∑
�=1

∫
(1 + t)2k−�−δ1λ<1F�

}

−2k(1 + t)2k−1
∫ [

Ek(t) +
k∑

�=1

∫
(1 + t)−�−δ1λ<1F�

]

+N
∫ [

(1 + t)2k+1−δ1λ<1r4σα(∂k+1
t w)2

+ (1 + t)2k−1−δ1λ<1r2σα+1
(
(∂k

t w)2 + (r∂k
t wr)

2
)]

�
k−1∑
�=0

{
(1 + t)2�+1−δ1λ<1

∫
r4σα|∂�+1

t w|2

+ (1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)

2
)}

,

(3.44)

where N is a suitable large constant.
For the term containing F�, using Cauchy–Schwartz inequality, for a small ν, we have∣∣∣∣∣(1 + t)−�−δ1λ<1

k∑
�=1

∫
F�

∣∣∣∣∣
� ν(1 + t)−δ1λ<1

∫
r2σα+1

(
(∂k

t w)2 + (r∂k
t wr)

2
)

+ (1 + t)−2k
k−1∑
�=0

(1 + t)2�−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)
.

(3.45)

By choosing sufficiently small ν, we have

(1 + t)2k

∫
Ek(t) ±

k∑
�=1

∫
(1 + t)2k−�−δ1λ<1F�

� Ek −
k−1∑
�=0

E�.

(3.46)

Also from (3.43) and (3.45), we have∣∣∣∣∣2k(1 + t)2k−1
∫ [

Ek(t) +
k∑

�=1

∫
(1 + t)−�−δ1λ<1F�

]∣∣∣∣∣
� (1 + t)2k+λ−δ1λ<1

∫
r4σα(∂k+1

t w)2

+ (1 + t)2k−1−δ1λ<1

∫
r4σα(∂k

t w)2

+

k∑
�=0

(1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)
.

(3.47)
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Inserting (3.47) into (3.44) and by choosing sufficiently large N and using induction
assumption (3.41), we can get

d
dt

{
(1 + t)2k

∫
Ek(t) ±

k∑
�=1

∫
(1 + t)2k−�−δ1λ<1F�

}

+

∫ [
(1 + t)2k+1−δ1λ<1r4σα(∂k+1

t w)2

+ (1 + t)2k−1−δ1λ<1r2σα+1
(
(∂k

t w)2 + (r∂k
t wr)2

)]
�

k−1∑
�=0

{
(1 + t)2�+1−δ1λ<1

∫
r4σα|∂�+1

t w|2

+ (1 + t)2�−1−δ1λ<1

∫
r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)

2
)}

.

Integrating the above inequality from 0 to t and remembering (3.46) and (3.41), we can get

Ek(t) −
k−1∑
�=0

E�(t) +
∫ t

0

∫ [
(1 + τ )2k+1−δ1λ<1r4σα(∂k+1

t w)2

+ (1 + τ )2k−1−δ1λ<1r2σα+1
(
(∂k

t w)2 + (r∂k
t wr)

2
)]

�
k∑

�=0

E�(0) +
k−1∑
�=0

∫ t

0

∫
(1 + τ )2�+1−δ1λ<1r4σα

(
∂�+1

t w
)2

+

k−1∑
�=0

∫ t

0

∫
(1 + τ )2�−1−δ1λ<1r2σα+1

(
(∂�

t w)2 + (r∂�
t wr)2

)

�
k∑

�=0

E�(0).

Again using (3.41), we can get from the above inequality that

Ek(t) +
∫ t

0

∫ [
(1 + τ )2k+1−δ1λ<1r4σα(∂k+1

t w)2

+ (1 + τ )2k−1−δ1λ<1r2σα+1
(
(∂k

t w)2 + (r∂k
t wr)2

)]
�

k∑
�=0

E�(0).

This finishes the proof of lemma 3.8. �
Then propositions 3.3 and 3.6 together imply (3.6), which proves theorem 2.1 by continu-

ation argument.

Remark 3.9. In the proof of theorem 2.1, there are two points we need to give an explanation.
One is that it seems that we seldom use the L∞ estimate in lemma 3.1 and the other is that
when performing the nonlinear energy estimates in proposition 3.6, it seems that it doesn’t
involve in the elliptic estimates in proposition 3.3 and can be self contained. But the fact is
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not so, because lemma 3.1 and proposition 3.3 mainly play a role in the nonlinear lower order
derivative quadratic or multi-power’s terms’ estimates when we use Taylor formula to expand
the nonlinear term in (3.7). Since we only use the simplified equation (3.9) which only involves
in the linear highest order derivative term to catch the essential structure of equation (3.7), the
effectiveness of lemma 3.1 and proposition 3.3 can not be reflected well in the proof. Interesting
readers can refer to Zeng [48] for more detailed calculation on how they work.

4. Proof of theorem 2.4

Proof. In this section, we prove theorem 2.4. First, it follows from (2.3), (2.6), (2.10), and
that for (r, t) ∈ I × [0,∞)

ρ(η(r, t), t) − ρ̄(η̄(r, t), t) =
r2ρ̄0(r)

η2(r, t)ηr(r, t)
− r2ρ̄0(r)

η̄2(r, t)η̄r(r, t)
,

and

u(η(r, t), t) − ū(η̄(r, t), t) = (rw + rh)t(r, t).

Hence, by virtue of (3.1), (2.8), (2.9) and the boundedness of h, we have, for (r, t) ∈ I × [0,∞),

|ρ(η(x, t), t) − ρ̄(η̄(x, t), t)|

�
(
A − Br2

) 1
γ−1 (1 + t)−

4(λ+1)
3γ−1

(
(1 + t)

δ
2 1λ<1

√
E(0) + 1

)
and

|u(η(x, t), t) − ū(η̄(x, t), t)|

�r(1 + t)−1
(

(1 + t)
δ
2 1λ<1

√
E(0) + 1

)
.

Then (2.15) and (2.16) follow. It follows from (2.5), (2.6) and (2.10) that

R(t) = η
(√

A/B, t
)
= (η̃ + rw)

(√
A/B, t

)
= (η̄ + rh + rw)

(√
A/B, t

)
=
√

A/B
(

(1 + t)
λ+1
3γ−1 + h(t) + w(

√
AB−1, t)

)
.

Again using the boundedness of h and (3.1), we have

√
A/B(1 + t)

λ+1
3γ−1 − C(1 + t)

δ
2 1λ<1

√
E(0)

�R(t) �√
A/B(1 + t)

λ+1
3γ−1 + C

(
(1 + t)

δ
2 1λ<1

√
E(0) + 1

)
,
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which implies (2.17). For k = 1, 2, 3

dkR(t)
dtk

= ∂k
t η̃(

√
A/B, t) + (r∂k

t w)(
√

A/B, t).

So using (2.8), (2.9) and (3.1), we get (2.18). �
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[14] Hadžić M and Jang J 2018 Expanding large global solutions of the equations of compressible fluid
mechanics Invent. Math. 214 1205–66

[15] Hsiao L and Liu T-P 1992 Convergence to nonlinear diffusion waves for solutions of a system of
hyperbolic conservation laws with damping Commun. Math. Phys. 143 599–605

[16] Huang F, Marcati P and Pan R 2005 Convergence to the Barenblatt solution for the compressible
Euler equations with damping and vacuum Arch. Ration. Mech. Anal. 176 1–24

3242

https://orcid.org/0000-0002-9715-9506
https://orcid.org/0000-0002-9715-9506
https://doi.org/10.1007/bf02097370
https://doi.org/10.1007/bf02097370
https://doi.org/10.1007/bf02097370
https://doi.org/10.1007/bf02097370
https://doi.org/10.1016/j.jde.2019.11.002
https://doi.org/10.1016/j.jde.2019.11.002
https://doi.org/10.1016/j.jde.2019.11.002
https://doi.org/10.1016/j.jde.2019.11.002
https://doi.org/10.1007/s00220-010-1028-5
https://doi.org/10.1007/s00220-010-1028-5
https://doi.org/10.1007/s00220-010-1028-5
https://doi.org/10.1007/s00220-010-1028-5
https://doi.org/10.1002/cpa.20344
https://doi.org/10.1002/cpa.20344
https://doi.org/10.1002/cpa.20344
https://doi.org/10.1002/cpa.20344
https://doi.org/10.1007/s00205-012-0536-1
https://doi.org/10.1007/s00205-012-0536-1
https://doi.org/10.1007/s00205-012-0536-1
https://doi.org/10.1007/s00205-012-0536-1
https://doi.org/10.1016/j.jde.2017.12.012
https://doi.org/10.1016/j.jde.2017.12.012
https://doi.org/10.1016/j.jde.2017.12.012
https://doi.org/10.1016/j.jde.2017.12.012
https://doi.org/10.1002/cpa.3160070206
https://doi.org/10.1002/cpa.3160070206
https://doi.org/10.1002/cpa.3160070206
https://doi.org/10.1002/cpa.3160070206
https://arxiv.org/abs/2008.06704
https://doi.org/10.1016/j.jde.2011.10.019
https://doi.org/10.1016/j.jde.2011.10.019
https://doi.org/10.1016/j.jde.2011.10.019
https://doi.org/10.1016/j.jde.2011.10.019
https://doi.org/10.1016/j.matpur.2015.11.010
https://doi.org/10.1016/j.matpur.2015.11.010
https://doi.org/10.1016/j.matpur.2015.11.010
https://doi.org/10.1016/j.matpur.2015.11.010
https://doi.org/10.1137/19m1272846
https://doi.org/10.1137/19m1272846
https://doi.org/10.1137/19m1272846
https://doi.org/10.1137/19m1272846
https://doi.org/10.1002/cpa.21721
https://doi.org/10.1002/cpa.21721
https://doi.org/10.1002/cpa.21721
https://doi.org/10.1002/cpa.21721
https://doi.org/10.1007/s00222-018-0821-1
https://doi.org/10.1007/s00222-018-0821-1
https://doi.org/10.1007/s00222-018-0821-1
https://doi.org/10.1007/s00222-018-0821-1
https://doi.org/10.1007/bf02099268
https://doi.org/10.1007/bf02099268
https://doi.org/10.1007/bf02099268
https://doi.org/10.1007/bf02099268
https://doi.org/10.1007/s00205-004-0349-y
https://doi.org/10.1007/s00205-004-0349-y
https://doi.org/10.1007/s00205-004-0349-y
https://doi.org/10.1007/s00205-004-0349-y


Nonlinearity 35 (2022) 3209 X Pan

[17] Huang F, Pan R and Wang Z 2011 L1 convergence to the Barenblatt solution for compressible Euler
equations with damping Arch. Ration. Mech. Anal. 200 665–89

[18] Hou F and Yin H 2017 On the global existence and blowup of smooth solutions to the multi-
dimensional compressible Euler equations with time-depending damping Nonlinearity 30
2485–517

[19] Hou F, Witt I and Yin H 2018 Global existence and blowup of smooth solutions of 3D potential
equations with time-dependent damping Pac. J. Math. 292 389–426

[20] Jang J 2014 Nonlinear instability theory of Lane–Emden stars Commun. Pure Appl. Math. 67
1418–65

[21] Jang J and Masmoudi N 2009 Well-posedness for compressible Euler equations with physical
vacuum singularity Commun. Pure Appl. Math. 62 1327–85

[22] Jang J and Masmoudi N 2015 Well-posedness of compressible Euler equations in a physical vacuum
Commun. Pure Appl. Math. 68 61–111

[23] Ji S and Mei M 2020 Optimal decay rates of the compressible Euler equations with time-dependent
damping in R

n: (I) under-damping case (arXiv:2006.00401)
[24] Ji S and Mei M 2020 Optimal decay rates of the compressible Euler equations with time-dependent

damping in R
n: (II) over-damping case (arXiv:2006.00403)

[25] Kato T 1975 The Cauchy problem for quasi-linear symmetric hyperbolic systems Arch. Ration.
Mech. Anal. 58 181–205

[26] Kreiss H-O 1970 Initial boundary value problems for hyperbolic systems Commun. Pure Appl.
Math. 23 277–98

[27] Kufner A, Maligranda L and Persson L E 2007 The Hardy Inequality. About its History and Some
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