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Abstract

We are interested in the multi-dimensional compressible viscoelastic flows of Oldroyd type, which is
one of non-Newtonian fluids exhibiting the elastic behavior. In order to capture the damping effect of the
additional deformation tensor, to the best of our knowledge, the “div-curl” structural condition plays a key
role in previous efforts. Our aim of this paper is to remove the structural condition and prove a global
existence of strong solutions to compressible viscoelastic flows in critical spaces. In absence of compatible
conditions, the new effective flux is introduced, which enables us to capture the dissipation arising from
combination of density and deformation tensor. The partial dissipation in non-Newtonian compressible
fluids, is weaker than that of classical Navier-Stokes equations.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

In the Eulerian description, a general compressible fluid evolving in some open set Q2 of
R™(n > 2) is characterized at every material point x in 2 and time ¢ € R by its velocity field u =
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u(t,x) € R”, density p = p(t,x) € Ry, pressure I1 = I1(z, x) € R. In the absence of external
forces and heat diffusion, those physical quantities are governed by

e The mass conservation:

orp +div (pu) =0.

e The momentum conservation:

ot (pu) +div (pu @ u) =div S — VII.

In the regime of Newtonian fluids, S stands for the viscous stress tensor, which is given by
S £ Adivuld +2uD(u).

Here A and p are the viscosity coefficients and D (u) £ %(Vu + TVu) is the deformation tensor.
So one can get the baratropic Navier-Stokes equations of compressible fluids:

9 p +div (pu) =0,

(1.1)
0 (pu) +div (pu @ u) — div (2,uD(u) + Adiv uId) + VII=0.

In the last several decades, there have been many attempts to capture different phenomena for
non-Newtonian fluids such as those in the Ericksen-Rivlin models, the high-grade fluid models,
the Ladyzhenskaya models and so on. One particular subclass of non-Newtonian fluids is of

T
Oldroyd type, that is, S 2 Adiv uId + 2D () + (YEELE) | where the deformation tensor F
satisfies the transport equation

F+u-VF=VuF.

Formulations about viscoelastic flows of Oldroyd-B type are first introduced by Oldroyd [38]
and are extensively discussed in [1,30]. Consequently, we are concerned with the following com-
pressible viscoelastic flow of Oldroyd type

9 p +div (pu) =0,

3 (pu) +div (pu ® u) —div (2uD(u) + Adiv uld) + VII
. (Wp(F)FT

Zdw( Fd(etl): )’

F+u-VF=VuF,

(1.2)

where W (F) is the elastic energy. Wr (F) takes the Piola-Kirchhoff form and (W%(; )FF T) is the

Cauchy-Green tensor, respectively. For simplicity, a special form of the Hookean linear elasticity
has been taken:

o 2
W(F)=5|F|,
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where o > 0 is elastic parameter. The initial data are supplemented by

(p, F;u)li=0 = (po(x), Fo(x); up(x)), xeR™ (1.3)

In the present paper, we shall investigate the existence of global solutions to the Cauchy
problem (1.2)-(1.3), as initial data are the perturbation of constant equilibrium state (1, 7, 0).
First of all, let us recall those previous efforts for incompressible viscoelastic flow, which reads
as

du—+u-Vu—pAu+ VIl =div(FFT),
F+u-VF=VuF, (1.4)
divu = 0.

For incompressible Oldroyd models, Renardy [42] in 1985 investigated the existence and
uniqueness of slow steady flows of viscoelastic fluids. The global existence of a small smooth
solution was firstly established by Guillopé and Saut [19]. Later, they [20] investigated shearing
motions and Poiseuille flows of Oldroyd fluids with retardation time, which exist for arbitrary
time and arbitrary initial data. The case of L*-L" solutions has been treated by Fernandez Cara,
Guillén and Ortega in [17]. In higher dimensions, Lions and Masmoudi [37] constructed global
weak solutions for general initial conditions. Chemin and Masmoudi [8] in the critical Besov
space proved the existence and uniqueness of local and global solutions. Constantin and Kliegel
[14] established the global regularity of strong solutions for 2D Oldroyd-B fluids with additional
diffusive stress. Elgindi and Rousset [ 16] proved the global regularity of smooth solutions for 2D
generalized Oldroyd-B type models without diffusive velocity. If the damping is absent in the
classical Oldroyd case, the velocity viscosity alone may not be sufficient to guarantee the regu-
larity of (1.4). The “div-curl” structure is full explored by Lin, Liu and Zhang [35], Lei, Liu and
Zhou [32] and it was shown that the Cauchy problem of (1.4) admitted the global classical solu-
tion in Sobolev spaces. Since then, there are a number of efforts available under the assumption
of “div-curl” structure, see for example [11,36,44,47]. In three dimensions, the third author [45]
proved the global existence of small solutions to the incompressible Oldroyd-B model without
damping mechanism. Actually, her results can be also applied to the system (1.4), where the “div-
curl” compatible condition is no longer needed. Recently, Chen and Hao [9] proved the global
critical regularity in the Besov space based on the observation of Green’s matrix. The reader is
also referred to [23,34] for the research summary of (1.4).

In this paper, we are concerned with the compressible viscoelastic flows. The mathematical
modeling of compressible viscoelastic fluids was proposed in the earlier paper [15] due to Beris
and Edwards (see also their book [3] or [5] and references therein). Fixed some positive time,
Lei and Zhou [33] established the global existence of classical solutions to two-dimensional
case, when initial data are subjected to incompressible constraints. Furthermore, the incompress-
ible limit to (1.4) was rigorously justified. The existence and uniqueness of local-in-time strong
solutions with large initial data for the three-dimensional compressible viscoelastic flow was es-
tablished by Hu and Wang [24]. Compared to the study of (1.4), the major difficulty for proving
the global existence of (1.2) lies in the lacking of the dissipative estimates for the deformation
and density. Inspired by the investigation of (1.4) (see [32,35]), Hu-Wang [25] and Qian-Zhang
[41] independently explored intrinsic properties of (1.2) such that the desired dissipation can be
available. Indeed, their compatible conditions are listed as follows
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podetFo=1, V-(poFl)=0 (1.5)

and
FloF — F/o Fik = 0. (1.6)

The divergence constraint (1.5) makes sure that the gradient of F behaves well in the elementary
energy method, and (1.6) is used to control the quantity V x F. The conditional equivalence of
(1.5)-(1.6) was shown by [27].

On the other hand, as in many works dedicated to compressible Navier-Stokes equations,
scaling invariance plays a fundamental role. The reason is that whenever such an invariance
exists, suitable critical quantities (that is, having the same scaling invariance as the system under
consideration) control the possible finite time blow-up and achieve the global existence of strong
solutions. Danchin [12] firstly solved (1.1) globally in critical homogeneous Besov spaces of L2
type. Later, the result has been extended to those critical Besov spaces that are not related to L2,
by Charve-Danchin [6] and Chen-Miao-Zhang [10] independently. Recently, Danchin and the
second author [13,43] showed the optimal decay rates in general L7 critical spaces. A natural
(non Newtonian) extension in analysis is to consider (1.2). Notice that (1.2) is invariant by the
transformation

p(t,x)~ p(€%1,€x),  u(t,x)~ Cu(l’t,x), F(t,x)~ F(%t, €x) £>0,

up to a change of the pressure term IT into £2TT and the constant « into £?c. Under the assump-
tions (1.5)-(1.6), Hu-Wang [25] and Qian-Zhang [41] independently deduced a priori dissipation
estimates for complicated hyperbolic-parabolic systems, which lead to the existence of global so-
lutions in the critical L> Besov space. Hu-Wu [26] proved the global existence of strong solutions
to (1.2) as initial data are the small perturbation (1, 7; 0) in H 2(R3). Furthermore, it was shown
that those solutions converged to equilibrium state at the decay rates of heat kernel. Barrett, Lu
and E. Siili [4] investigated 2D compressible Oldroyd-B type model which is derived from the
compressible Navier-Stokes-Fokker-Planck system and proved the existence of large data global-
in-time finite-energy weak solutions. Huo and Yong [28] studied the structural stability of a 1D
compressible viscoelastic fluid model which was proposed by Ottinger [39] and established the
global existence of smooth solutions near equilibrium.

Based on [25,41], the first two authors [40] established the global existence and time-decay
estimates of solutions to (1.2) in the general L? Besov space. The argument of effective ve-
locities developed by Haspot [21] was mainly employed, which is analogue of Hoff’s viscous
effective flux in [22]. Let us point out that the dissipation of (1.2) with constraints (1.5)-(1.6) is
standard, which is similar to that of the compressible Navier-Stokes equations (1.1). A question
thus follows. Is it possible to find any new dissipative ingredients on non Newtonian compress-
ible viscoelastic flows without (1.5)-(1.6)? Here we aim at recasting a global-in-time existence
of strong solutions in the framework of spatially Besov spaces with critical regularity without
(1.5)-(1.6) that has been playing the key role in previous efforts.

Before writing out the main statement of our paper, let us introduce some notations and def-
initions first. To begin with, we need a Littlewood-Paley decomposition. There exist two radial
smooth functions ¢(x), x (x) supported in the annulus C = {§ € R" : 3/4 < |&| < 8/3} and the
ball B ={& € R": |&| <4/3}, respectively such that
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Yo e =1 VeeR"\(0}.

JEZ

The homogeneous dyadic blocks A ;j and the homogeneous low-frequency cut-off operators S i
are defined for all j € Z by

Aju=pQ@ 7 D)f, S$if=Y Af=xQ7/Df.

k<j—1
We denote by Z'(R") the dual space of
ZR"M 2 ({f e SR :0%f(0) =0, Vo € (N UO)"}.

Let us now turn to the definition of the main functional spaces and norms that will come into
play in our paper.

Definition 1.1. Let s be a real number and (p,r) be in [, o0]?. The homogeneous Besov space
B;,r consists of those distributions u € Z'(R") such that

a3, é(Zy”m u||L,,) < 0.
JEZL

Also, we introduce the hybrid Besov space since our analysis will be performed at different
frequencies.

Definition 1.2. Let s, 0 € R. The hybrid Besov space 57 is defined by
B 2 (f € Z'®R") 11|l g < oo},

with

1 f e 2 Y 2%NAcf 2+ D 2N ALF I 2,

ZkSRO 2k>R0

where Ry is a fixed constant to be defined. 5% is the usual Besov space B; | if 0 =s. In the
case where u depends on the time variable, we consider the space-time mixed spaces as follows

el g o 1= [ Migso | oo 1)

In addition, we introduce another space-time mixed spaces, which is usually referred to Chemin-
Lerner’s spaces. The definition is given by

A ks A k A
lallze e & D 29N AN oo ryez + ) 2N Akl Lao.7y 2
2k<Ry 2k> Ry
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'I:he ir}dex T will be omitted if 7 = 400 and we shall denote by C~b (Bs’") t~he §ubset of fqnctions
L (359) which are continuous from R to 5% . It is easy to check that L]TBS"’ = LITBS"’ and
ZqTB'“’ - L%B’Y o forq > 1.

—JTand T 2 % — I, where [ is the unit matrix of order n. Our result is

FoF,
Define 79 £ Tet Fo

stated as follows.
Theorem 1.1. Let T1'(1) = 1. There exists a constant n > 0 such that if

(po — 1, T0; ug) € Br2=ln/2 o gr2=1n/2 B;’/lz_l, Fy—1T¢ B;/lz,
and

1Goo = 1. 0}l guy2-1.0r2 + N0l g1 <.

then the Cauchy problem (1.2)-(1.3) has a global unique solution (p, F; u) such that

(p—1,7) € Cp(Roy; B271012) (F — 1) € Cp(Roy; BYY)
ueCp®ys By N L Ry; BT,
Moreover, the following estimate holds:
1o =1 D oo gnromrne -l poo gty 1 g < Mo, (1.7)

where M is some positive constant.

Remark 1.1. In comparison with [12] for compressible Navier-Stokes equations of Newtonian
fluids, the dissipation of the density and deformation is absent and thus they might grow in time.

Theorem 1.1 is actually established by the smallness of 79 = % — I (linked with the initial
strain part in deformation) rather than the total deformation Fy — I which implies that for the
rotation strain decomposition of deformation, the initial rotation does not need to be small. The
rotation strain decomposition is an old problem due to Friedrichs [18] and John [29], similar
results have been shown in the incompressible non Newtonian fluids [31,45].

Remark 1.2. In absence of initial compatible conditions (1.5)-(1.6), it seems impossible to obtain
the damping mechanism of the density and deformation. In order to eliminate the major difficulty,
as in [46], one can view g;% as a variable rather than the nonlinear term. Furthermore, the new
effective flux (0, G) (see below) is found, which allows to capture the partial dissipation arising
from the combination of density and deformation. Consequently, it is shown that the evolution
of critical regularity of perturbation variable (p, u, 7) satisfying (1.7) can be established, which
indicates that there is no regularity loss for the quantities p, u and F.

Remark 1.3. It is possible to develop the analogue of Theorem 1.1 in more general L? frame-
work like those efforts for compressible Navier-Stokes equations (see for example [6,10,21]).
This is beyond our primary interest in the present paper, since we focus on the basic dissipa-
tive structure of non-Newtonian fluids. In fact, the L? orthogonal property of projection operator
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(P, P is employed in the proof of Proposition 3.1 (see (3.16)-(3.17)). Last not but least, it is
worth pointing out that our method can be used to establish the global-in-time existence for the
compressible Oldroyd-B model without damping.

We end this section with a strategy in the proof of Theorem 1.1. The starting point is to
rewrite (1.2) as the linearized compressible viscoelastic flows about (1, 7, 0). In order to avoid
those initial compatible conditions, one can view % as a new variable rather than the nonlinear

term. Without loss of generality, we set IT'(1) = 1. Denote

T
p=14a, px)=I04a)—-TI(1), =<, x)=

t,x)—1.
detF( %)

It is shown that by the direct computation

op+u-Vp+V.-u=Fy,
ou—Au+ (Vp—aV - -1)=F,, (1.8)
Ot +u-Vr+V-uld—2D(u) = Fs,

with

Fi 2 -K@)V -u,

Fr2—I@Au—u-Vu+1@)(Vp—aV-1)+ diV(Z;l(a)D(u) + A(a)divuld)

I+a
and
F2Vur+t(Vu)! =V -ur,
where
I(a) = 1% K@2T(+a)(1+a)—1, A= DA+ A1) + n(1)Vdiv,
and

fi(a) = (1 +a) — pu(l), r@) =r(1+a) — (1),

For simplicity, we denote A(1) = Ag, (1) = po. In order to capture the dissipation arising from
the complicated coupling between p and 7, let us introduce the new effective flux 6 =Vp —aV -
7. By employing the operator V to (1.8); and the operator adiv to (1.8)3, respectively, one can
get

{8[9+M~V9+aAu+V(V-u):ﬁ1—aﬁ3, (19)

a[M_AU+Q:F2,
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with Fj = =V(K(@)V - u) — (Vu)TVp, F3; = —((Vu)T - V) - 1 + V - F3. The corresponding
linear system reads

00 +aAu+V(V-u)=0,

(1.10)

As shown by the formal spectral analysis in Section 2, we see that (1.10) admits the similar
dissipation structure as that of usual compressible Navier-Stokes equations. The observation on
the combination of density and deformation tensor (without any compatible conditions) is new
in compressible non-Newtonian fluids, which enables us to establish a global existence in the
critical Besov space.

2. Formal spectral analysis and energy functionals

In order to understand the proof of Theorem 1.1, it is convenient to give the formal spectral
analysis for (1.10). For s € R, we denote A* f £ F~L(|€|* F(f)). Also we use P to denote the
projection operator I + (—A)~"'VV. and P+ = —(—A)~!VV. on the divergence-free vector
and potential vector, respectively. By applying A~'P, A~!PL to the first equation of (1.10) and
P, PL to the second equation of (1.10), we get

AP — (1 +a)APTu=0,
0 Pu — (ho +2u0) AP u + P60 =0,
HATIPO —aAPu=0,
0;Pu — oAPu +P6 =0.
Clearly, we see that there are two hyperbolic-parabolic coupled systems for (A~'"P+6, PLu) and
(A~'PO, Pu) available, which are similar with the case of compressible Navier-Stokes equa-
tions (see [12]). For example, we investigate the 2 x 2 subsystem for (&, W) £ (A~'PO, Pu):
9 d—aAV =0,
V¥V — oAV 4+ AP =0.
0 aA

—A oA
low frequencies (ol&| < 24/a), the eigenvalues are

The Green matrix is given by G(D) = ( ) Let A+ be the eigenvalues of G(§). For

2
4
xi:_m(lii = - —1)
2 H1olél

where i = «/—1 is the imaginary unit. The situation of high frequencies (uo|€| > 24/a) is quite
different. The eigenvalues are

2 4
N (EN )
2 1ol€ |
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Consequently, as in [12], one can expect a parabolic smoothing for low frequencies of (®, W), a
damping for high frequencies of ® and a parabolic smoothing for high frequencies of W. Similar
analysis can be performed for another hyperbolic-parabolic system. So it is reasonable to define
the energy at low frequencies as

Ere sup 1 A0 1+/||<u,A“9)||g,,/z+ldr,
te[0,T) 2,1

and the energy at high frequencies

T
El & sup <||u||’;n/21+||A—19||’,gn/2) / ]l g+ / IA101% pdr.
tel0,T) 2,1 2,1 2,1

The above analysis looks so standard, however, keep in mind that the partial dissipation of
density and deformation tensor is captured only. In subsequent analysis, we have to meet those
nonlinear terms (see F|, F> and F3) with respect to the variable (a, 7) itself. In order to close the
energy method, we need additional L* estimates for a and t in time. For that end, we introduce
another new effective flux G = t — pld. It follows from (1.8);1d and (1.8) that

op+u-Vp+V-u=Fi,
ou—Au+ (1 —a)Vp—aV-G=F,, 2.1
%G +u-VG—2Du)=F; — F1d.

Furthermore, we revise our energy functionals (2.3)-(2,4) a little bit, which are given by

g2 sup (p.t. u, AT g T / s A1)t (2.2)
t€[0,T) 2,1

and

5;,"% u (”M” )1/2 1+||(P7 T, A 19)” "/2>
t€[0,T)

T
ot + [ 1A 23)
2,1 2,1
0
Indeed, by combining the L estimates of (p, t) (see (3.22), (3.24) and (3.25) for details), it is
sufficient to establish the global existence of strong solutions to the Cauchy problem (1.2)-(1.3).

Finally, it’s worth noting that our analysis holds true for non-small coupling parameter «.
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3. A priori energy estimates

Following from the spectral analysis in Section 2, we shall prove crucial a priori estimates for
the energy functionals in (2.2) and (2.3).
Let T > 0. We by &r denote the functional space

Er2{(p.tu,0)|(p. 1) € L0, T; B>~ 1112,
weL®0,T; By "HnL'o,T; B,
A—le c LOO(O, T, B‘n/Z—l,n/Z) N Ll(o’ T, Bn/Z—H,n/Z)}

and the corresponding norm is given by

. L . I .
I(p, T u, )lle; = (P, r)”LC;CBn/Zfl,n/Z + ”u”L%OBS,/IZ_IHL'TBQ',/IZH
-1
+A 9||1:;03:1/2—1,n/zﬁLlTB'n/ZH,n/z-

Note that p = IT(1 + a) — TI(1), TT'(1) = 1. There exists a small number ng > 0 such that
llall Lo j0,71xR") < no. Consequently, a can be expressed by a smooth function of p. Set a =
h(p).

Proposition 3.1. Assume that (p, t; u) is a strong solution of System (1.8) on [0, T] with
lall Lo 10,71 R") < NM0-
Then it holds that
I(p, tsu, D)lle; < C{II(P, T u)(0)]g,

3
(. 7, O)IE, (1+ 1, w5, 0]l )" . (3.1
where [[(p. 7 1)(O)llgy 2 (P DOl -2 + 1O g2

We divide the proof of Proposition 3.1 into three parts for clarity. The first part is devoted to
dissipative estimates for variables (8, u). More precisely, the parabolic smoothing effect for low
frequencies of (@, u), the damping for high frequencies of 6 and the parabolic smoothing effect
for high frequencies of u will be addressed. With the help of the new effective flux G, in the
second part, we give the additional L estimates for full variables p and t in time. The last part
is dedicated to bounding of those nonlinear terms.

3.1. Dissipative estimates of (0, u)
In this subsection, we derive the parabolic smoothing effect for low frequencies of (9, u), the
damping for high frequencies of 6 and the parabolic smoothing effect for high frequencies of u.
Set (®, W) £ (A~'PO, Pu) and (®1, W) £ (A~1PLH, PLu). We use the notation f; =

Ay f for any scalar (vector or matrix, respectively) function f.
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Step 1: Low-frequency estimates (2% < Ry) ' ‘
By applying A~'P Ay, A~1PLA; to the first equation of (1.9), PAy, PL Ay to the second equa-
tion of (1.9), we have

9D 4 u- VO — (1 + ) AWE = A™'PLAN(F —aF3) + R,

JWE — (ho +210) AW} + ADE = AP,

3 W — oAV, + ADy = A PF,,

& Dp+u- VO —aAV = AT 'PAL(F) —aF3) +RE,

(3.2)

where commutators are given by R}c =[u-V, A_IPJ-Ak]G, Ri =[u-V, A_IPAk]G.
Taking L? inner product of (3.2); with 15 ®;, (3.2), with W, (3.2)3 with W and (3.2)4
with %Cbk respectively, and then adding the resulting equations together, we obtain

1
EE( 1+a
+ ol AW, + (o + 200 AV 17,

1
1 WD + 9wl + ——10E 1)

. 1
1.2 2
= (ur| Ak F2) + ( |Djc | + 51D |V - u) 3.3)

21+ @)

1 e e
+E(<Dk|1\ PAk(F1 —aF3) + Rj)

1 . 3
—(DEIATIPLAR(F — aF3) +R)).
+1+a( cl K(F1 —aF3) + Ry)

To capture the dissipation arising from 6, we take the L? inner product of (3.2); with AW,
(3.2), with ACDkL, (3.2)3 with Ady and (3.2), with AWy respectively. Then we add these result-
ing equations together and get

d
S LWHIA®E) + (W ADY] + A (@r. 21

—al AWEIT, — A+ )| AVE 7,

— o(AWE|ADy) — (Ao + 200) (AW [A D))
= (AL AT PEAR(E — aF3) + Ry) + (AcFal6k)
(AW AT'PAL(F — aF3) +RE) — (Aug|u - VAT ).

34

Now, we multiply a small constant v (to be determined) to (3.4) and then add the resulting
equation with (3.3) together. Consequently, we are led to the following inequality

d ~
ol Fa SIF@L,
t
where
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1
q>J_ 2
T2 1Pkl
+ 20 (W |AD)) + 20(Wi | ADy),

1
ok S 10V WO + — 1 xll g +

fer 2 (o —av) AW, + (o + 200 — (1 + ) [ AV 17,
+ V| A(Dr, P75 — tov(APuk|P6k)
— (0 + 210) V(AP ur [PH65),

and

. 1
F(1) = (ug AxF2) + ( |17 + S|Pkl V - )

2(1+a)
1 . 3
+ a(c1>k|zv17>Ak(Fl —aF3) +7R})
1 . 3

— (PEIATPLAR(F —aF3) + R)
+1+a(k| K(F1 —aF3) +Ry)
+V(AV AT PLAL(F) — aF3) +Ry)
+ V(AkF2|9k) + V(A\Ilk|A_l'PAk(F1 —otﬁ'3) +'R,,%)
— v(Aug|u- VAT ).

For any fixed Rg, we choose v ~ v(Ao, to, Ro) sufficiently small such that

2 2 -1 2
FE~ el + 1A 76012,

P~ 22 (il 72 + 1876k 7).
By using Cauchy-Schwarz inequality, furthermore, one can get owing to 2 < Ry,

d e
Efz,k+22kfz,k§||Ak(A VB, ATVEs, ), RE, RE | 12

HIAT OV - u u - VAU, V- uhug 2,

which indicates that

I ATyl
LT BZ,I mLTB2.1
S, A7 OO + I FL B ATV RIS
BZ Ll BZ
2,1 T72,1
T
+ Y 2f<"/2—1>/”R,ﬁ,R,ﬁ,A—lekv-u,u-VAuk,v-uAuk Lt (3.5)
2/ <Ry 0
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S Oy, + AT FrL B AT R

BZI LTBZ,I
+ 3 2 ‘>/HR‘ R, AN u i VAW,V - uAukH dr.
2/ <Ry
It follows from those commutator estimates in [2] that

T
k [ —1 .
ZZS/||R;(||det§||Vu||ZrT]Bg./lz||A Ollzzgy - for i=12.
kEZ 0

1,1 _ .
Here - + - =1.In particular, one can get

T

> ok f |Re REN Lt SUValzy o 1A 0N o g2 SN (P T2, O, (B6)
2k<Ry ’ ’

Similarly, regarding other terms in the last integral of (3.5), we arrive at

Z ok(n/2— 1)/||A A u||L2dt</||Vu||Loodl||A gt
2k<Rg

< o “lgn. .. ,< .
NIIVuIILer;ﬁZIIA 9||L?c3;/|2~||(p,f,u,9)||gr,

Loan/2 1

Y okm/2-h / -V M| pdt < ( / lee]13 dr)”2||A2uk|| sy
2k<Ry

< .
N IIMIILzTB;/]zIIMIIZ 22 S SHp, T u,0)llg,

and

> okm/2=h / IV - unug | dr < / ||Vu||Loodt||Au||Loan/2 |
2k§Ro (37)

S lullgy B/ luell RS S, T u, )iz, -

LY B
Together with (3.5)-(3.7), we deduce that

e AT a e ST O g + T O,
2

TBZI 7721 BZ,]

HIATFL B AR

TBZ,I

(3.8)
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Step 2: High-frequency estimates (2¢ > Ry)

At high frequencies, let us perform the effective velocity argument as in [21] that was originated
from Hoff’s viscous effective flux in [22], and overcome the loss of one derivative of (P, o).
By applying P and P+ to (1.9), we get

PO +aAPu="P(F —aF;—u-Vo),

3 Pu — oAPu+Po = PP,

HPHO+ (1 + ) APt u =P (Fi —aFs—u-V0),
Pu— (ho +2u0) AP u+PHo =P F.

We define the effective velocities w, w' such that —ugAPu + PO = —puoAw and —(ro +
20) AP u + P60 = —(ho + 210) Aw™. It follows that

1 1
w=Pu+—(—AN"1Po, wt=Ptu+ ——(—A)"1plo. (3.9)
Ho Ao+ 20

Firstly, we do some estimates for effective velocities w and w. It is easy to check that

o _1 o
dw — poAw + —(=A)" Pl — —w
Mo Mo

1 .
=PF+ M—(—A)_IP(Fl —aF3—u-Vo),
0

(3.10)
l+o 1Py — I+a |

BwL—)\+2 Awl+7— —w

1 5 3
=Pth+ ——(—AN)'"PY(F, —aF3 —u-V6).
2 ko+2uo( ) (F1 3 )

Note that (5.2) to (3.10), the parabolic smooth estimate (See Lemma 5.3) enables us to obtain

l(w, w )I|L°°B"/2 1L BI21/12+1
N ||(w07w0)|| ,1/2 A+ (w, w )”L B;/lz 1+||9||L Bg/lz 3 3.11)
h h
+||(Fl F3)||L1(B"/2 3 +||F2||L1(Bn/21 +lu- V9”L1(Bn/2 3)

Owing to the high frequency cut-off 2F > Ry, we have

L RN
[ (w, w )|| B SR w, wh| | g/t
2,1

len”, R52||e|| -
l,l

L Bn/2 3~
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Choosing R( > 0 sufficiently large, the terms || (w, wJ-)||L B"/2 , on right-side of (3.11) can

be absorbed by the corresponding parts on left-hand side of (3 l 1) Consequently, we conclude
that

Lyih
I(w, w )”L°°B /2 lﬂL B! /2+1
< ||(w0,w())|| n/2 1+R ||9|| n/2—1 (3.12)
2,1
+Ry |I(F1’F3)”L1(B”/2 1 +||F2”L1(B"/2 Nl 7R ve”Ll(B”/z 3

Next, we intend to obtain the damping estimate for 8 at high frequencies. Indeed, it follows
from the first equation of (1.9) that

8,0 4+u-V0+aAu+VV-u=F, —aFs. (3.13)
Applying A to (3.13), we can get

00k +u-Vor +alAur +VV -uy

L. L. (3.14)
=ArF1 —aA F3 + Ry,
where Ry = [u - V, A¢]6. The last two terms on left-hand side of (3.14) can be written as

aAuyp +VV -u

L n n (3.15)
=aA(Pur +P~ur) + AP~ur =aAPuir + (1 + a) AP~ uy.
Now inserting (3.9) into (3.15) and substituting the resulting equation into (3.14), we can get

o 14+« n
0:0k +u -V + —POh + ———— P~ 6k
1o Ao + 20 (3.16)

=—aAw; — (1 + Ot)Aw]g‘ + Akﬁl — (XA](F3 + Rrk.
Recalling the fact that (P |P6;) =0 and 6; = P6) + PL6;. A routine procedure shows that
after multiplying (3.16) by P6; and P60y, respectively,

I|9k(t)||L2+/||9k||L2dT
S OOl 2 +/ Vull oo 1Ok |l 2d T (3.17)

+ / I(A2wg + A2wi)ll 2dT + f I(AxFy, ApFs, Rl 2d.
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Employing commutator estimates in [2] again enable us to get

ks < i
22 IRl S 1Vl 013 -
keZ

Consequently, multiplying (3.17) by 2K(3=1) and then summing over the index k satisfying 2¢ >
Ro, we are led to

[ ”LOOB"/Z lﬂLl n/2 1

SN0 Gyams + 1Vul 7y 2161 o o (3.18)

1
w, w -1 . F SN e
+IIC )”LITBZ/IZH +II(Fy 3)”L'TBZ/12 I

Multiply (3.18) by a constant § > 0 and then add the resulting inequality to (3.12) together. By
choosing Ry sufficiently large and § > 0 suitably small, we arrive at

HOHL"CB"/Z lﬁL Bn/Z Il (w, w )”L"OB”/Z lﬂL Bn/2+l

h L h
S lp, T)(O)”Bz”/f + [l(w, w )(O)”B;/12—1 + IIVMIIE;B;/12||9||LOOBn/2 1 (3.19)

+lu-Vo" . s+ (EFr B, B 0.
I ||L1(32/12 3) |(F1, F2 3)||L1TBZ,/121

Clearly, the third term on the right-hand side of (3.19) is easily bounded by ||(p, 7; u, 8) ||é_. The
fourth term can be estimated as

flue - V9||L1(B"/z 3, S lluc- V9||L,(Bn/2 2
< . o < : 2
< Wl o o VOl 3 o2y SN P72 O,

Finally, keep in mind (3.9), we can conclude that

o1 - L Nl

n/2 1 n/2 1 n/2+]

L°°B ﬁL B LOOB ﬂL B
(3.20)

SIP OO + 18Oy + 1P T30z, + 1FL P FIG, g

3.2. L*® estimate of (p, T)

In this part, we see that the effective flux G mentioned plays a key role in deducing the L*°
estimate of (p, t) at low frequencies.
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Step 1: Low-frequency estimates (2% > Ry)
Apply Ay to (2.1) to get

pr+u-Vpe+V-up = AcF + RR,
oruy + (1 —a)Vpr —aV .-Gy — Ay, = Asz, (3.21)
3G +u - VG —2D(ug) = Ap(F5 — Fild) + R},

where ’Ri =[u-V, A:]G.

By taking L? inner product of (3.21); with Gr, (3.21); with 2ug, (3.21); with 229 p and
then summing up the resulting equations, we arrive at

1d 2 o 20—, 2
32 (112 + = e 2+ = el ) = = A
2(1 — @) . o) ) )

=——— (AP + R + = (ui| AcF2) + (Gel Ak (F3 — Fild) (3.22)

1 1 A oA
+RY) + E<|pk|2|v u) + 5<|gk|2|v u) 2 F().

Notice that the coefficient of || py ||i2 might be non-positive if & > 1. In that case, we need to
give an auxiliary estimate. Set Q- £ A~!PLV . t. Applying Ay to (1.8);, AyPL to (1.8), and

Ar APV to (1.8)5, we have
hpk+u-Vpr+ V- W =AcF + Ry,
Wi — (Ao 4 210) AV + Vi —aAQ) = AyPLE, (3.23)
WU+ u- VU + AV = A APV B+ R,

where Rz =[u-V,Atlp, Ri =[u-V,Ar APV Iz,

Taking L? inner product of (3.23); with px, (3.23), with \IIIJ(‘, (3.23)3 with an(‘ and then
summing up the resulting equations, we arrive at

1d
m(npkniz + 1117 +a||9¢||’iz) + (o +200) [AVE |17,
. 1 .
= (prlAkFi +RY) + E<|pk|2|v ‘u) + (W | AP Fy) (3.24)
[07 . ~
+ E(|sz,f|2|v )+ a(QEATIPLAY B+ RE2 Q).

Now, we multiply a small constant v > 0 to (3.22) and add the resulting equation to (3.24).
Choosing v; > 0 suitably small such that the coefficient of || pklli2 is positive. Consequently, we
have

d - N
(el + Nkl + 12 ) S 1FO1+1F ). (3.25)
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Furthermore, bounding the right-hand side of (3.25) by Cauchy-Schwarz inequality leads to the
following inequality owing to 2¥ < Ry,

d
(1Pl + il g2 + el 2)
SN AR(F1, AT Fy, F3, AT s, o) |12

+|IR};, PV i, TV ou,u - VAug, V- uhug| 2.

Noticing that (3.6)-(3.7), we deduce that

. 4
”(pa ‘C’u)||~ .|
L>® 2

B
X 32‘1 2 15 17 4 (3.26)
S @, WO w + 1 tsu, Ollg, + 1(Fi, A7 Fi, Fa, AT F3, F3)IT 0wy
B2 Ly B3,
Step 2: High-frequency estimates 2*¥ > Ry)
Applying Ay to the first and third equations of (1.8) gives
3,pk+u-Vpk+V-uk=AkF1+R6, (3.27)
Otk +u- Vi +V-udd —2D(uy) = A F + R, '

where Rg =[u-V, Ak]p and RZ =[u-V,Ailr.
Multiplying the first equation of (3.27) by py and the second by 7z, and then integrating over
R™ x [0, t], we obtain

t t
(P, Dl 2 S (P, ) (O) [l 2 +/ ||Vuk||L2dT+f (IVullpoo | (pr, T) |l 2dT
0 0 (3.28)

t
+/||(AkF1,AkFLRé,RZ)Hde‘E.
0

It follows from commutator estimates in [2] that

32 IRE RDI 2 S 1Vl g 2, Ol
keZ ' ’

Now multiplying (3.28) by 2* 7, and then summing over the index k satisfying 2¢ > Ry, we are
led to

h h h
1P, O e e SN, DO + VU,
L7 By By Ly By);

h
+”V””Z;B’;‘/12”(p’ T)”i%ol;z/f + |[(F7, FS)”Z]TB;/E'
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By using (5.3), we have

ICFL FDIG, o

SIK @]

Loan/ZIIVuII n/12+||T||Loan/2||Vu|| B2

S A+, 5w, 0)llg) > I, w5 u,0) |, -

So, we get

Ip, I 2 S S lp. f)(O)IIhn/z + IIVMII

LB, (3.29)

+ 1+ (p. u,9>||gT>"/2+1||(p, T u,0)|Z, -
3.3. Estimate for nonlinear terms

Finally, we devote ourselves to bound those nonlinear terms, which occur in the first two parts.
The following interpolation inequality is frequently used in our analysis

< 172
10z g SUENE g D1 g
Step 1: Low-frequency estimates (28 > Ry)
Combining (3.8) and (3.26), we have
I Oy H @ ATON o a SHa O],

LT BZ,] LTBZ.I mLT 21 B21

HIFL AT R B AT PN I (pa T )12,

B3

More precisely, we need to deal with the following nonlinear terms
K@V -u, A" (V)" Vp), 0@, Vu), AN (V)" - V) - 1)

in Fl, Fy, F3, F3 and

1 -
I(a)Au, u-Vu,I(a)d, div(Zﬁ(a)D(u) + )L(a)divuld)
a
in F>. Regarding K (a)V - u, by takingry =1, =00, f =V -u, g =K (a) in (5.3) and using
(5.1), we have

3 P AK @V w0
2k<Ry

S IVullzy gr2 K@)l

LOOB"/Z 1

1 2]
§<1+||p||zgogg/lz) R pll e - 7y o

L°°B
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SA+p. T u, O)lle) > (. T3, 0) 7, -

The terms Q(t, Vu), u - Vu can be treated along the same line as K (a)Vu by taking f = Vu
and g = 7, u respectively. Also I (a).Au can be treated by settingri = oo, o =1, f=1(a), g=
V2u in (5.3) and using (5.1). In order to bound the term A~!((Vu)T V p), we apply (5.3) by
taking ry =1, =00, f =Vu, g=Vp. Then we get

S 2D AT (V) V)l
2k<Ry

= D 20N V)l L

2k<Ry
<Pl oo s . < : 2
~ ”p”L?"OB;_/1271 ||M||L%~B;/12+l ~ ”(p’ T u, 0)”87"

The term A~ ((Vu - V) - T) can be treated along the same line as AN ((Vu)T V).
For I (a)0,wetaker; =1, =00, f =0, g=1(a)in(5.12) and using (5.1). Then we have

Z 2k@/2=D )| A (1(a)0) (739
2k<Ro

<1161+, o
SNON gy gzt M @) oo grrz-rar2

SA+1pleer=)"* M (p, tiu,0)lZ,
SA+1p. T3, Ol I, T3 u, )z, -

Next we bound nonlinear terms in F5. Denote

I =

- adiv(zg(a)D(u))

1 1
=——(@)Vu+—Vi(a)V

1Jrau(a) u+l+a w(@)Vu
= (@)V?u — I (@)ji(a)V?u + Vii(@)Vu — I (@)Vji(a)Vu
Eh+h+L+ 1.

The term I can be treated along the same line as I (a).Au and I3 can be dealt with by applying
(5.3) with f =Vu, g=Vu(a) and r| = 1, ry = 0co. To bound I, we have

> 2PAA @A@YVl
2k<Ry

SN (@) o0 g2 |(@) V21 5y iyt
S @I g2 1@l 1y o
< 1(a)|| s o0 on/2 a(a)| - Hn/2 Vzu =1 pn/2—1
S @ gy V@ 3 2 IVl

. 3 . 2
SU+1p, w5 u,0le,)" P I(p, T u,0)g, -
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Regarding 14, it is easy to show that

3 2D A @V A@ V)l g2
2k<Ryg

<|II a)ll 7 oo pn/2 ;[1 a)Vu| -1 sn/2-1
< I a = n/2 ;u =1 pn/2 ;//LN a = Hi/2—1
~ ” ( )”[%OBS,/I ” ”1'133,/1 ” ( )”[%OB;,/I

SUA+ 1w u,0)le)" Pllp, T3 u,0)11Z,

Since bounding ﬁdiv(i (a)divuld) is the same as I, we feel free to omit those details. Sum-
ming up above all estimates, we conclude that

P OIS gy M@ AT
LT BZl TB21 ﬂL BZl (3 30)
S lip, e u)(0>||f wy A+ NP T 0)le) ™ (p T u O),

2 1
Step 2: High-frequency estimates 2% > Ry)

Multiply (3. 29) by a small constant v, and then add the resulting equation to (3.20). Note that

the term ||Vu || /2 0N the right-hand side of (3.29) can be absorbed by the dissipative term on
T 21

left-hand side of (3.20). Consequently, we obtain
l(p, T)”ilioan/z + lu ||LOQBV,/2 lﬂLl n/2+l + 110 ||L°°B"/2 lﬂLl n/z 1
I DOz + 1O
2,1 2,1

A+, T Ol ) (P, T, Oz, + I(FL Fau FDIY oo
T72,1

Likely, we bound those nonlinear terms arising in F 1, >, F3, see following:

VK@)V -u), (Vu)IVp inFy,
V-0, (Vu-V)-7 inF3,

and

(@) Au, u-Vu,I(a)b, 11 div(2fi(a) D(u) + A(a)divuld) in F>.
a

In order to bound (Vu)” V p, by (5.3), we have

Z 2k(n/2—1) IIAk((Vu)TVp) ”L%,LZ
2k>R0

< o R < I .

SNVal gy o IV Pl o oot S Ml gy oo 1PN e o
. 2

ST, 012,
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Regarding V(K (a)V -u), we write V(K (a)V -u) = K(a)VV -u+V -uVK (a). The estimate
for V- uVK (a) can be handled with at the same way as (Vu)? V p. For K (a)VV - u, we arrive
at

Z K/ 21 A, (K(@VV -u) ||L1TL2
2k> Ry

SIK @l n/2||V ull gy o=

LY B)
S A+, w5 u, O)lle,)" > I (p, w5 u, O)lIg, -
Bounding F3 can be treated along the same line as F}. The high frequency of F» can be dealt

with at the similar way as the low frequency, which is left to the interested reader. Consequently,
we deduce that

HGHZC’OB"/Z 1 ALl Bn/2 iy ||u”L°°B"/2 'ﬂL Bn/2+]
S P OO, + 1)), (3.31)
By)) By))

+ (L4 1(p. T5 u, Dlle,)" P p, T ) 1Z, -

At last, combining (3.29) and (3.31), we achieve the high-frequency estimate

1, DN g + el w2t +ll0]"

L°°B"/ LeBr'nLl By L°°B"/2 ‘Nl Byt

S 1o 1%, 2 + lluoll”, - (3.32)
Bz.] 32,1
+ A+ 1.t D) N (p. T30, 07,

The inequality (3.1) is followed by (3.30) and (3.32). Hence, the proof of Proposition 3.1 is
complete. O

4. Proof of Theorem 1.1

Let us recall a local-in-time existence result of (1.2)-(1.3) which has been achieved by [41].

Proposition 4.1. Assume (pg — 1, Fo — I) € B and ug € B / 2= Wlth po bounded away from
0. There exists a time T > 0O such that (1.2)-(1. 3) hav a unique solutzon (p, F; u) with p bounded
away from zero and

n/2 l)ﬁL ([0, T): Bn/2+l).

(p—1,F—1eC(0.7T); By}, uecC(0.7); B
Based on Proposition 4.1, the proof of Theorem 1.1 can be finished by the standard continuity
argument. Indeed, Proposition 4.1 indicates that there exists a maximal time 7 > O such that
system (1.1) admits a unique solution. Clearly, the system (1.9) also has a solution (p, t;u)
which locally exits on [0, 7). It follows from the assumption of Theorem 1.1 and Lemma 5.2
that
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l(po, To; uo)llgy < Con,
for some positive constant Cy. Fixed a constant M > 0 (to be determined later), we define

T* £ sup{r € [0, T)|Il(p. T:u.0)|lg, < Mn}.
Claim that
T"=T.

According to the continuity argument, it suffices to show

1., Ol = 3 M. @.1)
Indeed, noting that

lall s o, 7yxR?) = 1 (P) | Lo 0,7y xRy < C1 ||P||L;ogn/271»n/2-

We can choose 7 sufficiently small such that

1
Mn<——,
n0C1

SO

lall Lo o, 7y xRy < M0-
By applying Proposition 3.1, we obtain

(P, 73, 0) gy < C{Con + (M) (1 + Mn)" ). 4.2)
By choosing M = 3CC and 7 sufficient small enough such that
n+3 1
CMm(A +Mn)™" < 5’

so (4.1) is followed by (4.2) directly. Actually the above argument implies

I(p. T u,O)le; = Cli(p, T u)llg,- (4.3)

Consequently, the continuity argument ensures that 7 = +oo0. It follows from the third equation
of (1.2) that

W(F—D)+u-V(F—1)=Vu+Vu(F —1).
By using Lemma 5.4, we have
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IF — Illic;oB;’/lz

o0
<exp C/||Vu||Bn/zdt X
2.1
0

(0.¢]
(I1Fo — IIIB;«/IZ +/(|IVM||B;/12 + [IVu(F — I)IIB;/IZ)dT)
0

<C(lIFo— I||B£l/12 +IIF 1| /2||V“||51T3;/12 + Mn)

700 pht
L7By i

< CllFo—1ll g+ CMnl|F — 1|
Furthermore, we chose 1 small enough such that CMn < 1/2 and thus obtain

|F =l oo o2 < Cll Fo = 11l o2 + C M. (4.4)

2,1

The continuity argument and (4.3)-(4.4) enable us to finish the proof of Theorem 1.1 eventually.
5. Appendix

To make the manuscript self-contained as soon as possible, we would like to collect nonlinear
estimates in the last section. See [2] for more details.

Lemma 5.1. For the Besov space, we have the following properties:

o 520 C Bs1.0 for sy > 52 and B2 C B5:01 for oy < os.
e [Interpolation: For sy, s2,01,02 € R and 6 € [0, 1], we have

0 (1-6)
I Wl gosi+a-orsp.00+a-010, < N gy o0 1 300 -

System (1.3) involves in compositions of functions and they are bounded according to the
following lemma.

Lemma 5.2. Let F : R — R be smooth with F(0) =0. Forall 1 < p,r < oo and s > 0, we have
IFPzg 5 = I 5.1)
where C depending only on || f ||, >, F' (and higher derivatives), s, p and n.
For the heat equation, one has the following optimal regularity estimate.

Lemma 5.3. Let p,r € [1,00], s € R, and 1 < p» < p; < 0o. Assume that ug € Bg;l, fe
2

- oS3+
L;z By » 2 Let u be a solution of the equation
ou — puAu=f, uli=o=uo.
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Then for t € [0, T], there holds

1

W ull pon g2 < C(lluoll gyt + 2 £ 2 )- (52)

Pl p s=3+75
T Pp,r P2 h P
L7 By,

In order to obtain the L*° estimate of the original variable F with respect to time 7, we need
the estimate for the transport equation.

Lemma 5.4. Let s € (—nmin(1/p,1/p'),1+n/p) and 1 < p,q < 0o. Let v be a vector field

such that Vv € LlTBZ/lp. Assume that fy € B;’q, g€ LITB;,q, and f is a solution of the transport
equation

hf+v-Vf=g, fl=0o=fo.

Then for t € [0, T1], it holds that

t t
1/, iy, <exp(C / IV0@) gorpde) (1L fol s, + f l8(@)l 45 d).
0 0

The standard product estimate is also used in our analysis.

Proposition 5.1 ([7]). Let 1 <r,ry,rp <00 with % = rl—l + % and s,t <n/2, s+t >0. Then we
have

v <N F Nl s . _
78l gy gson S UF Uz ez g (5.3)

In addition, we develop a product estimate in the framework of hybrid Besov spaces by using
Bony’s decompositions. Let us by denote x {-} the characteristic function in Z and {c(j)} ez be

some sequence on 2! satisfying [[{c(j)}, = 1.

Lemma 5.57 Let s, t,0,T € R. Then we have the following:
(i) For 2 < Ry, if s <n/2, then

1A (Tr)lize = Ce(2/ 201 £y, gl - (5.4)

(ii) For 2/ > Ry, ifs,o0 <n/2, then

IA;(Tre)l 2
) e s 5.5
<Cc(HRIPTNLNG el +272 01, Nelly ).
2,1 2,1 2,1 2,1
Proof. With our choice of ¢ in Introduction, it is easy to see that
AjArf =0 if|j—kl=2,
(5.6)

Aj(SicifARf)=0 if|j —k| =5.
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Thanks to (5.6), we have

Aj(Trg) = Z Aj(Sk—1fAkg)
lk—jl=<4

= > Y Ajdusfig.

|k—j|<4 k' <k—2

Denote J := {(k, k') : |k — j| <4,k' <k — 2}, then for 2/ < Ry,

1A (Tr)llz2 <D IA;(Aw fArg)ll 2
J

S D2V N AR f1228 2 Aggll 227
J

Se2/OPEINEIG gl
2,1 2,1
Next we turn to prove (5.5). We write J = J; + Jo, where
JL=Jn2" <Ry}, Hh=Jn{2" >R
For 2/ > Rg and 5,0 <n/2, one has

1A (Tre)l .2
<D 1A (Aw f A2
J

S AR izl Acgll 2
J

S A fleeliAgliz + Y I Aw fllzel Argll 2
J1 D

S 2 NA Fll 222K Aggl 227
Ji

+sz o ”Ak/f”LZZk (ﬂ/2—0’)2k1’ ”Akg”LZZ—kr
Ji

< : 2j(n/2—s—t) Z.Y h.[ : 2j(n/2—a—r) h“ h.r ,
<)) 115 Nlth, +ei) 171k ity
which is just (5.5). O
Lemma 5.6. Let s,t,0, 7 € R. Assume that s +t > 0,0 + t > 0. It holds that

1A R(f, @)l
= Ce(NE NSy gl +27 27V S g Ngls )- (5.7)
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Proof. Thanks to (5.6), we have

AR(f.e)= Y. > AjAifAvg).

k=j=3k—k'|<1
Denote J :={(k, k') :k>j —3,|k—k'| <1} and
JH=Jn{2X <Ry}, H=Jn{2"=R.

Then when s + t > 0, we have

1A;R(f. 9.2

SN A fAwglly
(k,k"ed

=2"2 N A f Al 277 Y A fArgllp
(k,k")eJ; (k,k")eJp

S22 A el Argll 27 Y A2l Avgll
(k,k"e, (k,k"eJp

5 2j11/2 Z 2kS ”Akf”Lzz—kszk,t ”Ak/g”Lzz—k,t

(k.k"edy
+20M2 S 2 Ay 227K 2T Al 227

(k.k')edr
< o Y2 /2=s=1) ) £t e 272D Fll g gl
Se()? £y Mgy +c(iD2 I/ g Nl s -

This finishes the proof of Lemma 5.6. O

Having above estimates of para-product operator and remaining operator, one can get the key
estimate for product.

Proposition 5.2. It holds that
1781 2t S 1S gzt N8 v (5.8)

Proof. By Bony’s decomposition, we write fg =Trg + T, f + R(f, g). Atlow frequencies, we
take s =n/2,t =n/2—1in (5.4) for Tyg and s =n/2 —1,t =n/2in (5.4) for T, f. Then we
get

Y YOPIATr )N + 1A (T Hll2) S U1 llgl - (5.9)
. 2,1 2,1
ZISRQ

For the high frequency, we choose s =n/2,t =n/2—1,0 =n/2— 1,7t =n/2in (5.5) for Ty g;
s=n/2—1,t=n/2,0 =n/2,Tt=n/2—1in(5.5) for T, f, which lead to
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D YA Tl + 1A T H2) SUF g Iglgunine (510,
2/>Rg

Finally, we choose s =n/2,t =n/2 - 1,0 =n/2— 1,71 =n/2in (5.7) and get

DY EEONA R DN SN 18 G + 1 Wi 1810 5.11)
ieZ 2,1 2.1 2.1

Combining (5.9), (5.10) and (5.11), we arrive at (5.8). Therefore, the proof of Proposition 5.2 is
completed. O

Finally, let us point out the new product estimate remains valid in Chemin-Lerner’s spaces
whereas the time exponent » behaves according to the Holder inequality.

Remark 5.1. The inequality
||fg||i;32/1271 S ”f”i;lgn/lnﬂ—l ”g”i:ZBn/Z—l,n/Z (5.12)

holds whenever 1 <r,ry,r, <ocoand ! = % +i
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