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Abstract. In this paper, we consider regularity criteria of a class of 3D axially
symmetric MHD-Boussinesq systems without magnetic resistivity or thermal

diffusivity. Under some Prodi-Serrin type critical assumptions on the hori-

zontal angular component of the velocity, we will prove that strong solutions
of the axially symmetric MHD-Boussinesq system can be smoothly extended

beyond the possible blow-up time T∗ if the magnetic field contains only the

horizontal swirl component. No a priori assumption on the magnetic field or
the temperature fluctuation is imposed.

1. Introduction. In this paper, we study the 3D MHD-Boussinesq system without
magnetic resistivity and thermal diffusivity:

∂tu+ u · ∇u+∇p− µ∆u = h · ∇h+ ρe3,

∂th+ u · ∇h− h · ∇u = 0,

∂tρ+ u · ∇ρ = 0,

∇ · u = ∇ · h = 0.

(1.1)

Here u ∈ R3 is the velocity and h ∈ R3 is the magnetic field, while p ∈ R and ρ ∈ R
represent the pressure and the temperature fluctuation, respectively. e3 = (0, 0, 1)T

is the unit vector in the vertical direction, and µ > 0 stands for the viscosity
constant, which is assumed to be one without loss of generality in the following.

Physically, equation (1.1)1 describes the conservation law of the momentum with
the influence of buoyant effect ρe3, while (1.1)2 is the non-resistive Maxwell-Faraday
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equation which describes the Faraday’s law of induction. The third line of (1.1)
represents the ideal temperature fluctuation, while the fourth line describes the
incompressibility of the fluid and Gauss’s law for magnetism. The MHD-Boussinesq
system, which models the convection of an incompressible conductive flow driven
by the Lorenz force and buoyant effect of a thermal field, plays a vital role in
atmospheric science and geophysical applications. It is closely related to a type of
the Rayleigh-Bénard convection, which occurs in a horizontal layer of conductive
fluid heated from below, with a presence of a magnetic field. For detailed physical
background, we refer readers to [28, 24, 23, 26].

Our main result and its proof will be presented in the cylindrical coordinates
(r, θ, z). For x = (x1, x2, x3) ∈ R3, we denote

r =
√
x2

1 + x2
2, θ = arctan

x2

x1
, z = x3,

and

er =
(x1

r
,
x2

r
, 0
)
, eθ =

(
−x2

r
,
x1

r
, 0
)
, ez = (0, 0, 1).

We say a solution of (1.1) is axially symmetric, if and only if
u = ur(t, r, z)er + uθ(t, r, z)eθ + uz(t, r, z)ez,

h = hr(t, r, z)er + hθ(t, r, z)eθ + hz(t, r, z)ez,

ρ = ρ(t, r, z),

satisfy the system (1.1). By the local existence and uniqueness results, it is clear
that one only needs to assume hr0 = hz0 ≡ 0, then vanishing of hr and hz holds for
all time (see [18]). In this case, (1.1) can be rewritten as

∂tu
r + (ur∂r + uz∂z)u

r − (uθ)2

r
+ ∂rP = − (hθ)2

r
+

(
∆− 1

r2

)
ur,

∂tu
θ + (ur∂r + uz∂z)u

θ +
uθur

r
=

(
∆− 1

r2

)
uθ,

∂tu
z + (ur∂r + uz∂z)u

z + ∂zP = ∆uz + ρ,

∂th
θ + (ur∂r + uz∂z)h

θ − hθur

r
= 0,

∂tρ+ (ur∂r + uz∂z)ρ = 0,

∇ · u = ∂ru
r +

ur

r
+ ∂zu

z = 0,

(1.2)

where P := p+ 1
2 |h

θ|2. To state the regularity theorem of the initial value problem
of the axially symmetric solution of (1.1), we present here a Prodi-Serrin type
condition on the horizontal swirl component of the velocity:

Condition 1.1. For any s ≥ 0,∫ T∗

0

∥∥∥∥uθrs (t, ·)
∥∥∥∥q
Lp
dt <∞, where

3

p
+

2

q
≤ 1 + s for

3

1 + s
< p ≤ ∞. (1.3)
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Meanwhile, for the borderline case p = 3
1+s , we assume that:

Condition 1.2. For any s ≥ 0,

sup
0≤t≤T∗

∥∥∥∥uθrs (t, ·)
∥∥∥∥
L

3
1+s

< ε0, (1.4)

where ε0 = ε0

(
s, ruθ0

)
<< 1 will be decided in the proof of Theorem 1.3.

Now we are ready for the main result:

Theorem 1.3. Let (u, h, ρ) be the classical axially symmetric solution of (1.1)
whose initial data (u0, h0, ρ0) ∈ Hm(R3), for m ≥ 3, and ∇ · u0 = hr0 = hz0 = 0.
Then (u, h, ρ) can be smoothly extended beyond T∗ if and only if Condition 1.1 or
Condition 1.2 holds.

Critical regularity criteria of incompressible fluid dynamic systems date back to
pioneer works of G. Prodi [29] and J. Serrin [31, 32] around the 1960s, where the
famous Prodi-Serrin criterion for 3D Naiver-Stokes equations was given. Readers
can see [10, 11, 33, 34, 2] for more regularity results on the Navier-Stokes equations.

If the fluid (say e.g., plasma) is affected by the Lorentz force, then the Navier-
Stokes system is generalized to the magnetohydrodynamics system. Many fruitful
studies and researches on the MHD system has been achieved in recent years. Some
partial regularity and blow-up criteria could be found in [8, 12] and references
therein. Lin-Xu-Zhang [21] proved the global well-posedness of classical solutions
to the 2D non-resistive MHD system with smooth initial data which is close to
a non-trivial steady state. See also [30] for similar results. Lei [19] proved the
global regularity of classical solutions to a 3D MHD system with a family of large
axisymmetric data. Moreover, if the temperature influences the fluid, then the
fluid equations can be modeled by the classical Boussinesq system. Hou-Li [14]
and Chae [5] independently proved the global regularity of solutions to the 2D
Boussinesq system. Abidi et al. [1] and Hmidi-Rousset [13] proved the global
well-posedness of the Cauchy problem for the 3D axisymmetric Boussinesq system
without swirl. To overcome difficulties coming from the temperature fluctuation

ρ, authors in [13] firstly proved the boundedness of operators L =
(
∆ + 2

r∂r
)−1 ∂r

r

and L̃ =
(
∆ + 2

r∂r
)−1 ∂z

r in Lp spaces (p ≥ 2). This strategy will also be applied
in the proof of our main theorem later in this paper. For more regularity results on
the Boussinesq system, we refer readers to [17, 4] and references therein.

Recently there are more and more studies concerning the full 3D MHD-Boussinesq
system. We refer readers to papers such as [18, 22, 3, 27] for the regularity criteria,
local and global well-posedness of weak and strong solutions of the MHD-Boussinesq
system. The local well-posedness results were proved in Larios-Pei [18]. If a nonlin-
ear damping term is added in the momentum equations, Liu-Bian-Pu [22] proved the
global well-posedness of strong solutions. Recently, Bian-Pu [3] proved the global
regularity of axially symmetric large solutions to the MHDB system (1.2) without
the horizontal swirl component uθ of the velocity under the assumption that the
support of the initial thermal fluctuation is away from the z-axis and its projection
on to the z-axis is compact. Later, this result was improved in Pan [27] by removing
the “support set” assumption on the initial data of the thermal fluctuation.

Throughout the paper, Ca,b,c,... denotes a positive constant depending on a, b, c, ...
which may be different from line to line. We also apply A . B to denote A ≤ CB.
Meanwhile, A ' B means both A . B and B . A. [A, B] := AB − BA denotes
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the communicator of the operator A and the operator B. For a domain D, and
1 ≤ p ≤ ∞, we denote Lp(D) the usual Lebesgue space on D and its norm is de-
noted by ‖ · ‖Lp(D). When D = R3, we simply write ‖ · ‖Lp(D) = ‖ · ‖Lp . For any

m ∈ N, Hm = Hm(R3) denotes the L2-based Sobolev space Wm,2(R3). Given a Ba-
nach space X, we say v : [0, T ]×R3 → R belongs to the Bochner space Lp(0, T ;X),
if

‖v(t, ·)‖X ∈ Lp(0, T ),

and we usually use LpTX for short notation of Lp(0, T ;X).
Our proof of the main result in this paper consists of the following steps: First,

we investigate a reformulated system (3.8) which is motivated by [13, 7] and derive
a closed L∞T∗L

2 ∩L2
T∗
H1 estimate of (3.8) under the condition (1.3) or (1.4). Based

on this estimate, we further derive the L∞T∗L
2∩L2

T∗
H1 estimate of ∇u (3.25). Using

the maximal regularity result of the heat flow, we arrive the L1
T∗
L∞ estimate of

∇u (3.31), then the L1
T∗
L∞ estimates of ∇ × h and ∇ρ, (3.40) and (3.41), follow.

Finally, using these L1
T∗
L∞ estimates, the estimates of higher-order norms of the

solution follow from a classical communicator estimate by Kato-Ponce [15].
The remaining of this paper is organized as follows. In Section 2, we provide

some useful Lemmas concerning interpolation inequalities, some Lp boundedness of
singular operators related to the problem, a Hardy type inequality, the maximal
regularity for the heat flow, and logarithmic imbedding inequalities. Finally, in
Section 3, we provide the proof of regularity criteria in Theorem 1.3.

2. Preliminaries. At the beginning, let us introducte the well-known Gagliardo−
Nirenberg interpolation inequality. We list here without proof.

Lemma 2.1 (Gagliardo-Nirenberg). Fix q, r ∈ [1,∞] and j,m ∈ N ∪ {0} with

j ≤ m. Suppose that f ∈ Lq(Rd) ∩ Ẇm,r(Rd) and there exists a real number
α ∈ [j/m, 1] such that

1

p
=
j

d
+ α

(
1

r
− m

d

)
+

1− α
q

.

Then f ∈ Ẇ j,p(Rd) and there exists a constant C > 0 such that

‖∇jf‖Lp(Rd) ≤ C‖∇mf‖αLr(Rd)‖f‖
1−α
Lq(Rd)

,

except the following two cases:
(i) j = 0, mr < d and q = ∞; (In this case it is necessary to assume also that

either |u| → 0 at infinity, or u ∈ Ls(Rd) for some s <∞.)
(ii) 1 < r <∞ and m− j− d/r ∈ N. (In this case it is necessary to assume also

that α < 1.)

In the following we state a useful space-time interpolation which is frequently
used in the research of Navier-Stokes equations:

Lemma 2.2. If u ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ1), then

u ∈ Lq (0, T ;Lp) , (2.1)

where
2

q
+

3

p
≥ 3

2
, 2 ≤ p ≤ 6.
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Proof. The Sobolev inequality implies u ∈ L2
(
0, T ;L6

)
. Then we interpolate the

Ls norm between L2 and L6 to derive

‖u(t, ·)‖Lp ≤ ‖u(t, ·)‖(6−p)/2pL2 ‖u(t, ·)‖(3p−6)/2p
L6 .

This indicates∫ T

0

‖u(t, ·)‖qLpdt ≤
∫ T

0

‖u(t, ·)‖(6−p)q/2pL2 ‖u(t, ·)‖(3p−6)q/2p
L6 dt.

Since u ∈ L∞
(
0, T ;L2

)
∩ L2

(
0, T ;L6

)
, the integral on the right-hand side of the

above inequality is bounded when (3p− 6)q/2p ≤ 2, which corresponds to

2

q
+

3

p
≥ 3

2
.

Next, we focus on the following estimates of a triple product form with commu-
tator:

Lemma 2.3. Let m ∈ N, m ≥ 2, and f, g, k ∈ C∞0 (R3). Then the following
estimate holds:∣∣∣∣∫

R3

[∇m, f · ∇]g∇mkdx
∣∣∣∣ ≤C ‖∇m(f, g, k)‖2L2 ‖∇(f, g)‖L∞ . (2.2)

Proof. Applying Hölder’s inequality, one derives∣∣∣∣∫
R3

[∇m, f · ∇]g∇mkdx
∣∣∣∣ ≤ ‖[∇m, f · ∇]g‖L2‖∇mk‖L2 . (2.3)

Due to the commutator estimate by Kato-Ponce [15], it follows that

‖[∇m, f · ∇]g‖L2 ≤ C (‖∇f‖L∞‖∇mg‖L2 + ‖∇g‖L∞‖∇mf‖L2) . (2.4)

Then (2.2) follows from plugging (2.4) into (2.3).

The following lemma was introduced by Hmidi-Rousset [13] where the authors
derived regularity of the axisymmetric Boussinesq system without swirl. It states
the Lp-boundedness of two operators related to axially symmetric vector fields.

Lemma 2.4. Denote L =
(
∆ + 2

r∂r
)−1 ∂r

r and L̃ =
(
∆ + 2

r∂r
)−1 ∂z

r . Suppose ρ ∈
H2
(
R3
)

be axisymmetric, then for every p ∈ [2,+∞), there exists an absolute
constant Cp > 0 such that

‖Lρ‖Lp ≤ Cp‖ρ‖Lp , ‖L̃ρ‖Lp ≤ Cp‖ρ‖Lp .
Moreover, for any smooth axisymmetric function f, we have the identity

L∂rf =
f

r
− L

(
f

r

)
− ∂zL̃f.

Proof. The detailed proof can be found in Proposition 3.1, 3.2 and Lemma 3.3 in
[13]. We omit the details here.

The following famous estimate will be applied later in our proof.

Lemma 2.5. Let u = urer + uθeθ + uzez be an axially symmetric vector field on

R3, w = ∇ × u = wrer + wθeθ + wzez. Define Ω := wθ

r . For 1 < p < +∞, there
exists an absolute constant Cp > 0 such that∥∥∥∥∇urr (t, ·)

∥∥∥∥
Lp
≤ Cp‖Ω(t, ·)‖Lp .
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The proof of this lemma can be founded in many literatures, such as [19] (equation
(A.5)) and [25] (Proposition 2.5).

Next we give a Sobolev-Hardy inequality. We omit the detailed proof since it
could be found in the Lemma 2.4 of [7].

Lemma 2.6. Set Rd = Rk × Rd−k with 2 ≤ k ≤ d, and write x = (x′, z) ∈
Rk × Rd−k. For 1 < q < d, 0 ≤ θ ≤ q and θ < k, let q∗ ∈

[
q, q(d−θ)d−q

]
. Then there

exists a positive constant C = C(θ, q, d, k) such that for all f ∈ C∞0
(
Rd
)
,(∫

Rd

|f |q∗

|x′|θ
dx

) 1
q∗

≤ C‖f‖
d−θ
q∗ −

d
q+1

Lq ‖∇f‖
d
q−

d−θ
q∗

Lq .

In particular, we pick d = 3, k = 2, q = 2, q∗ ∈ [2, 2(3 − θ)], and assume 0 ≤ θ <

2, r =
√
x2

1 + x2
2. Then there exists a positive constant C = C (q∗, θ) such that for

all f ∈ C∞0
(
Rd
) ∥∥∥∥ f

r
θ
q∗

∥∥∥∥
Lq∗

≤ C‖f‖
3−θ
q∗ −

1
2

L2 ‖∇f‖
3
2−

3−θ
q∗

L2 . (2.5)

Using the Biot-Savart law and the Lp boundedness of Calderon-Zygmund singular
integral operators, we have the following lemma whose detailed proof can be found
for example in [6, 9].

Lemma 2.7. Let u = urer + uθeθ + uzez be an axially symmetric vector field on
R3, w = ∇× u = wrer + wθeθ + wzez and b = urer + uzez. Then we have

‖∇u‖Lp ≤ Cp‖w‖Lp , ‖∇2u‖Lp ≤ Cp‖∇w‖Lp , (2.6)

and

‖∇b‖Lp ≤ Cp‖wθ‖Lp , ‖∇2b‖Lp ≤ Cp
(
‖∇wθ‖Lp +

∥∥∥∥wθr
∥∥∥∥
Lp

)
, (2.7)

for all 1 < p <∞.

Now we recall the standard maximal regularity of heat flows in LrTL
p-type spaces.

Detailed proof could be found in [20, Theorem 7.3] for instance.

Lemma 2.8 (Maximal LrTL
p regularity for the heat flow). Let us define the operator

A by the formula

A : f 7−→
∫ t

0

∇2e(t−s)∆f(s, ·)ds.

Then A is bounded from Lr
(
0, T ;Lp(Rd)

)
to Lr

(
0, T ;Lp(Rd)

)
for every T ∈ (0,∞]

and 1 < p, r <∞. Moreover, there holds:

‖Af‖LrTLp ≤ C‖f‖LrTLp . (2.8)

Finally, we recall the following logarithmic imbedding inequality which is proved
in [16].

Lemma 2.9. Let 1 < p <∞ and s > d/p. There exists a constant C = Cd,p,s such
that the estimate

‖f‖L∞(Rd) ≤ C
(
1 + ‖f‖BMO(Rd) log(e+ ‖f‖W s,p(Rd))

)
(2.9)

holds for all f ∈W s,p(Rd).

In this paper, the following corollary of Lemma 2.9 is more convenient for us.
That is:
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Corollary 2.10. For any divergence free vector field g : R3 → R3 such that g ∈
H3(R3), the following estimate holds:

‖∇g‖L∞(R3) . 1 + ‖∇ × g‖BMO(R3) log
(
e+ ‖g‖H3(R3)

)
. (2.10)

Proof. Using Fourier transform and noting that

ξ ⊗ ĝ = − ξ

|ξ|
⊗
(
ξ

|ξ|
× (ξ × ĝ)

)
provided ξ · ĝ ≡ 0, (2.10) is proven by combining the estimate (2.9) and the fact
that the Riesz operator is bounded in the BMO space.

3. Proof of Theorem 1.3. In this section, we focus on the proof of Theorem 1.3.

Denoting Γ := ruθ and H := hθ

r , by (1.2)2 and (1.2)4, one derives that

∂tΓ + (ur∂r + uz∂z)Γ =

(
∆− 2

r
∂r

)
Γ.

∂tH + (ur∂r + uz∂z)H = 0.

At the beginning, the following Lemma states fundamental estimates of the sys-
tem (1.2):

Lemma 3.1 (Fundamental Energy Estimates). Let (u, h, ρ) be a smooth solution
of (1.2), then we have

(i) For p ∈ [1,∞] and t ∈ R+,

‖Γ(t, ·)‖Lp ≤ ‖Γ0‖Lp ;

‖H(t, ·)‖Lp ≤ ‖H0‖Lp ;

‖ρ(t, ·)‖Lp ≤ ‖ρ0‖Lp .
(3.1)

(ii) For u0, h0, ρ0 ∈ L2 and t ∈ R+,

‖(u, h)(t, ·)‖2L2 +

∫ t

0

‖∇u(s, ·)‖2L2ds ≤ C0(1 + t)2, (3.2)

where C0 depends only on ‖(u0, h0, ρ0)‖L2 .

Proof. The estimate in (3.1) is classical for the heat equation when p < ∞ and
follows from the maximum principle when p = ∞. Meanwhile, (3.2) follows from
the standard L2 estimate of the system (1.1), together with the result in (3.1). See
also [27, Proposition 2.1]. We omit the details here.

3.1. L∞T∗L
2 ∩L2

T∗
H1 estimate of a reformulated system. First we see the vor-

ticity w of the axially symmetric velocity u is defined by

w = ∇× u = wr(t, r, z)er + wθ(t, r, z)eθ + wz(t, r, z)ez,

where

wr = −∂zuθ, wθ = ∂zu
r − ∂ruz, wz = ∂ru

θ +
uθ

r
.
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By the first three equations of (1.2), (wr, wθ, wz) satisfies

∂tw
r + (ur∂r + uz∂z)w

r =

(
∆− 1

r2

)
wr + (wr∂r + wz∂z)u

r,

∂tw
θ + (ur∂r + uz∂z)w

θ =

(
∆− 1

r2

)
wθ +

ur

r
wθ +

1

r
∂z(u

θ)2 − 1

r
∂z(h

θ)2 − ∂rρ,

∂tw
z + (ur∂r + uz∂z)w

z = ∆wz + (wr∂r + wz∂z)u
z.

(3.3)

Applying L =
(
∆ + 2

r∂r
)−1 ∂r

r to the equation of ρ, one derives

∂tLρ+ u · ∇Lρ = −[L, u · ∇]ρ. (3.4)

Meanwhile, (3.3)2 indicates Ω := wθ

r satisfies

∂tΩ + u · ∇Ω =

(
∆ +

2

r
∂r

)
Ω− ∂zH2 − ∂rρ

r
− 2uθwr

r2
. (3.5)

Now we denote L := Ω − Lρ. Subtracting (3.4) from (3.5) and noting the axially
symmetric condition, we have

∂tL+ (ur∂r + uz∂z)L =

(
∆ +

2

r
∂r

)
L− ∂zH2 + [L, u · ∇]ρ− 2

uθwr

r2
. (3.6)

On the other hand, by denoting J := wr

r , we can get the following equation from
(3.3)1:

∂tJ + (ur∂r + uz∂z)J =

(
∆ +

2

r
∂r

)
J + (wr∂r + wz∂z)

ur

r
. (3.7)

Therefore, we have the following reformulated system by combining (3.6) and (3.7):
∂tL+ (ur∂r + uz∂z)L =

(
∆ +

2

r
∂r

)
L− ∂zH2 + [L, u · ∇]ρ− 2

uθ

r
J,

∂tJ + (ur∂r + uz∂z)J =

(
∆ +

2

r
∂r

)
J + (wr∂r + wz∂z)

ur

r
.

(3.8)

Now we are ready for an a prior L∞T∗L
2 ∩L2

T∗
H1 estimate for the above reformu-

lated system. We have the following Lemma.

Lemma 3.2. Under the same conditions as Theorem 1.3, the following a priori
estimate of (L, J) holds:

sup
0≤t≤T∗

‖(L, J)(t, ·)‖2L2 +

∫ T∗

0

‖∇(L, J)(t, ·)‖2L2dt <∞. (3.9)

Proof. Performing the L2 inner product of (3.8)1, using integration by parts and
divergence-free condition, one finds

1

2

d

dt
‖L(t, ·)‖2L2 + ‖∇L(t, ·)‖2L2

≤
∫
R3

L(u · ∇ρ)Ldx−
∫
R3

u · ∇(Lρ)Ldx−
∫
R3

∂zH
2Ldx− 2

∫
R3

uθ

r
JLdx

=

∫
R3

L(u · ∇ρ)Ldx+

∫
R3

(Lρ)u · ∇Ldx+

∫
R3

H2∂zLdx− 2

∫
R3

uθ

r
JLdx

:=I1 + I2 + I3 + I4.

(3.10)
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Using the method in the proof of Proposition 2.2 of [27], the first 3 terms above
can be estimated by

3∑
j=1

Ij ≤Ch0,ρ0

(
1 + ‖∇u(t, ·)‖2L2

)
+ C(1 + t)2

+ Cρ0
(
1 + ‖L(t, ·)‖2L2

)
+

1

4
‖∇L(t, ·)‖2L2 .

(3.11)

Meanwhile, using the Cauchy-Schwartz inequality, I4 can be estimated by

I4 ≤
1

2

∫
R3

|uθ|
r
|L|2dx+

1

2

∫
R3

|uθ|
r
|J |2dx

:= I41 + I42.

(3.12)

For any p ∈ [ 3
1+s ,∞], we estimate I41 and I42 in the following 2 cases:

Case I: 0 ≤ s ≤ 1.

We use Hölder inequality to derive

I41 =

∫
R3

uθ

rs
|L|2

r1−s dx ≤
∥∥∥∥uθrs (t, ·)

∥∥∥∥
Lp

(∫
R3

∣∣∣∣∣ L2p′

r(1−s)p′

∣∣∣∣∣ dx
)1/p′

, (3.13)

where p′ = p
p−1 is the conjugate number of p. By choosing θ = (1− s)p′, q∗ = 2p′

in (2.5) of Lemma 2.6, one finds that(∫
R3

∣∣∣∣∣ L2p′

r(1−s)p′

∣∣∣∣∣ dx
)1/p′

≤ Cs,p‖L(t, ·)‖1+s− 3
p

L2 ‖∇L(t, ·)‖1−s+
3
p

L2 . (3.14)

Substituting (3.14) in (3.13) and using Young inequality, one derives that

I41 ≤


Cs,p

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp
‖L(t, ·)‖2L2 +

1

4
‖∇L(t, ·)‖2L2 , for p >

3

1 + s
;

Cs

∥∥∥∥uθrs (t, ·)
∥∥∥∥
Lp
‖∇L(t, ·)‖2L2 , for p =

3

1 + s
.

(3.15)
Similarly, I42 satisfies

I42 ≤


Cs,p

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp
‖J(t, ·)‖2L2 +

1

4
‖∇J(t, ·)‖2L2 , for p >

3

1 + s
;

Cs

∥∥∥∥uθrs (t, ·)
∥∥∥∥
Lp
‖∇J(t, ·)‖2L2 , for p =

3

1 + s
.

(3.16)

Remark 3.3. Actually the above estimate in Case I is also feasible for −1 < s < 0.
However we do not pursue it because the following L∞T∗L

2 ∩ L2
T∗
H1 estimate of J

fails in this situation.
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Case II: s > 1.

Using Hölder inequality and (3.1) in Lemma 3.1, one finds

I41 =

∫
R3

|ruθ|
s−1
s+1

∣∣∣∣uθrs
∣∣∣∣

2
1+s

|L|2dx ≤ ‖Γ0‖
s−1
s+1

L∞

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

Lp
‖L(t, ·)‖2

L
2p(1+s)
p(1+s)−2

.

(3.17)

Noting that 2p(1+s)
p(1+s)−2 ∈ [2, 6] when p ≥ 3

1+s and applying Lemma 2.1, one has

‖L(t, ·)‖
L

2p(1+s)
p(1+s)−2

≤ Cs,p‖L(t, ·)‖
1− 3

p(1+s)

L2 ‖∇L(t, ·)‖
3

p(1+s)

L2 . (3.18)

Thus by inserting (3.18) into (3.17) and using Hölder inequality, the estimate (3.15)
is still valid for s > 1 with the constant C depending on s, p and ‖Γ0‖L∞ . The
proof of (3.16) when s > 1 is similar. This finishes the estimate of I4 in (3.10).
Plugging (3.11), (3.15) and (3.16) into (3.10), we have the following estimate of L
when p > 3

1+s :

d

dt
‖L(t, ·)‖2L2 + ‖∇L(t, ·)‖2L2 ≤Ch0,ρ0

(
‖∇u(t, ·)‖2L2 + (1 + t)2 + ‖L(t, ·)‖2L2

)
+ Cs,p,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp

(
‖L(t, ·)‖2L2 + ‖J(t, ·)‖2L2

)
+

1

4
‖∇L(t, ·)‖2L2 +

1

4
‖∇J(t, ·)‖2L2 ,

(3.19)

and the following estimate when p = 3
1+s :

d

dt
‖L(t, ·)‖2L2 + ‖∇L(t, ·)‖2L2 ≤Ch0,ρ0

(
‖∇u(t, ·)‖2L2 + (1 + t)2 + ‖L(t, ·)‖2L2

)
+ Cs,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥
Lp

(
‖∇L(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

)
.

(3.20)

Next we work on the equation of J in (3.8). Taking L2 inner product of (3.8)2, we
arrive

1

2

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2 =

∫
R3

(
∇× (uθeθ)

)
·
(
J∇u

r

r

)
dx

=

∫
R3

uθeθ ·
(
∇J ×∇u

r

r

)
dx

=

∫
R3

uθ
(
∂r
ur

r
∂zJ − ∂z

ur

r
∂rJ

)
dx

≤ 1

2

∫
R3

|uθ|2
∣∣∣∣∇urr

∣∣∣∣2 dx+
1

2
‖∇J(t, ·)‖2L2 ,

which follows that

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2 .

∫
R3

|uθ|2
∣∣∣∣∇urr

∣∣∣∣2 dx. (3.21)

Different from (3.12), here we should be very careful to avoid the appearance of

second-order gradients of ur

r . Even though the following estimate∥∥∥∥∇2u
r

r
(t, ·)

∥∥∥∥
L2

≤ C‖∂zΩ(t, ·)‖L2
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holds (see [19], equation (A.6)), we still have no idea to bound ‖∂zΩ‖L2 due to the

appearance of ∇(Lρ) at the moment. Therefore ∇2 ur

r term cannot be eliminated

by ‖∇L(t, ·)‖2L2 on the left hand side of (3.10). This is, in the authors’ opinion, a
key difference from Navier-Stokes and MHD systems in which ρ ≡ 0.

Nevertheless, noting that Γ = ruθ is uniformly bounded according to Lemma
3.1, for a fixed s ∈ [0,∞), (3.21) indicates that

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2 ≤ C‖Γ0‖

2s
1+s

L∞

∫
R3

∣∣∣∣uθrs
∣∣∣∣

2
s+1
∣∣∣∣∇urr

∣∣∣∣2 dx.
For any p ≥ 3

1+s , using Hölder inequality, one derives that

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2 ≤ C‖Γ0‖

2s
1+s

L∞

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

Lp

×
∥∥∥∥∇urr (t, ·)

∥∥∥∥2− 6
(1+s)p

L2

∥∥∥∥∇urr (t, ·)
∥∥∥∥ 6

(1+s)p

L6

.

By Lemma 2.5 and the definition of L, one notes that

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

≤Cs,p‖Γ0‖
2s

1+s

L∞

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

Lp
‖Ω(t, ·)‖

2− 6
(1+s)p

L2 ‖Ω(t, ·)‖
6

(1+s)p

L6

≤Cs,p‖Γ0‖
2s

1+s

L∞

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

Lp
(‖L(t, ·)‖L2 + ‖Lρ(t, ·)‖L2)

2− 6
(1+s)p

× (‖L(t, ·)‖L6 + ‖Lρ(t, ·)‖L6)
6

(1+s)p .

Applying the boundedness of the operator L in Lemma 2.4, together with the time-
uniform estimate of ρ in Lemma 3.1, one arrives that when p > 3

1+s :

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

≤Cs,p‖Γ0‖
2s

1+s

L∞

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

Lp

(
‖L(t, ·)‖L2 + ‖ρ0‖L2

)2− 6
(1+s)p

(
‖∇L(t, ·)‖L2 + ‖ρ0‖L6

) 6
(1+s)p

≤Cs,p,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp

(
‖L(t, ·)‖L2 + ‖ρ0‖L2

)2
+

1

4

(
‖∇L(t, ·)‖L2 + ‖ρ0‖L6

)2
≤Cs,p,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp
‖L(t, ·)‖2L2 + Cs,p,ρ0,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp
+ 1


+

1

4
‖∇L(t, ·)‖2L2 .

(3.22)
Similarly when p = 3

1+s , one derives

d

dt
‖J(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2 ≤Cs,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

L
3

1+s

‖∇L(t, ·)‖2L2

+ Cs,ρ0,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

L
3

1+s

.

(3.23)



2344 ZIJIN LI AND XINGHONG PAN

Therefore, when p > 3
s+1 , (3.19) and (3.22) imply that

d

dt

(
‖L(t, ·)‖2L2 + ‖J(t, ·)‖2L2

)
+
(
‖∇L(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

)
≤Cs,p,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp

(
‖L(t, ·)‖2L2 + ‖J(t, ·)‖2L2

)
+ Cs,p,ρ0,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2p
(1+s)p−3

Lp
+ 1


+ Ch0,ρ0

(
‖∇u(t, ·)‖2L2 + (1 + t)2 + ‖L(t, ·)‖2L2

)
.

Thus the condition (1.3) and Gronwall inequality indicates (3.9). Finally when
p = 3

1+s , (3.20) and (3.23) lead to

d

dt

(
‖L(t, ·)‖2L2 + ‖J(t, ·)‖2L2

)
+
(
‖∇L(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

)
≤Cs,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥
L

3
1+s

(
‖∇L(t, ·)‖2L2 + ‖∇J(t, ·)‖2L2

)
+ Cs,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

L
3

1+s

‖∇L(t, ·)‖2L2 + Cs,ρ0,Γ0

∥∥∥∥uθrs (t, ·)
∥∥∥∥

2
1+s

L
3

1+s

+ Ch0,ρ0

(
‖∇u(t, ·)‖2L2 + (1 + t)2 + ‖L(t, ·)‖2L2

)
.

(3.24)

Choosing ε0 = (4Cs,Γ0
)
−max{1, 1+s2 }, we find the first and second terms on the right

hand of (3.24) can be absorbed by the left hand providing∥∥∥∥uθrs
∥∥∥∥
L∞(0,T∗;L

3
1+s )

< ε0.

Using Gronwall inequality, (3.9) also holds when p = 3
1+s .

Corollary 3.4. Under the same conditions as Theorem 1.3, we have

sup
0≤t≤T∗

‖Ω(t, ·)‖2L2 <∞.

Proof. By Lemma 3.1 and Lemma 2.4, Lρ satisfies:

‖Lρ(t, ·)‖2L2 ≤ C‖ρ(t, ·)‖2L2 ≤ C‖ρ0‖2L2 <∞, ∀t ∈ [0, T∗].

Thus the corollary is proved by noting the L∞T∗L
2 boundedness of L = Ω − Lρ in

(3.9).

3.2. L∞T∗L
2 ∩ L2

T∗
H1 estimate of ∇u. This part is devoted to the L∞T∗L

2 ∩L2
T∗
H1

estimate of ∇u, that is:

Lemma 3.5. Under the same conditions as Theorem 1.3, the following a priori
estimate of the gradient of the velocity holds:

sup
0≤t≤T∗

‖∇u(t, ·)‖2L2 +

∫ T∗

0

‖∇2u(t, ·)‖2L2dt <∞. (3.25)

Proof. To do this, we first estimate the horizontal angular component of the vor-
ticity.
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3.2.1. Estimate of wθ. For (3.3)2, we perform the standard L2 inner product to
derive

1

2

d

dt
‖wθ(t, ·)‖2L2 + ‖∇wθ(t, ·)‖2L2 +

∥∥∥∥wθr (t, ·)
∥∥∥∥2

L2

=

∫
R3

ur

r
(wθ)2dx+

∫
R3

∂z
(uθ)2

r
wθdx−

∫
R3

∂rρw
θdx−

∫
R3

∂z
(hθ)2

r
wθdx

:=I1 + I2 + I3 + I4.

Now we estimate Ii, i = 1, 2, 3, 4 separately. By Hölder inequality, Young in-
equality and Gagliardo-Nirenberg inequality, we have

I1 ≤‖ur(t, ·)‖L3

∥∥∥∥wθr (t, ·)
∥∥∥∥
L2

‖wθ(t, ·)‖L6

≤C‖ur(t, ·)‖L3‖Ω(t, ·)‖L2‖∇wθ(t, ·)‖L2

≤C‖ur(t, ·)‖2L3‖Ω(t, ·)‖2L2 +
1

8
‖∇wθ(t, ·)‖2L2

≤C‖ur(t, ·)‖L2‖∇ur(t, ·)‖L2‖Ω(t, ·)‖2L2 +
1

8
‖∇wθ(t, ·)‖2L2 ,

and

I2 = 2

∫
R3

∂zu
θ

r
uθwθdx

≤ 2‖J(t, ·)‖L2‖wθ(t, ·)‖L6‖uθ(t, ·)‖L3

≤ C‖J(t, ·)‖L2‖∇wθ(t, ·)‖L2‖uθ(t, ·)‖L3

≤ C‖uθ(t, ·)‖2L3‖J(t, ·)‖2L2 +
1

8
‖∇wθ(t, ·)‖2L2

≤ C‖uθ(t, ·)‖L2‖∇uθ(t, ·)‖L2‖J(t, ·)‖2L2 +
1

8
‖∇wθ(t, ·)‖2L2 .

Meanwhile, one derives the following for I3:

I3 =− 2π

∫ ∞
−∞

∫ ∞
0

∂rρw
θrdrdz

=2π

∫ ∞
−∞

∫ ∞
0

ρ∂r(w
θr)drdz

=2π

∫ ∞
−∞

∫ ∞
0

ρ∂rw
θrdrdz + 2π

∫ ∞
−∞

∫ ∞
0

ρ
wθ

r
rdrdz

≤‖ρ(t, ·)‖L2‖∇wθ(t, ·)‖L2 + ‖ρ(t, ·)‖L2

∥∥∥∥wθr (t, ·)
∥∥∥∥
L2

≤C‖ρ(t, ·)‖2L2 +
1

8

(
‖∇wθ(t, ·)‖2L2 +

∥∥∥∥wθr (t, ·)
∥∥∥∥2

L2

)
,

also similarly for I4:

I4 =

∫
R3

(hθ)2

r
∂zw

θdx

≤‖H(t, ·)‖L∞‖hθ(t, ·)‖L2‖∇wθ(t, ·)‖L2

≤C‖H(t, ·)‖2L∞‖hθ(t, ·)‖2L2 +
1

8
‖∇wθ(t, ·)‖2L2 .
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The above estimates for Ii, i = 1, 2, 3, 4 along with Lemma 3.1 indicate that

d

dt
‖wθ(t, ·)‖2L2 + ‖∇wθ(t, ·)‖2L2 +

∥∥∥∥wθr (t, ·)
∥∥∥∥2

L2

≤C
(
‖ur(t, ·)‖L2‖∇ur(t, ·)‖L2‖Ω(t, ·)‖2L2 + ‖uθ(t, ·)‖L2‖∇uθ(t, ·)‖L2‖J(t, ·)‖2L2

+‖ρ(t, ·)‖2L2 + ‖H(t, ·)‖2L∞‖hθ(t, ·)‖2L2

)
.

Integrating with t on [0, T∗], the following final inequality follows from the L∞T∗L
2

estimates of u, h and ρ, together with L∞T∗L
∞ estimate of H in Lemma 3.1, and

L∞T∗L
2 estimate of (Ω, J) in Lemma 3.2 and Corollary 3.4. That is:

sup
0≤t≤T∗

‖wθ(t, ·)‖2L2 +

∫ T∗

0

‖∇wθ(t, ·)‖2L2dt+

∫ T∗

0

∥∥∥∥wθr (t, ·)
∥∥∥∥2

L2

dt

. sup
0≤t≤T∗

‖u(t, ·)‖L2 sup
0≤t≤T∗

(
‖Ω(t, ·)‖2L2 + ‖J(t, ·)‖2L2

) ∫ T∗

0

‖∇u(t, ·)‖L2dt+ T∗‖ρ0‖2L2

+ ‖H0‖2L∞T∗ sup
0≤t≤T∗

‖hθ(t, ·)‖2L2

<∞.
(3.26)

3.2.2. Estimate of wr and wz. We multiply (3.3)1 by wr and integrate over R3

to derive

1

2

d

dt
‖wr(t, ·)‖2L2 + ‖∇wr(t, ·)‖2L2 +

∥∥∥∥wrr (t, ·)
∥∥∥∥2

L2

=

∫
R3

wr(wr∂r + wz∂z)u
rdx

=−
∫
R3

ur(wr∂r + wz∂z)w
rdx

≤‖ur(t, ·)‖L∞ (‖wr(t, ·)‖L2‖∂rwr(t, ·)‖L2 + ‖wz(t, ·)‖L2‖∂zwr(t, ·)‖L2)

≤ 1

4
‖∇wr(t, ·)‖2L2 + C‖ur(t, ·)‖2L∞

(
‖wr(t, ·)‖2L2 + ‖wz(t, ·)‖2L2

)
.

(3.27)

Here the last three lines follow from the integration by parts, Hölder inequality
and Young inequality. Meanwhile, by a similar performance on (3.3)3, one has

1

2

d

dt
‖wz(t, ·)‖2L2 + ‖∇wz(t, ·)‖2L2

=

∫
R3

wz(wr∂r + wz∂z)u
zdx

=−
∫
R3

uz(wr∂r + wz∂z)w
zdx

≤‖uz(t, ·)‖L∞ (‖wr(t, ·)‖L2‖∂rwz(t, ·)‖L2 + ‖wz(t, ·)‖L2‖∂zwz(t, ·)‖L2)

≤1

4
‖∇wz(t, ·)‖2L2 + C‖uz(t, ·)‖2L∞

(
‖wr(t, ·)‖2L2 + ‖wz(t, ·)‖2L2

)
.

(3.28)
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Summing up (3.27) and (3.28) and applying Gronwall inequality, one derives

sup
0≤t≤T∗

‖(wr, wz) (t, ·)‖2L2 +

∫ T∗

0

(
‖(∇wr(t, ·),∇wz(t, ·))‖+

∥∥∥∥wrr (t, ·)
∥∥∥∥
L2

)
dt

≤‖(wr0, wz0)‖2L2 exp

(
C

∫ T∗

0

‖b(t, ·)‖2L∞dt

)
.

(3.29)

Finally, it remains to estimate the part inside the exponential function on the
right-hand-side of (3.29). Using Gagliardo-Nirenberg interpolation inequality, (2.7)
and Hölder inequality, together with estimates (3.2) and (3.26), one has∫ T∗

0

‖b(t, ·)‖2L∞dt

≤ C
∫ T∗

0

‖∇b(t, ·)‖L2‖∇2b(t, ·)‖L2dt

≤ C
∫ T∗

0

‖∇u(t, ·)‖L2

(
‖∇wθ(t, ·)‖L2 +

∥∥∥∥wθr (t, ·)
∥∥∥∥
L2

)
dt

≤ C

(∫ T∗

0

‖∇u(t, ·)‖2L2ds

)1/2(∫ T∗

0

(
‖∇wθ(t, ·)‖2L2 +

∥∥∥∥wθr (t, ·)
∥∥∥∥2

L2

)
dt

)1/2

<∞.

Inserting the above estimate in (3.29), we have

sup
0≤t≤T∗

‖(wr, wz) (t, ·)‖2L2 +

∫ T∗

0

(
‖∇ (wr, wz) (t, ·)‖2L2 +

∥∥∥∥wrr (t, ·)
∥∥∥∥2

L2

)
dt <∞.

(3.30)

Combining (3.26) and (3.30), we have the L∞T∗L
2∩L2

T∗
H1 estimate for the vorticity.

Then using (2.6), (3.25) follows.

3.3. L1
T∗
L∞ estimate of ∇u. Recall the equation for the vorticity:

∂tw −∆w = ∇× (u · ∇u)−∇× (h · ∇h) +∇× (ρe3);

w(0, x) = ∇× u0(x).

For the further convenience, we split w into three parts:

w := w0 + w1 + w2,

where w0 solves the linear parabolic equation with the initial value ∇× u0(x):
∂tw0 −∆w0 = 0;

w(0, x) = ∇× u0(x).

Clearly, when t > 0, w0 is regular enough for our argument in this paper, so we only
need to consider the rest parts. Meanwhile, w1 and w2, which have homogeneous
initial data, satisfy

∂tw1 −∆w1 = −∇× (h · ∇h)

and
∂tw2 −∆w2 = ∇× (u · ∇u) +∇× (ρe3),

respectively.
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Now we claim that

∇u ∈ L1 (0, T∗;L
∞). (3.31)

To prove it, we first observe that

h · ∇h = − (hθ)2

r
er = −Hhθer,

since h = hθ(t, r, z)eθ. Noting that

H ∈ L∞ (0, T∗;L
∞) (3.32)

follows from (3.1) in Lemma 3.1, the following estimate of hθ holds by performing
L4 inner product of hθ:

d

dt

∥∥hθ(t, ·)∥∥4

L4 ≤ 4

∣∣∣∣∫
R3

ur

r

(
hθ
)4
dx

∣∣∣∣
≤ 4‖H‖L∞

∫
R3

|ur| |hθ|3dx

≤ 4 ‖H0‖L∞ ‖u
r(t, ·)‖L4

∥∥hθ(t, ·)∥∥3

L4

≤ C ‖H0‖L∞ ‖∇u
r(t, ·)‖3/4L2 ‖ur(t, ·)‖1/4L2

∥∥hθ(t, ·)∥∥3

L4 .

Integration from 0 to t on time for t ∈ (0, T∗], one derives

sup
0≤t≤T∗

‖hθ(t, ·)‖L4

≤ ‖hθ0‖L4 + C‖H0‖L∞ sup
0≤t≤T∗

‖ur(t, ·)‖1/4L2

∫ T∗

0

‖∇ur(t, ·)‖3/4L2 dt

≤ ‖hθ0‖L4 + C‖H0‖L∞ sup
0≤t≤T∗

‖ur(t, ·)‖1/4L2

(∫ T∗

0

‖∇u(t, ·)‖2L2 dt

)3/8

T∗
5/8

<∞.

(3.33)

Combining (3.32) and (3.33), we find

h · ∇h ∈ L∞
(
0, T∗;L

4
)
⊂ L4/3

(
0, T∗;L

4
)
.

Then ∇w1 satisfies

∇w1 ∈ L4/3
(
0, T∗;L

4
)

(3.34)

by applying (2.8), the maximal regularity for the heat flow in Lemma 2.8. To treat
w2, by interpolating L2

T∗
H1 and L∞T∗L

2 as shown in (2.1) of Lemma (2.2), we arrive

∇u ∈ L8/3
(
0, T∗;L

4
)
. (3.35)

Also we have the following interpolation inequality by Lemma 2.1:

‖u(t, ·)‖L∞ . ‖∇u(t, ·)‖6/7L4 ‖u(t, ·)‖1/7L2 .

Then considering the fundamental energy estimate (3.2), one deduces that∫ T∗

0

‖u(t, ·)‖8/3L∞dt . ‖u‖
8/21
L∞(0,T∗;L2)

∫ T∗

0

‖∇u(t, ·)‖16/7
L4 dt

. ‖u‖8/21
L∞(0,T∗;L2)

(∫ T∗

0

‖∇u(t, ·)‖8/3L4 dt

)6/7

T
1/7
∗ <∞.

(3.36)
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Then (3.35) and (3.36) assert that

u · ∇u ∈ L4/3
(
0, T∗;L

4
)
.

Meanwhile, by (3.1), it is clear that

ρ ∈ L∞(0, T∗;L
4) ⊂ L4/3(0, T∗;L

4).

Following from (2.8) in Lemma 2.8, it is clear that

∇w2 ∈ L4/3
(
0, T∗;L

4
)
. (3.37)

Then (3.37), together with (3.34), imply that

∇w ∈ L4/3
(
0, T∗;L

4
)
. (3.38)

Now the interpolation inequality in Lemma 2.1, together with the lower order esti-
mate of w in (3.9) and (2.6), assert that

‖∇u(t, ·)‖L∞ . ‖∇u(t, ·)‖1/7L2 ‖∇2u(t, ·)‖6/7L4

. ‖w(t, ·)‖1/7L2 ‖∇w(t, ·)‖6/7L4 .

Then using (3.38), we find the claim is proved since∫ T∗

0

‖∇u(t, ·)‖L∞dt . ‖w‖1/7L∞(0,T∗;L2)

∫ T∗

0

‖∇w(t, ·)‖6/7L4 dt

≤ ‖w‖1/7L∞(0,T∗;L2)

(∫ T∗

0

‖∇w(t, ·)‖4/3L4 dt

)14/9

T
5/14
∗ <∞.

3.4. L1
T∗
L∞ estimate of ∇× h. Let j := ∇ × h. By h = hθ(t, r, z)eθ, it follows

that

j = jr(t, r, z)er + jz(t, r, z)ez

is an axially symmetric swirl-free vector field with

jr = −∂zhθ, jz = ∂rh
θ +

hθ

r
.

Taking derivative of (1.2)4, noting the divergence-free condition of u, one obtains
∂tj

r + (ur∂r + uz∂z)j
r = − (∂ru

r + 2∂zu
z) jr + ∂zu

rjz − 2∂zu
rH;

∂tj
z + (ur∂r + uz∂z)j

z = ∂ru
zjr − (2∂ru

r + ∂zu
z) jz + (4∂ru

r + 2∂zu
z)H.

(3.39)
Before we perform the L1

T∗
L∞-estimate of ∇×h, we denote X(t, ·) : R3 → R3 the

particle trajectory mapping of the velocity b, which solves the initial value problem:

∂X(t, ζ)

∂t
= b(t,X(t, ζ)), X(0, ζ) = ζ.

Integrating (3.39) along the particle trajectory mapping, we have

jr(t,X(t, ζ)) =jr0(ζ) +

∫ t

0

[− (∂ru
r + 2∂zu

z) jr + ∂zu
rjz − 2∂zu

rH] (s,X(s, ζ))ds;

jz(t,X(t, ζ)) =jz0 (ζ)

+

∫ t

0

[∂ru
zjr − (2∂ru

r + ∂zu
z) jz + (4∂ru

r + 2∂zu
z)H] (s,X(s, ζ))ds.
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Taking the L∞ norm over ζ ∈ R3, noting the estimate of H in (3.1), one derives
that

‖(jr, jz)(t, ·)‖L∞ ≤‖(jr0 , jz0 )‖L∞

+ C

∫ t

0

‖∇b(s, ·)‖L∞ (‖(jr, jz)(s, ·)‖L∞ + ‖H(s, ·)‖L∞) ds

≤‖(jr0 , jz0 )‖L∞ + C‖H0‖L∞
∫ t

0

‖∇b(s, ·)‖L∞ds

+ C

∫ t

0

‖∇b(s, ·)‖L∞‖(jr, jz)(s, ·)‖L∞ds.

Applying (3.31) and Gronwall inequality, one arrives that

‖(jr, jz)(t)‖L∞

≤
(
‖(jr0 , jz0 )‖L∞ + C‖H0‖L∞

∫ t

0

‖∇b(s, ·)‖L∞ds
)

exp

(
C

∫ t

0

‖∇b(s, ·)‖L∞ds
)

≤
(
‖(jr0 , jz0 )‖L∞ + C‖H0‖L∞

∫ t

0

‖∇u(s, ·)‖L∞ds
)

exp

(
C

∫ t

0

‖∇u(s, ·)‖L∞ds
)

holds for any t ∈ (0, T∗]. This implies∫ T∗

0

‖∇ × h(t, ·)‖L∞dt =

∫ T∗

0

‖(jr, jz)(t, ·)‖L∞dt <∞, (3.40)

which finishes the proof of the desired estimate.

3.5. L1
T∗
L∞ estimate of ∇ρ.

Now it remains to esitmate ∇ρ. Taking ∇ to (1.1)3, we know that

∂t∇ρ+ u · ∇∇ρ = −∇u · ∇ρ.

The routine L∞ estimate follows that

‖∇ρ(t, ·)‖L∞ ≤ ‖∇ρ0‖L∞ +

∫ t

0

‖∇u(s, ·)‖L∞‖∇ρ(s, ·)‖L∞ds.

By Gronwall inequality and using (3.31), we arrive

sup
0≤t≤T∗

‖∇ρ(t, ·)‖L∞ ≤ ‖∇ρ0‖L∞ exp

(∫ T∗

0

‖∇u(s, ·)‖L∞ds

)
<∞. (3.41)

3.6. Estimates of higher order norms & proof of Theorem 1.3. Combining
(3.31), (3.40) and (3.41), we have∫ T∗

0

‖(∇× u,∇× h)(t, ·)‖L∞dt+

∫ T∗

0

‖∇ρ(t, ·)‖L∞dt <∞. (3.42)

We now showHm (m ≥ 3) regularity of the solution by using the above inequality.
We note that the proof below is still valid for the case that the viscous coefficient
µ = 0.
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Apply ∇m (m ∈ N, m ≥ 3) to (1.1)1,2,3 to derive that

∂t∇mu+ u · ∇∇mu+∇∇mp− µ∆∇mu
= h · ∇∇mh+∇m(ρe3)− [∇m, u · ∇]u+ [∇m, h · ∇]h,

∂t∇mh+ u · ∇∇mh− h · ∇∇mu = −[∇m, u · ∇]h+ [∇m, h · ∇]u,

∂t∇mρ+ u · ∇∇mρ = −[∇m, u · ∇]ρ.

(3.43)
Performing the L2 energy estimate of (3.43), noting that∫

R3

h · ∇∇mh · ∇mudx+

∫
R3

h · ∇∇mu · ∇mhdx = 0,

we have

1

2

d

dt
‖∇m(u, h, ρ)(t, ·)‖2L2 + µ

∥∥∇m+1u(t, ·)
∥∥2

L2

=−
∫
R3

[∇m, u · ∇]u∇mudx+

∫
R3

[∇m, h · ∇]h∇mudx−
∫
R3

[∇m, u · ∇]h∇mhdx

+

∫
R3

[∇m, h · ∇]u∇mhdx−
∫
R3

[∇m, u · ∇]ρ∇mρdx+

∫
R3

∇m(ρe3)∇mudx.

By Lemma 2.3, the above equation implies

d

dt
‖∇m(u, h, ρ)(t, ·)‖2L2 + µ

∥∥∇m+1u(t, ·)
∥∥2

L2

.‖∇m(u, h, ρ)(t, ·)‖2L2 (‖∇(u, h, ρ)(t, ·)‖L∞ + 1) .
(3.44)

By denoting

Em(t) := sup
0≤s≤t

‖∇m(u, h, ρ)(s, ·)‖2L2 , 0 ≤ t < T∗, m ≥ 3,

(3.44), together with (2.10) in Corollary 2.10, (3.1)3 and (3.2) in Lemma 3.1, indicate
that

d

dt
‖∇m(u, h, ρ)(t, ·)‖2L2 + µ‖∇m+1u(t, ·)‖2L2

. (1 + ‖(∇× u,∇× h,∇ρ)(t, ·)‖BMO log(e+ Em(t))) (e+ Em(t))

. (1 + ‖(∇× u,∇× h,∇ρ)(t, ·)‖L∞ log(e+ Em(t))) (e+ Em(t)).

Integrating the above inequality over (0, t), where t ∈ [0, T∗), one has

e+ ‖∇m(u, h, ρ)(t)‖2L2

.e+ ‖∇m(u0, h0, ρ0)‖2L2

+

∫ t

0

{
1 + ‖(∇× u,∇× h,∇ρ)(s, ·)‖L∞ log (e+ Em(s))

}
(e+ Em(s)) ds,

which implies

e+ Em(t) .e+ ‖∇m(u0, h0, ρ0)‖2L2

+

∫ t

0

{
1 + ‖(∇× u,∇× h,∇ρ)(s, ·)‖L∞ log (e+ E(s))

}
(e+ E(s)) ds.
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Using Gronwall inequality twice, one deduces that

e+ Em(t) ≤C0,T∗

(
e+ ‖∇m(u0, h0, ρ0)‖2L2

)exp(C0,T∗
∫ t
0

(1+‖(∇×u,∇×h,∇ρ)(s,·)‖L∞ )ds)
,

∀t ∈ [0, T∗),

where C0,T∗ > 0 is a constant depends on initial data and T∗. Hence (u, h, ρ) can
be regularly extended beyond T∗ under the condition (3.42). This completes the
proof of Theorem 1.3.
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