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ABSTRACT
In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness
of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the
horizontal angular component(s) of the velocity or (and) the magnetic field is (are) axially symmetric is needed. More precisely, five types
of boundary conditions will be considered: the vertical periodic boundary condition for the velocity and the magnetic field, the Navier-slip
boundary condition for the velocity, the perfectly conducting or insulating boundary condition for the magnetic field, the non-slip boundary
condition for the velocity, and the perfectly conducting or insulating boundary condition for the magnetic field. One of our innovations is
that we do not impose finite Dirichlet integral assumption on the magnetic field compared with previous works.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0031564

I. INTRODUCTION
In this paper, we consider the stationary magnetohydrodynamic (MHD) system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

u ⋅ ∇u +∇p − b ⋅ ∇b − Δu = 0,
u ⋅ ∇b − b ⋅ ∇u − Δb = 0,
∇ ⋅ u = ∇ ⋅ b = 0

(1.1)

in R2
× I, where I = [0, 1] is a one-dimensional interval. u(x), b(x) ∈ R3, and p(x) ∈ R represent the velocity vector, the magnetic field, and

the scalar pressure, respectively. The MHD system, which describes the state of the fluid flows of plasma, is a fundamental partial differential
equation in nature. For the background of the MHD system, we refer the reader to Ref. 1 for more details. We note that if b ≡ 0, the MHD
system is reduced to the Navier–Stokes system.

The main aim of our paper is to study the Liouville-type theorem of D-solutions of the stationary MHD system (1.1). This study is partly
motivated by the related Liouville problem of the stationary Navier–Stokes equation, which has attracted much attention in recent years and
is still far from being fully understood. See, for example, Refs. 2–11 and references therein.

For a domain Ω ∈ R3 and 1 ≤ p ≤∞, Lp
(Ω) denotes the usual Lebesgue integrable space with norm ∥ ⋅ ∥Lp(Ω), and a function f ∈ Lp

loc(Ω)
means that f ∈ Lp

(Ω′) for any bounded domain Ω′ with Ω′ ⊂ Ω. The symbol ∂i stands for ∂
∂xi

.
We say that (u, b) is a D-solution of (1.1), which means that (u, b) ∈ D1,2

loc(R
2
× I) is a weak solution of (1.1), satisfying the following

finite Dirichlet integral condition:

∫R2×I
∣Du∣2dx < +∞,
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where the functional space D1,2
loc(R

2
× I) is defined by

D1,2
loc(R

2
× I) ∶= { f ∈ L1

loc(R
2
× I)∣∂i f ∈ L2

loc(R
2
× I), i = 1, 2, 3}.

Remark 1.1. Here, our D-solutions are weaker than those considered in the previous works, such as Refs. 12 and 13, where the finite
Dirichlet integral assumption on the magnetic field is imposed.

In the following, sometimes, we will carry out some of the proofs in the cylindrical coordinates (r, θ, x3). That is, for x = (x1, x2, x3) ∈ R3,
r =
√

x2
1 + x2

2 and θ = arctan x2
x1

. The solution of the incompressible stationary magnetohydrodynamic system is given as

u = ur
(r, θ, x3)er + uθ

(r, θ, x3)eθ + u3
(r, θ, x3)e3,

b = br
(r, θ, x3)er + bθ

(r, θ, x3)eθ + b3
(r, θ, z)e3,

where the basis vectors er , eθ, ande3 are

er = (
x1

r
,

x2

r
, 0), eθ = (−

x2

r
,

x1

r
, 0), e3 = (0, 0, 1).

Denote the one-dimensional periodic domain [0, 1] by S and xh = (x1, x2). Our first result is given as follows:

Theorem 1.2. Let (u, h) be a bounded weak solution to the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ⋅ ∇u +∇p − b ⋅ ∇b − Δu = 0 in R2
× S,

u ⋅ ∇b − b ⋅ ∇u − Δb = 0 in R2
× S,

∇ ⋅ u = ∇ ⋅ b = 0 in R2
× S,

(u, b)(xh, x3) = (u, b)(xh, x3 + 1) for xh ∈ R
2,

(1.2)

with the finite Dirichlet integral ∫R2×S∣∇u(x)∣2dx < +∞.
If uθ, bθ are axially symmetric (independent of θ) and lim

∣xh ∣→+∞
b = 0, then we have u = (0, 0, c) and b = (0, 0, 0) for some constant c.

Remark 1.3. If b ≡ 0, our result in Theorem 1.2 is an improvement of Ref. 3, Theorem 1.3 where vanishing of D-solutions for the
Navier–Stokes equations is proved with the additional assumption that all the components of the velocity are axially symmetric and vanishing
at far field ∣xh∣→∞. In addition, our result improves that in Ref. 13, Theorem 1.1 and Corollary 1.1, where many more assumptions on the
velocity and the magnetic field are imposed.

Despite u and b being periodic in the vertical direction, our method is also valid for D-solutions of certain boundary value problems of
the magnetohydrodynamic system (1.1) in the slab R2

× [0, 1]. Below is a corollary that deals with the Navier-slip boundary condition for the
velocity and the perfectly conducting or insulating boundary condition for the magnetic field.

Corollary 1.4. Let (u, h) be a bounded weak solution to the magnetohydrodynamic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ⋅ ∇u +∇p − b ⋅ ∇b − Δu = 0 in R2
× [0, 1],

u ⋅ ∇b − b ⋅ ∇u − Δb = 0 in R2
× [0, 1],

∇ ⋅ u = ∇ ⋅ b = 0 in R2
× [0, 1],

u ⋅ n = 0, ∇× u × n = 0 on R2
× ({0} ∪ {1}),

b ⋅ n = 0, ∇× b × n = 0, or b × n = 0 on R2
× ({0} ∪ {1}),

with the finite Dirichlet integral ∫R2×[0,1]∣∇u(x)∣2dx <∞. Here, n is the unit outward normal vector on the boundary. Then, the following
holds:

(i) Under the boundary condition that u ⋅ n = 0,∇× u × n = 0 and b ⋅ n = 0,∇× b × n = 0, we have (u, b) = 0, provided that uθ, bθ are
axially symmetric and lim

∣xh ∣→+∞
b = 0.

(ii) Under the boundary condition that u ⋅ n = 0,∇× u × n = 0 and b × n = 0, we have (u, b) = 0, provided that uθ are axially symmetric and
lim

∣xh ∣→+∞
b = 0.
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Remark 1.5. The well-posedness problems of Corollary 1.4 can be found in Refs. 14 and 15 and references therein. Our results in
Corollary 1.4 are an improvement of Ref. 13, Corollary 1.2. Note that under the insulating boundary condition for the magnetic field, the
axially symmetric assumption on bθ is not needed.

Indeed, it is a subtle problem to give a suitable boundary condition for the magnetic field mathematically due to the fact that the magnetic
field satisfies a system of elliptic equations up to leading order with the additional divergence-free constraint, i.e.,

⎧⎪⎪
⎨
⎪⎪⎩

−Δb = ∇× (u × b) in R2
× I,

∇ ⋅ b = 0 in R2
× I.

Hence, the standard elliptic boundary condition, such as the homogeneous Dirichlet boundary condition, may lead to an overdetermined
problem. The perfectly conducting and insulating boundary conditions in Corollary 1.4 for the magnetic field are characterized as those with
these boundary conditions for b, and the corresponding Stokes and Laplacian operators are identical, which is not true, in general, for the
Dirichlet boundary condition; see, for example, Refs. 16 and 17. Hence, usually, we do not impose the Dirichlet boundary condition b = 0 on
the boundary.

In addition, the well-posedness problem for the stationary MHD system in the case that the velocity satisfies the (non-slip) boundary
condition and the magnetic field satisfies the perfectly conducting or insulating boundary condition has been established. See Refs. 18 and 19
and references therein. We have the following theorem concerning the Liouville theorem of the MHD system with the same boundary
conditions.

Theorem 1.6. Let (u, h) be a bounded weak solution to the magnetohydrodynamic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ⋅ ∇u +∇p − b ⋅ ∇b − Δu = 0 in R2
× [0, 1],

u ⋅ ∇b − b ⋅ ∇u − Δb = 0 in R2
× [0, 1],

∇ ⋅ u = ∇ ⋅ b = 0 in R2
× [0, 1],

u = 0 on R2
× ({0} ∪ {1}),

b ⋅ n = 0, ∇× b × n = 0, or b × n = 0 on R2
× ({0} ∪ {1}),

(1.3)

with the finite Dirichlet integral ∫R2×[0,1]∣∇u(x)∣2dx <∞. Here, n is the unit outward normal vector on the boundary. Then, the following
holds:

(i) u ≡ 0 and b ≡ (c1, c2, 0) when u ≡ 0 and b ⋅ n = 0,∇× b × n = 0 on R2
× ({0} ∪ {1}).

(ii) u ≡ 0 and b ≡ (0, 0, c3) when u ≡ 0 and b × n = 0 on R2
× ({0} ∪ {1}).

Here, c1, c2, and c3 are three constants.

Remark 1.7. In Theorem 1.6, if b ≡ 0, our results go back to the Liouville theorem for the Navier–Stokes equations in Ref. 3, Theorem 1.1.

This paper is organized as follows. In Sec. I, we give a useful proposition concerning gradient estimates of∇V for the divergence equation
∇ ⋅ V = f in a cylinder, which will be used to show that the L2 mean oscillation of the pressure p is bounded. Section I is devoted to proving
Theorem 1.2, Corollary 1.4. Using a similar but different argument as that in the Proof of Theorem 1.2, especially when dealing with the
oscillation estimate of the pressure p, Theorem 1.6 will be proven in Sec. III D.

Throughout this paper, we use C to denote a generic constant, which may be different from line to line. We also apply A ≲ B to denote
A ≤ CB. For x = (x1, x2, x3) ∈ R3, we write x = (xh, x3) for simplicity. We denote thatB(x0

h, r) ∶= {x ∈ R2 : ∣xh − x0
h∣ < r}. We simply denote

that Br ∶= B(0h, r). For a vector function f = ( f 1, f 2, f 3
), f h denotes ( f 1, f 2

). ∇h or ∂h denotes (∂1,∂2) with a little abuse of notation if no
confusion is caused.

II. PRELIMINARY
For α ∈ [0, 1], define the domain ΩR,α = {xh ∈ R2

∥xh∣ ≤ R} × [0, Rα
], where R ≥ 1. We consider the following problem:

Given
f ∈ L2

(ΩR,α), with ∫
ΩR,α

f = 0, (2.1)

find a vector field V : ΩR,α → R3 such that

∇ ⋅ V = f , V ∈W1,2
0 (ΩR,α), ∥∇V∥L2 ≤ c0∥ f ∥L2 , (2.2)

with c0 = c0(ΩR,α). For our purpose, we need an explicit estimate of the c0 constant depending on the radius R and α.
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The first solution of this problem is given by Bogovskĭi.20,21 See also Lemma III.3.1 of Ref. 22.

Lemma 2.8. Let Ω = {x̄h ∈ R2
∥ x̄h∣ ≤ 1} × [0, 1]. Then, for any f̄ ∈ L2

(Ω), satisfying

f̄ ∈ L2
(Ω), with ∫

Ω
f̄ = 0,

there exists a constant C and a vector function V̄ : Ω→ R3 such that

∇ ⋅ V̄ = f̄ , V̄ ∈W1,2
0 (Ω), ∥∇V̄∥L2 ≤ C∥f̄ ∥L2 , (2.3)

where C is an absolute constant.

Next, we use the above lemma and a scaling argument to deduce the following proposition. We mention that the constant on the
right-hand side is also an absolutely constant c, which is independent of the diameter of the domain ΩR,α.

Proposition 2.9. Let ΩR,α be as mentioned above. Then, for any f ∈ L2
(ΩR,α), satisfying (2.1), problem (2.2) has one solution V such that

for the constant c0 in (2.2), we have the following estimate:

∥∇hVh
∥L2(ΩR,α) + ∥∂3V3

∥L2(ΩR,α) ≤ C∥ f ∥L2(ΩR,α),

∥∂3Vh
∥L2(ΩR,α) ≤ CR1−α

∥ f ∥L2(ΩR,α), ∥∇hV3
∥L2(ΩR,α) ≤ CRα−1

∥ f ∥L2(ΩR,α),
(2.4)

where C is independent of ΩR,α.

Proof. For x̄ = (x̄1, x̄2, x̄3) ∈ Ω, define

f̄ (x̄1, x̄2, x̄3) ∶= f (Rx̄1, Rx̄2, Rαx̄3) = f (x1, x2, x3).

It is easy to see that f̄ satisfies the assumption in Lemma 2.8. Therefore, by Lemma 2.8, there exists a vector function V̄ : Ω→ R3, satisfying
(2.3). Then, for x ∈ ΩR,α, define

V(x1, x2, x3) = (V1
(x1, x2, x3), V2

(x1, x2, x3), V3
(x1, x2, x3))

= (RV̄1
(

x1

R
,

x2

R
,

x3

Rα ), RV̄2
(

x1

R
,

x2

R
,

x3

Rα ), RαV̄3
(

x1

R
,

x2

R
,

x3

Rα )).

By a direct computation, we have

∇ ⋅ V = f , V ∈W1,2
0 (ΩR,α) in x variables.

Now, we estimate the L2 norm of∇V . First, we have

∥∇hVh
∥

2
L2(ΩR,α)

+ ∥∂3V3
∥

2
L2(ΩR,α)

=
2

∑
i,j=1
∫

Rα

0
∫
∣xh ∣≤R
∣
∂V j

∂xi
∣

2

dxhdx3 + ∫

Rα

0
∫
∣xh ∣≤R
∣
∂V3

∂x3
∣

2

dxhdx3

= ∫

Rα

0
∫
∣xh ∣≤R

⎛

⎝

2

∑
i,j=1
∣
∂V̄ j

∂x̄i
∣

2

(
xh

R
,

x3

Rα ) + ∣
∂V̄3

∂x̄3
∣

2

(
xh

R
,

x3

Rα )
⎞

⎠
dxhdx3

= R2+α
∫

1

0
∫
∣x̄h ∣≤1

⎛

⎝

2

∑
i,j=1
∣
∂V̄ j

∂x̄i ∣

2

(x̄h, x̄3) + ∣
∂V̄3

∂x̄3
∣

2

(x̄h, x̄3)
⎞

⎠
dx̄hdx̄3

≤ CR2+α
∥∇V̄∥2

L2(Ω).
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Then,

∥∇hV3
∥

2
L2(Ωr,α)

=
2

∑
i=1
∫

Rα

0
∫
∣xh ∣≤R
∣
∂V3

∂xi
∣

2

dxhdx3

= R2(α−1)
∫

Rα

0
∫
∣xh ∣≤R

2

∑
i=1
∣
∂V̄3

∂x̄i ∣

2

(
xh

R
,

x3

Rα )dxhdx3

= R3α
∫

1

0
∫
∣x̄h ∣≤1

2

∑
i=1
∣
∂V̄3

∂x̄i ∣

2

(x̄h, x̄3)dx̄hdx̄3

≤ CR3α
∥∇V̄∥2

L2(Ω).

At last,

∥∂3Vh
∥

2
L2(ΩR,α)

=
2

∑
i=1
∫

Rα

0
∫
∣xh ∣≤r
∣
∂V i

∂x3
∣

2

dxhdx3

= R2(1−α)
∫

Rα

0
∫
∣xh ∣≤R

2

∑
i=1
∣
∂V̄ i

∂x̄3 ∣

2

(
xh

R
,

x3

Rα )dxhdx3

= R4−α
∫

1

0
∫
∣x̄h ∣≤1

2

∑
i=1
∣
∂V̄3

∂x̄i ∣

2

(x̄h, x̄3)dx̄hdx̄3

≤ CR4−α
∥∇V̄∥2

L2(Ω).

In addition, it is easy to see that
∥ f ∥2

L2(ΩR,α)
= R2+α

∥f̄ ∥2
L2(Ω).

Combining the above estimates and (2.3), we can get (2.4), which finishes the Proof of Proposition 2.9.

III. PROOF OF THEOREM 1.2
The proof is divided into three parts. First, we will show that the horizontal radial components of the velocity and the magnetic field ur

and br actually belong to L2
(R2
× S). Second, using Proposition 2.9, we give an L2 mean oscillation estimate for the pressure p in a cylinder.

At last, we prove the trivialness of u and b.

A. L2 estimates for ur and br

Lemma 3.10. Under assumptions of Theorem 1.2, we have

∥(ur , br
)∥L2(R2×S) + ∥∇br

∥L2(R2×S) < C∗.

Here, C∗ is a constant depending on ∥∇u∥L2(R2×S) and ∥(u, b)∥L∞(R2×S).

Proof. In cylindrical coordinates, the divergence-free condition (1.2)3 is translated as

∇ ⋅ u =
1
r
∂r(rur

) +
1
r
∂θuθ

+ ∂3u3
= 0, ∇ ⋅ h =

1
r
∂r(rbr

) +
1
r
∂θbθ

+ ∂3b3
= 0.

Since uθ, bθ are independent of θ, we have

∇ ⋅ u =
1
r
∂r(rur

) + ∂3u3
= 0, ∇ ⋅ h =

1
r
∂r(rbr

) + ∂3b3
= 0. (3.1)

Now, we integrate the first equation of (3.1) in S about x3, and thus, we get

∂r∫

1

0
(rur
)dx3 = −r∫

1

0
∂3u3dx3 = −r[u3

(xh, 1) − u3
(xh, 0)] = 0,

where at the last line, we have used the periodic boundary condition. Hence, we have

r∫
1

0
urdx3 = f (θ).
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By setting r = 0, we can actually get f (θ) ≡ 0, which means that

∫

1

0
urdx3 = 0. (3.2)

In addition, we can obtain

∫

1

0
brdx3 = 0. (3.3)

1. L2 estimate of ur

By using (3.2), the one-dimensional Poincaré inequality indicates that

∫R2×S
∣ur
∣
2dx = ∫R2×S

∣ur
−

1
∣S∣ ∫

urdx3∣

2

dx3dxh

≲ ∫R2
∫

1

0
∣∂3ur

∣
2dx3dxh ≲ ∫R2×S

∣∇u∣2dx <∞.

2. L2 estimate of ∇br

By a direct computation, we can see that br satisfies

u ⋅ ∇br
− b ⋅ ∇ur

= (Δ −
1
r2 )b

r . (3.4)

Let ϕ(s) be a smooth cut-off function satisfying

ϕ(s) = {
1, s ∈ [0, 1],
0, s ≥ 2,

(3.5)

with the usual property that ϕ, ϕ′, and ϕ′′ are bounded. Set ϕR(yh) = ϕ( ∣yh ∣

R ), where R is a large positive number. Now, testing (3.4) with brϕR,
we obtain

∫R2×S
− (Δ −

1
r2 )b

r
(brϕR)dx = ∫R2×S

− (u ⋅ ∇br
− b ⋅ ∇ur

)(brϕR)dx.

Integration by parts indicates that

∫R2×S
∣∇br
∣
2ϕRdx −

1
2∫R2×S

∣br
∣
2ΔϕRdx + ∫R2×S

∣br
∣
2

r2 ϕRdx

= −
1
2∫R2×S

u ⋅ ∇∣br
∣
2ϕRdx − ∫R2×S

(urbr
)b ⋅ ∇ϕRdx − ∫R2×S

(b ⋅ ∇br
)urϕRdx

=
1
2∫R2×S

∣br
∣
2u ⋅ ∇ϕRdx − ∫R2×S

(urbr
)b ⋅ ∇ϕRdx − ∫R2×S

(b ⋅ ∇br
)urϕRdx.

By remembering that ϕR is a function of r, independent of θ, we have

u ⋅ ∇ϕR = ur∂rϕR, b ⋅ ∇ϕR = br∂rϕR.

Then, using Cauchy inequality, we have

∫R2×I
∣∇br
∣
2ϕRdx + ∫R2×S

∣br
∣
2

r2 ϕRdx

≲
1

R2∫B2R×S
∣br
∣
2dx +

∥br
∥

2
L∞

2R ∫
B2R×S
∣ur
∣dx +

1
2∫R2×S

∣∇br
∣
2ϕRdx +

∥b∥2
L∞

2 ∫
B2R×S
∣ur
∣
2ϕRdx

≤
∥br
∥

2
L∞

R2 ∫
B2R×S

dx +
∥br
∥

2
L∞

2R
(∫

B2R

∣ur
∣
2dx)

1/2
(∫

B2R×S
dx)

1/2

+
1
2∫R2×S

∣∇br
∣
2ϕRdx +

∥b∥2
L∞

2 ∫
B2R×S
∣ur
∣
2ϕRdx

≤ C∥b∥2
L∞(1 + ∥u

r
∥

2
L2) +

1
2∫R2×S

∣∇br
∣
2ϕRdx.
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Therefore, we get

∫R2×S
∣∇br
∣
2ϕRdx ≲ ∥b∥2

L∞(1 + ∥u
r
∥

2
L2).

By letting R→ +∞, we have

∥∇br
∥L2(R2×S) ≲ ∥b∥L∞(1 + ∥ur

∥L2) < +∞. (3.6)

3. L2 estimate of br

By using (3.3), the one-dimensional Poincaré inequality indicates that

∫R2×S
∣br
∣
2dx = ∫R2×S

∣br
−

1
∣S∣∫S

brdx3∣

2

dx3dxh

≲ ∫R2
∫

1

0
∣∂3br
∣
2dx3dxh

≲ ∫R2×S
∣∇br
∣
2dx < +∞.

◻

B. L2 mean oscillation estimate of the pressure p

Lemma 3.11. Let (u, b) be the solution of (1.2), and then, we have, for n ∈ N/{0},

∥p − pn∥L2(Bn×S) ≤ C0n, (3.7)

where C0 = C0(∥(u, b)∥L∞ , ∥∇u∥L2) and pn ∶=
1

∣Bn×S∣∫Bn×S pdx is the average of p on Bn × S.

Now, we consider system (1.2) in Bn × [0, n]. In Proposition 2.9, set α = 1 and R = n, with n ∈ N/{0}, and choose f = p − pn. Then, there
exists V in Bn × [0, n] satisfying

∇ ⋅ V = p − pn, ∥∇V∥L2(Bn×[0,n]) ≤ C∥p − pn∥L2(Bn×[0,n]),

where C is an absolute constant, independent of n. Now, multiplying (1.2)1 with V and integrating Bn × [0, n], we get

∫
Bn×[0,n]

∇(p − pn) ⋅ Vdx = ∫
Bn×[0,n]

(Δu − u ⋅ ∇u + b ⋅ ∇b) ⋅ Vdx.

Integration by parts indicates that

∫
Bn×[0,n]

(p − pn)
2dx

= ∫
Bn×[0,n]

(p − pn)∇ ⋅ Vdx

= − ∫
Bn×[0,n]

(Δu − u ⋅ ∇u + b ⋅ ∇b) ⋅ Vdx

=
3

∑
i,j=1
∫

Bn×[0,n]
∂iuj∂iV j

+ ∂i(uiuj
− bibj

)V jdx

=
3

∑
i,j=1
∫

Bn×[0,n]
(∂iuj

− uiuj
+ bibj

)∂iV jdx

≤ ∥∇V∥L2(Bn×[0,n])(∥∇u∥L2(Bn×[0,n]) + ∥∣u∣
2
∥L2(Bn×[0,n]) + ∥∣b∣

2
∥L2(Bn×[0,n]))

≤ ∥∇V∥L2(Bn×[0,n])(∥∇u∥L2(Bn×[0,n]) + ∥(u, b)∥2
L∞∥1∥L2(Bn×[0,n])).
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Using Cauchy–Schwartz inequality, we have

∫
Bn×[0,n]

(p − pn)
2dx

≤ ∥∇V∥L2(Bn×[0,n])(∥∇u∥L2(Bn×[0,n]) + n3/2
∥(u, b)∥2

L∞(Bn×[0,n]))

≤ ε∥∇V∥2
L2(Bn×[0,n]) + Cε(∥∇u∥2

L2(Bn×[0,n]) + ∥(u, b)∥4
L∞(Bn×[0,n])n

3
)

≤Cε∥p − pn∥
2
L2(Bn×[0,n]) + Cε(∥∇u∥2

L2(Bn×[0,n]) + ∥(u, b)∥4
L∞(Bn×[0,n])n

3
).

By choosing ε small enough, we can obtain

∥p − pn∥L2(Bn×[0,n]) ≤ C(∥∇u∥L2(Bn×[0,n]) + ∥(u, b)∥2
L∞(Bn×[0,n])n

3/2
).

Remembering that (u, p) is periodic in the x3 direction, the above inequality can be rewritten as

n1/2
∥p − pn∥L2(Bn×S) ≤ C(n1/2

∥∇u∥L2(Bn×S) + ∥(u, b)∥2
L∞(Bn×S)n

3/2
).

This implies (3.7).

C. Trivialness of u and b
Let ϕ(s) be the test function in (3.5), and set ϕn(yh) = ϕ( ∣yh ∣

n ). Testing the first two equations of (1.2) with uϕn and bϕn, respectively, we
achieve that

−∫R2×S
uϕnΔudx = −∫R2×S

uϕR(u ⋅ ∇u − b ⋅ ∇b +∇(p − pn))dx,

−∫R2×S
bϕnΔbdx = −∫R2×S

bϕn(u ⋅ ∇b − b ⋅ ∇u)dx.

Direct integration by parts implies that

∫R2×S
∣∇u∣2ϕndx +

3

∑
i=1
∫R2×S

ui
∇ui
⋅ ∇ϕndx

=
1
2∫R2×S

∣u∣2u ⋅ ∇ϕndx + ∫R2×S
(p − pn)u ⋅ ∇ϕndx

−
3

∑
i,j=1
∫R2×S

bibj∂iujϕndx −
3

∑
i,j=1
∫R2×S

bibjuj∂iϕndx

(3.8)

and

∫R2×S
∣∇b∣2ϕndx −

1
2∫R2×S

∣b∣2Δϕndx

=
1
2∫R2×S

∣b∣2u ⋅ ∇ϕndx +
3

∑
i,j=1
∫R2×S

bibj∂iujϕndx.
(3.9)

Therefore, the following equation is achieved by adding (3.8) and (3.9) together:

∫R2×S
(∣∇u∣2 + ∣∇b∣2)ϕndx −

1
2∫R2×S

∣b∣2Δϕndx +
3

∑
i=1
∫R2×S

ui
∇ui
⋅ ∇ϕndx

=∫R2×S
(

1
2
∣u∣2 +

1
2
∣b∣2 + (p − pn))u ⋅ ∇ϕndx

− ∫R2×S
(b ⋅ u)(b ⋅ ∇ϕn)dx.
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We denote B2n/n ∶= {xh : n ≤ ∣xh∣ ≤ 2n} as the dyadic annulus. It follows that

∫R2×S
(∣∇u∣2 + ∣∇b∣2)ϕndx

≲∫
B2n/n×S

∣b∣2∣Δϕn∣dx + ∫
B2n/n×S

∣u∥∇u∥∇ϕn∣dx

+ ∫
B2n/n×S

∣u ⋅ ∇ϕn∣ ⋅ (∣u∣2 + ∣b∣2)dx

+ ∫
B2n/n×S

∣p − pn∥u ⋅ ∇ϕn∣dx + ∫
B2n/n×S

∣b∥u∥b ⋅ ∇ϕn∣dx

∶= I1 + I2 + I3 + I4 + I5.

(3.10)

First, I1 satisfies

I1 ≲
∥b∥2

L∞(B2n/n×S)

n2 ∫
B2n/n×S

dx ≲ ∥b∥2
L∞(B2n/n×S) → 0 as n→∞.

Using Hölder’s inequality, I2 follows that

I2 ≲
∥u∥L∞(B2n/n×S)

n
∥∇u∥L2((B2n/n×S)∥1∥L2((B2n/n×S)

≲ ∥u∥L∞(B2n/n×S)∥∇u∥L2((B2n/n×S) → 0 as n→∞.

Next, for I3, we have

I3 ≲ ∥(u, b)∥2
L∞(B2n/n×S)∫

B2n/n×S
∣ur∂rϕn∣dx ≲

∥(u, b)∥2
L∞(B2n/n×S)

n
∥ur
∥L2(B2n/n×S)∥1∥L2((B2n/n×S)

≲ ∥(u, b)∥2
L∞(B2n/n×S)∥u

r
∥L2(B2n/n×S) → 0 as n→∞.

For I4, we have
I4 ≲∫

B2n/n×S
∣p − pn∥ur∂rϕn∣dx ≲

1
n
∥p − pn∥L2(B2n/n×S)∥u

r
∥L2((B2n/n×S)

≲C0∥ur
∥L2(B2n/n×S) → 0 as n→∞.

Here, we have applied Hölder’s inequality, the boundedness of L2 mean oscillation of p in dyadic annulus, which is achieved in
Subsection III B, and ur

∈ L2
(R2
× S). Finally, the following estimate is satisfied by I5:

I5 ≲ ∥u∥L∞(B2n/n×S)∥b∥L∞(B2n/n×S)∫
B2n/n×S

∣br∂rϕn∣dx

≲
∥u∥L∞(B2n/n×S)∥b∥L∞(B2n/n×S)

n
∥br
∥L2(B2n/n×S)∥1∥L2((B2n/n×S)

≲ ∥u∥L∞(B2n/n×S)∥b∥L∞(B2n/n×S)∥b
r
∥L2(B2n/n×S) → 0 as n→∞.

Combining the estimates of I1, I2, I3, I4, and I5, (3.10) implies that

∫R2×S
(∣∇u∣2 + ∣∇b∣2)dx = 0

by letting n→∞, which means that u and b are both constant vectors.
Moreover, since lim

∣xh ∣→+∞
b = 0, we have b = 0. In addition, we have

0 = ∫
S
urdx3 = ∫

S
(u1 cos θ + u2 sin θ)dx3 = u1 cos θ + u2 sin θ.

By setting θ = 0 and π, we have u1
= u2
= 0. Hence, we actually have

u = (0, 0, c) and b = (0, 0, 0)

for some constant c. This finishes the Proof of Theorem 1.2.
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D. Proof of corollary 1.4

Proof. For the boundary condition in Corollary 1.4, we translate it as follows:

(i) The perfectly conducting boundary condition for the magnetic field (b ⋅ n = 0,∇× b × n = 0) is given by

{
∂3u1 = ∂3u2 = u3 = 0 on R2 × ({0} ∪ {1}),
∂3b1 = ∂3b2 = b3 = 0 on R2 × ({0} ∪ {1}).

(ii) The insulating boundary condition for the magnetic field (b × n = 0) is given by

{
∂3u1 = ∂3u2 = u3 = 0 on R2 × ({0} ∪ {1}),

b1 = b2 = ∂3b3 = 0 on R2 × ({0} ∪ {1}). (3.11)

We can extend the solution to be a periodic solution in the x3 direction.

In case (i), we make even extensions for uh, bh, p and odd extensions for u3, b3 in the x3 direction. More precisely, for x ∈ R2
× [−1, 1], set

p̃(xh, x3) ∶= {
p(xh, x3) (xh, x3) ∈ R2 × [0, 1],

p(xh,−x3) (xh, x3) ∈ R2 × [−1, 0],

ũ(xh, x3) ∶= {
(uh(xh, x3), u3(xh, x3)) (xh, x3) ∈ R2 × [0, 1],
(uh(xh,−x3),−u3(xh,−x3)) (xh, x3) ∈ R2 × [−1, 0],

b̃(xh, x3) ∶= {
(bh(xh, x3), b3(xh, x3)) (xh, x3) ∈ R2 × [0, 1],
(bh(xh,−x3),−b3(xh,−x3)) (xh, x3) ∈ R2 × [−1, 0].

It is not hard to see that (ũ, b̃, p̃) is a weak solution of (1.1) in R2
× [−1, 1] and on the boundary,

ũ∣x3=−1 = ũ∣x3=1, b̃∣x3=−1 = b̃∣x3=1, p̃∣x3=−1 = p̃∣x3=1.

Then, we extend the solution (ũ, b̃, p̃) to be a periodic solution in the x3 direction. By applying Theorem 1.2, we can get that

u = (0, 0, c) and b = (0, 0, 0).

Since u3
∣x3=0,1 = 0, we have c = 0.

In case (ii), we make even extensions for uh, b3, p and odd extensions for u3, bh in the x3 direction. The same as case (i), we can show that
(u, b) ≡ 0. Here, we want to emphasize that why in case (ii) the assumption bθ is axially symmetric is not needed. In this situation, Eq. (3.3) is
not guaranteed any more. However, we still have∇br

∈ L2
(R2
× I). Then, the boundary condition (3.11) for b implies that br

∣x3=0,1 = 0, which,
by using one-dimensional Poincaré’s inequality, can also validate that br

∈ L2
(R2
× I). ◻

IV. PROOF OF THEOREM 1.6
The same as Corollary 1.4, for the boundary condition in Theorem 1.6, we have the following:

(i) The perfectly conducting boundary condition for the magnetic field (b ⋅ n = 0,∇× b × n = 0) is given by

⎧⎪⎪
⎨
⎪⎪⎩

u = 0 on R2
× ({0} ∪ {1}),

∂3b1
= ∂3b2

= b3
= 0 on R2

× ({0} ∪ {1}).
(4.1)

(ii) The insulating boundary condition for the magnetic field (b × n = 0) is given by

⎧⎪⎪
⎨
⎪⎪⎩

u = 0 on R2
× ({0} ∪ {1}),

b1
= b2
= ∂3b3

= 0 on R2
× ({0} ∪ {1}).

(4.2)

Remark 4.12. Since now u satisfies the non-slip boundary condition, there is no any extension as that in Corollary 1.4.
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The idea of proving Theorem 1.6 is similar to but different from that in the Proof of Theorem 1.2, especially when we use Proposition 2.9
to estimate the oscillation of the pressure p.

Lemma 4.13. Under assumptions of Theorem 1.6, we have the following:

(i) The perfectly conducting boundary condition for the magnetic field is given by

∥(u, b3
)∥L2(R2×[0,1]) + ∥∇b∥L2(R2×[0,1]) < C∗.

(ii) The insulating boundary condition for the magnetic field is given by

∥(u, bh
)∥L2(R2×[0,1]) + ∥∇b∥L2(R2×[0,1]) < C∗.

Here, C∗ is a constant depending on ∥∇u∥L2(R2×[0,1]) and ∥(u, b)∥L∞(R2×[0,1]).

Proof. The L2 estimate for u is a simple combination of ∥∇u∥L2(R2×[0,1]) < +∞, u∣x3=0,1 = 0, and one-dimensional Poincaré inequality.
Here, we omit the details.

Considering the equation for b,

u ⋅ ∇b − b ⋅ ∇u = Δb.

Using the same procedure as obtaining (3.6), we can get that

∥∇b∥L2(R2×[0,1]) ≲ ∥b∥L∞(1 + ∥u∥L2) < +∞.

In case (i) with b3
∣x3=0,1 = 0 and case (ii) with bh

∣x3=0,1 = 0, the one-dimensional Poincaré inequality and the above boundedness of
∥∇b∥L2(R2×[0,1]) guarantee that b3

∈ L2
(R2
× [0, 1]) and bh

∈ L2
(R2
× [0, 1]), respectively. ◻

Lemma 4.14. Let (u, b) be the solution of (1.3); then, we have, for R ≥ 1,

∥p − pR∥L2(BR×[0,1]) ≤ C0R,

where C0 = C0(∥(u, b)∥L∞ , ∥∇u∥L2) and pR ∶=
1

∣BR×[0,1]∣∫BR×[0,1]pdx is the average of p in BR × [0, 1].

Proof. Since now our solution is not a periodic solution as that in Theorem 1.2, we cannot proceed with our proof as the same as that in
Lemma 3.11 in the cylinder Bn × [0, n]. Conversely, we can only consider it in a thin cylinder BR × [0, 1] for large R.

In Proposition 2.9, set α = 0 and choose f = p − pR. Then, there exists V in BR × [0, 1], satisfying∇ ⋅ V = p − pR, and

∥∇hVh
∥L2(BR×[0,1]) + ∥∂3V3

∥L2(BR×[0,1]) ≤ C∥p − pR∥L2(BR×[0,1]),

∥∂3Vh
∥L2(BR×[0,1]) ≤ CR∥ f ∥L2(BR×[0,1]),

∥∇hV3
∥L2(BR×[0,1]) ≤ CR−1

∥p − pR∥L2(BR×[0,1]),

(4.3)

where C is an absolute constant, independent of R. Now, multiplying (1.3)1 with V and integrating BR × [0, 1], we get

∫
BR×[0,1]

∇(p − pR) ⋅ Vdx = ∫
BR×[0,1]

(Δu − u ⋅ ∇u + b ⋅ ∇b) ⋅ Vdx

= ∫
BR×[0,1]

(Δu − u ⋅ ∇u + b ⋅ ∇b) ⋅ Vdx.
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Integration by parts indicates that

∫
BR×[0,1]

(p − pR)
2dx

=∫
BR×[0,1]

(p − pR)∇ ⋅ Vdx

= − ∫
BR×[0,1]

(Δu − u ⋅ ∇u + b ⋅ ∇b) ⋅ Vdx

=∫
BR×[0,1]

3

∑
i,j=1

∂iuj∂iV j
+ ∂i(uiuj

− bibj
)V jdx

=∫
BR×[0,1]

3

∑
i,j=1
(∂iuj

− uiuj
+ bibj

)∂iV jdx

≤ ∥∇V∥L2(BR×[0,1])(∥∇u∥L2(BR×[0,1]) + ∥u∥L∞(BR×[0,1])∥u∥L2(BR×[0,1]))

+ ∫
BR×[0,1]

3

∑
i,j=1
(bibj
)∂iV jdx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

.

(4.4)

We need to deal with the term L more carefully.

Case (i). The perfectly conducting boundary condition for the magnetic field:
By using (4.3) and Cauchy–Schwartz inequality,

L =∫
BR×[0,1]

2

∑
i,j=1
(bibj
)∂iV jdx + ∫

BR×[0,1]
∑

i=3 or j=3
(bibj
)∂iV jdx

≤ ∥∣b∣2∥L∞(BR×[0,1])∥∇hVh
∥L2(BR×[0,1])∥1∥L2(BR×[0,1])

+ ∥b∥L∞(BR×[0,1])∥b
3
∥L2(BR×[0,1])∥∇V∥L2(BR×[0,1])

≤ ε∥p − pR∥
2
L2(BR×[0,1]) + CεR2,

where Cε depends on ∥(u, b)∥L∞ , ∥∇u∥L2 , and ε.
Case (ii). The insulating boundary condition for the magnetic field:

By using (4.3) and Cauchy–Schwartz inequality,

L =∫
BR×[0,1]

2

∑
i,j=1
(b3
)

2∂3V3dx + ∫
BR×[0,1]

∑
i≠3 or j≠3

(bibj
)∂iV jdx

≤ ∥∣b∣2∥L∞(BR×[0,1])∥∂3V3
∥L2(BR×[0,1])∥1∥L2(BR×[0,1])

+ ∥b∥L∞(BR×[0,1])∥b
h
∥L2(BR×[0,1])∥∇V∥L2(BR×[0,1])

≤ ε∥p − pR∥
2
L2(BR×[0,1]) + CεR2.

Inserting the above two inequalities into (4.4) and using Cauchy–Schwartz inequality, we have

∫
BR×[0,1]

(p − pn)
2dx

≤ εR−2
∥∇V∥2

L2(BR×[0,1]) + CεR2
(∥∇u∥2

L2(BR×[0,1]) + ∥u∥
2
L∞(BR×[0,1])∥u∥

2
L2(BR×[0,1]))

+ ε∥p − pR∥
2
L2(BR×[0,1]) + CεR2

≤Cε∥p − pn∥
2
L2(BR×[0,1]) + CεR2,

where Cε depends on ∥(u, b)∥L∞ , ∥∇u∥L2 , and ε. By choosing ε small enough, we can obtain

∥p − pR∥L2(BR×[0,1]) ≤ C0R.

This finishes the Proof of Lemma 4.14.
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A. Trivialness of u and b

Proof. The proof of trivialness of u and b will be almost the same as that in Subsection III C. Let ϕ(s) be the test function in (3.5), and
set ϕR(yh) = ϕ( ∣yh ∣

R ). Testing the first two equations of (1.3) with uϕR and bϕR, we can get the same estimate as (3.10),

∫R2×[0,1]
(∣∇u∣2 + ∣∇b∣2)ϕRdx

≲∫
B2R/R×[0,1]

∣b∥∇b∥∇ϕR∣dx + ∫
B2R/R×[0,1]

∣u∥∇u∥∇ϕR∣dx

+ ∫
B2R/R×[0,1]

∣u ⋅ ∇ϕR∣ ⋅ (∣u∣2 + ∣b∣2)dx

+ ∫
B2R/R×[0,1]

∣p − pR∥u ⋅ ∇ϕR∣dx + ∫
B2R/R×[0,1]

∣b∥u∥b ⋅ ∇ϕR∣dx

∶= J1 + J2 + J3 + J4 + J5.

(4.5)

The proof of the fact that ∑4
i=1Ji → 0 as R→ +∞ is completely the same as that of Ii(2 ≤ i ≤ 4) in Subsection III C. The only difference

comes from J5 since now we do not have br
∈ L2
(R2
× [0, 1]) in the case that the magnetic field satisfies the perfectly conducting boundary

condition. However, since in both boundary conditions we have u ∈ L2
(R2
× [0, 1]), we can estimate it as follows:

J5 ≲
∥∣b∣2∥L∞

R
∥u∥L2(B2R/R×[0,1])∥1∥L2(B2R/R×[0,1]) ≲ C∥u∥L2(B2R/R×[0,1]) → 0 as R→ +∞.

Hence, at last, from (4.5), by letting R→ +∞, we can get

∫R2×[0,1]
(∣∇u∣2 + ∣∇b∣2)dx = 0,

which implies that u and b are constant vectors. In boundary condition (4.1), we have u = 0 and b = (c1, c2, 0) for constants c1 and c2. In
boundary condition (4.2), we have u = 0 and b = (0, 0, c3) for a constant c3. This finishes the Proof of Theorem 1.6. ◻

ACKNOWLEDGMENTS
The author would like to thank Professor Qi S. Zhang of the UC, Riverside, and Dr. Zijin Li of the Nanjing University of Information

Science and Technology for helpful discussions on this topic. X.P. was supported by the Natural Science Foundation of Jiangsu Province
(Grant No. BK20180414) and the National Natural Science Foundation of China (Grant No. 11801268).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES
1L. D. Laudau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1984).
2B. Carrillo, X. Pan, and Q. S. Zhang, “Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations,” J. Funct. Anal. 279(1), 108504 (2020).
3B. Carrillo, X. Pan, Q. S. Zhang, and N. Zhao, “Decay and vanishing of some D-solutions of the Navier–Stokes equations,” Arch. Ration. Mech. Anal. 237(3), 1383–1419
(2020).
4D. Chae, “Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations,” Commun. Math. Phys. 326, 37–48 (2014).
5D. Chae and J. Wolf, “On the Liouville type theorems for the steady Navier–Stokes equations in R3,” J. Differ. Equations 261, 5541–5560 (2016).
6M. Korobkov, K. Pileckas, and R. Russo, “The Liouville-type theorems for the stationary Navier–Stokes problem for axially symmetric 3D solutions in absecce of swirl,”
J. Math. Fluid Mech. 17(2), 287–293 (2015).
7H. Kozono, Y. Terasawa, and Y. Wakasugi, “A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions,” J. Funct. Anal.
272, 804–818 (2017).
8X. Pan and Z. Li, “Liouville theorem of axially symmetric Navier–Stokes equations with growing velocity at infinity,” Nonlinear Anal.: Real World Appl. 56, 103159
(2020).
9X. Pan, “A Liouville theorem of Navier-Stokes equations with two periodic variables,” J. Math. Anal. Appl. 485(2), 123854 (2020).
10G. Seregin, “Liouville type theorem for stationary Navier–Stokes equations,” Nonlinearity 29, 2191–2195 (2016).
11G. Seregin, “Remarks on Liouville type theorems for steady-state Navier-Stokes equations,” Algebra Anal. 30(2), 238–248 (2018).
12D. Chae and S. Weng, “Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations,” Discrete Contin. Dyn. Syst.
36(10), 5267–5285 (2016).
13Z. Li and X. Pan, “On the vanishing of some D-solutions to the stationary magnetohydrodynamics system,” J. Math. Fluid Mech. 21(4), 52 (2019).

J. Math. Phys. 62, 071503 (2021); doi: 10.1063/5.0031564 62, 071503-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1016/j.jfa.2020.108504
https://doi.org/10.1007/s00205-020-01533-3
https://doi.org/10.1007/s00220-013-1868-x
https://doi.org/10.1016/j.jde.2016.08.014
https://doi.org/10.1007/s00021-015-0202-0
https://doi.org/10.1016/j.jfa.2016.06.019
https://doi.org/10.1016/j.nonrwa.2020.103159
https://doi.org/10.1016/j.jmaa.2020.123854
https://doi.org/10.1088/0951-7715/29/8/2191
https://doi.org/10.1090/spmj/1544
https://doi.org/10.3934/dcds.2016031
https://doi.org/10.1007/s00021-019-0457-y


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

14Q. Duan, Y. Xiao, and Z. Xin, “On the vanishing dissipation limit for the incompressible MHD equations on bounded domains,” arXiv:2007.02607.
15Y. Xiao, Z. Xin, and J. Wu, “Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition,” J. Funct. Anal. 257(11), 3375–3394
(2009).
16P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1988).
17P. L. Lions, Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications Vol. 3 (Oxford
Science Publications, The Clarendon Press, Oxford University Press, New York, 1996).
18J. F. Gerbeau, C. Le Bris, and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation
(Oxford University Press, Oxford, 2006).
19M. D. Gunzburger, A. J. Meir, and J. S. Peterson, “On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary,
incompressible magnetohydrodynamics,” Math. Comput. 56(194), 523–563 (1991).
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