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Abstract

In this paper, the one-side physical vacuum problem for the one dimensional compressible Euler equa-
tions with time-dependent damping is considered. Near the physical vacuum boundary, the sound speed is
C1/2_Hslder continuous. The coefficient of the time-dependent damping is given by # O<r,0<p)
which decays by order —A in time. First we give an one-side physical vacuum background solution whose
density and velocity have a growing order with respect to time. Then the main purpose of this paper is to
prove the stability of this background solution under the assumption that0 <A <1,0<porA=1,2 < u.
The pointwise convergence rate of the density, velocity and the expanding rate of the physical vacuum
boundary are also given. The proof is based on the space-time weighted energy estimates, elliptic estimates
and the Hardy inequality in the Lagrangian coordinates.
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1. Introduction

In this paper, we investigate the stability of the one-side physical vacuum solution for the
following 1-d compressible Euler equations with time-dependent damping.

ot + (ou)y =0 inl(t):={(x,)|xp() <x <-+4o0,t >0},

w .
I ’
a+or " © (1.1)

p>0 inlI(k), p=0 onxpt),

(pu); + (p(p) + pu?)y = —

(0, u) = (po, up) onI(0):={x|xp(0) <x < +00},

where the boundary x;(¢) satisfies

Xp(1) = uxp(0), ).

Here (x,7) € R x [0,00), p, u, and p denote the space and time variable, density, velocity,
and pressure, respectively. I(¢), x,(¢), and X (¢) represent the changing domain occupied by the
gas, the moving vacuum boundary and the velocity of x;(¢), respectively. — ﬁ pu, appearing
on the right-hand side of (1.1), describes the frictional damping which will decay by order —A
in time. We assume the gas is the isentropic flow and the pressure satisfies the y law:

1
p(p)=—p” fory>1.
v
. . . 1 — /
(Here the adiabatic constant is set to be ” ) Let ¢ = /p’(p) be the sound speed. A vacuum

boundary is called physical if

2

X

0< < 400

in a small neighborhood of the boundary. In order to capture this physical singularity, the initial
density is supposed to satisfy

po(x) >0 for x3(0) < x < 400,
P ©O) =0, and 0<|(of™") (xp(O))| <o0.

The size of damping can affect the asymptotic behavior of solutions of the Euler equations.
When the damping vanishes (the damping coefficient is zero), shock will form. For the math-
ematical analysis of finite-time formation of singularities, readers can see Alinhac [1], Chemin
[2], Courant-Friedrichs [3], Christodoulou [4], Rammaha [36] as well as Sideris [38] and refer-
ences therein for more details. While for the Euler equations with non-zero constant-coefficient
damping, global existence and stability of smooth solutions away from or near physical vac-
uum can be founded in [16,31,30] and references therein. It is natural to ask whether there are
some global or blow-up results of solutions of the Euler equations with variant-coefficient damp-
ing, especially for the damping which decays in time. Actually for the Euler equations with the
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damping coefficient given by ﬁ, now there are numerous works concerning about the global
existence, finite-time blow up, and asymptotic behaviors of smooth solutions. As far as the author
knows, the pioneer works come from Hou-Witt-Yin [19,20] considering the multi-dimensional
Euler equations and Pan [32-34] considering the one-dimensional case, where a critical couple
of numbers (A, u), depending on the space dimension, are given to separate the global existence
and finite-time blow up of smooth solutions when the initial data is a small perturbation of the
equilibrium (p, u) = (1, 0). In one dimensional case, Pan [32—-34] show that the critical couple
numbers are (1, 2), which means smooth solutions exist globally in time if 0 <X < 1,0 < u and
A=1,2 < p, and blow up in finite time if A = 1, u <2 and 1 < A, 0 < w. Later, various results
are shown in this aspect. Sugiyama [35] studies the blow up mechanism of smooth solutions with
A=1l,u<2and 1 <X, 0 < u.Lietal [27] and Cui et al. [9] proved the time global asymp-
totic profile of the solution when A < 1, 0 < u and (p, u) approach to different constants at
space infinity 400 and —oo. See also some recent works in [5,13,22,23] and references therein.

Unfortunately, as far as the author knows, there isn’t any global result concerning about the
Euler equations with time-dependent damping and physical vacuum by now. Our main purpose
of this paper is to prove the global existence and stability of smooth solutions of system (1.1)
which contains time-decayed damping and physical vacuum.

A solution of system (1.1) with one-side physical vacuum boundary is given by

t

_/e%[(IH)H_(H')H]ds, forx #1,
u(t) = 0 (1.2)
—L[(1+t)—(1+t)*“] forr=1
M+1 E) E)
and
1
t y=1
1
plx,t)=(y — )71 x—/ﬁ(r)dr , (1.3)
0

in 7(¢). Here
t
1(t) :={(x,1)| / u(r)dr =: xp(t) < x < +o00,t > 0}.
0

We will give a short explanation in Appendix A to show how we get (1.2) and (1.3). It is not
hard to derive that there exists a constant M, ,, depending on A and u, such that when ¢ > M, ,,,
we have

—(1+1) for A >1,
—(1+n* forr<l.

. x+ (1 +1)? for A >1,
A x, ) &
x+ A+ fora<1.
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It is easy to see that this solution has one-side physical vacuum boundary since

ac?
ox

9p7 !

0x

at the boundary x = xp(¢).

We see that such a solution has growing order in time as ¢ goes to infinity. The sound speed
grows at order % for . < 1 and order 1 for A > 1, while the velocity grows order at order A for
A < 1 and order 1 for A > 1.

Our main purpose is to show the stability of this one-side physical vacuum solution (1.2) and
(1.3) when the initial data of system (1.1) is a small perturbation of it. In particular, the pointwise
convergence rate of the density, the velocity and the expanding rate of the vacuum boundary in
time are obtained.

The physical vacuum problem of the compressible Euler equations in which the sound speed
is C!/2-Holder continuous across the vacuum boundary is a challenging and interesting problem
in the study of free boundary problems for compressible fluids. Even the local-in-time existence
theory is hard to prove since standard methods of symmetric hyperbolic systems do not apply.

The phenomena of a physical vacuum arises naturally in several important physical situations
such as the equilibrium and dynamics of boundaries of gaseous stars (cf [21,28]). The local-
in-time well-posedness for the one and three dimensional compressible Euler equations with
physical vacuum has been achieved by Coutand et al. [6—8] and Jang-Masmoudi [24,25]. How-
ever, due to the strong degeneracy and singular behaviors near the vacuum boundary, it is a great
challenge to extend the local-in-time existence theory to the global one of smooth solutions. In
analysis, it is hard to establish the uniform-in-time higher-order a prior energy estimates to ob-
tain the global-in-time regularity of solutions near vacuum boundaries. Huang-Marcati-Pan [17],
Huang-Pan-Wang [18] and Geng-Huang [10] proved the L” convergence of L°°-weak solutions
for the Cauchy problem of the one-dimensional compressible Euler equations with constant-
coefficient damping to Barenblatt solutions of the porous media equations. They use entropy-type
estimates for the solution itself without deriving estimates for derivatives. However, the interfaces
separating gases and vacuum cannot be traced in the framework of L°°-weak solutions. In or-
der to understand the behavior and long-time dynamics of physical vacuum boundaries, study
on the global-in-time regularity of solutions is essential. To the best of our knowledge, the first
global-in-time result of smooth solutions in Euler equations with constant-coefficient damping
comes from Luo-Zeng [30], where the authors proved the global existence of smooth solutions
and convergence to Barenblatt solutions for the physical vacuum free boundary problem.

From [6-8,24,25], a powerful tool in the study of physical vacuum free boundary problems
of the Euler equations is the weighted energy estimate. By introducing the spatial weight to
overcome the singularity at the vacuum boundary, the authors there establish the local-in-time
well-posedness theory. Yet weighted estimates only involving spatial weights seem to be limited
to proving local existence results. Later, Luo-Zeng [30,41] introduce time weights to quantify
the large-time behavior of solutions for the Euler equation with constant-coefficient damping in
one dimension and three dimension with spherically symmetric data. The choice of time weights
are suggested by looking at the linearized problem to get hints on how the solution decays.

The a prior estimates for the time weighted energy in the paper of Luo-Zeng [30] rely heavily
on the constant-coefficient damping term — pu. Here we consider the Euler equations with time-
dependent damping with physical vacuum boundary. The damping coefficient decays by order
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—A in time as ¢ go to infinity, which makes the problem more challenging since now we not only
have degenerate vacuum boundary but also have degenerate damping.

Inspired by their space-time weighted higher energy, we can construct a similar weighted
energy to study the stability of smooth solutions (1.2) and (1.3) of the Euler equations with time-
dependent damping (1.1). Although the time-dependent damping is degenerate in our paper, the
time weight for our space and time mixed energy is stronger compared with that in [30,41]. See
(2.9), below and (2.16) in [30]. The reason is that in [30], the first order space derivative of the

corrected Barenblatt flow 77, in Lagrangian coordinates has a growing order (1 + ¢) = . In their
linearized equation, there is a factor ﬁ;’HI ~ (1 +1)~! in front of the space derivative of the
solution, which results in less decay rate compared with ours. Also, in our linearized equation,
when A = 1, we need 2 < p to ensure the closure of our time weighted energy despite in the
lower or higher derivative estimates. This seems to be essential to prove the global stability of
system (1.1) since in our previous papers [32,33], we have showed that u =2 is the threshold to
separate the global existence and finite time blow up of smooth solutions to system (1.1) when
the initial data is a small perturbation of equilibrium (p, u) = (1, 0).

The strategy of our proof will share the similar idea as that in [30,41]. First to simplify the
energy estimates, we will use elliptic estimates to show that the weighted space-derivative en-
ergy can be controlled by the time-derivative energy. In this process, we need to use the Hardy
inequality repeatedly. Then we perform the time-derivative energy estimates in L? norms by a
prior assumption. To close the energy, the weighted L°° norms of the solutions is needed which
can be achieved by Sobolev embedding and Hardy inequality. The advantages of this approach
can prove the global existence and large-time convergence of solutions with the detailed conver-
gence rates simultaneously.

Before ending this introduction, we review some prior results on vacuum free boundary prob-
lems for the compressible Euler equations and related modes besides the results mentioned
above. Liu-Yang [29] proved the local existence theory when the singularity near the vacuum
is mild in the sense that ¢® (0 < @ < 1) (¢ denote the sound speed) is smooth across the vac-
uum boundary for the one-dimensional Euler equations with constant-coefficient damping. Their
method is based on the theory of symmetric hyperbolic systems which is not applicable to phys-
ical vacuum boundary problems since only ¢, instead of ¢* is required to be smooth across the
gas-vacuum interface (further development of this type of theory can be found in [39]). A nice
review of singular behavior of solutions near vacuum boundaries for compressible fluids can be
found in [40]. An instability theory of stationary solutions to the physical vacuum free boundary
problem for the spherically symmetric compressible Euler-Poisson equations of gaseous stars for
6/5 <y < 4/3 was established in Jang [21]. The local-in-time well-posedness of the physical
vacuum free boundary problem for the one-dimensional and three dimensional Euler-Poisson
equations was investigated in [11] and [12], respectively. The stabilizing mechanism of the ex-
panding background solutions and global existence for 3 dimensional Euler and Euler-Poisson
equations with physical vacuum have been shown in [14,15,37] and references therein. See also
[42,43] for recent progress on the compressible Euler equations with constant-coefficient damp-
ing.

Throughout the rest of paper, C will denote a positive constant that only depends on the param-
eters of the problem A, u, y and C, p ... denotes a positive constant depending on a, b, c, ...
which may be different from line to line. We will employ the notation a < b to denote a < Cb
and a ~ b to denote C~1b <a < Cb.
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2. Reformulation of the problem and main results
2.1. Fix the domain and Lagrangian variables

We make the initial interval of the background solution (1.2) and (1.3), (x5(0), +00) =
(0, +00), as the reference interval and define a diffeomorphism

1o : (0, +00) — (x5(0), +00)
by

1n0(x) x

po(y)dy = f po(y)dy for x € (0, +00),
xp(0) 0

where po(y) := p(y, 0) is the initial density of the solution (1.3). Differentiating the above equal-
ity by x indicates

po (110(x)) g (x) = po(x) ~ for x € (0, +00). 2.1
To simplify the presentation, set
Z:=(0,400).

To fix the boundary, we transform system (1.1) into Lagrangian variables. For x € Z, we define
the Lagrangian variable n(x, t) by

{m(x, t)y=u(n(x,t),t) fort>0,
n(x,0) =mno(x),

and set the Lagrangian density and velocity by

fx,)=pn(x,t),t) and v(x,t)=u(@n(x,t),t).

Then the Lagrangian version of system (1.1) can be written on the reference domain Z as

St + fox/nx =0 inZ x (0, 00),

fot 5 (M) nx ==z fo- - inIx(0,00), 2.2
f>0inZ x (0, 00), f=00ndZ x (0, 00),

(f,v) = (po (n0) , uo (n0)) onZ x {r=0}.

The map n(-, t) defined above can be extended to Z =10, +00). In the setting, the vacuum free
boundary for problem (1.1) is given by

xp(t) =n(xp(0),2) =n(0,¢) forz=>0. 2.3)
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It follows from solving (2.2); and using (2.1) that

f e, One(x, 1) = po (no(x)) ny(x) = po(x), xeZ. (2.4)

It should be noticed that we need ny(x,#) > 0 for x € Z and ¢ > 0 to make the Lagrangian
transformation sensible, which will be verified later. So, the initial density of the background
solution, pp, can be regarded as a parameter, and system (2.2) can be rewritten as

(2.5)

ponie + i Pome + 5 (67 /0%), =0 inZ x (0, 00),
(1, m:) = (M0, uo (10)) onZ x {r=0}.

2.2. Main results

Our main purpose is to study the stability of the background solution (1.2) and (1.3). Set
n(x,t):=x+ fé u(t)dr. It is not hard to check that

- - moooo by oy -
—_— — =0 T x (0, . 2.6
oon: + a +t)kpom + ” (,00 /Ux)x inZ x (0, o0) (2.6)

Let

wx,t)=nx,t) —n(x,1). 2.7

Then subtract (2.6) from (2.5), we see that w satisfy

_* - Troy -y _ -0
(1+I)Ap0w,+y[po (14 wy) 1)], =0 inZ x (0,00), 08)

(w, wr) = (Mo — x,up (o)) onZ x {t=0}.

Powyr +

In the rest of the paper, we will use the notation
/=1 / I-I=:1- N2y, and |-l =2l - L @)-
7

Denotecx:ﬁandm=3+[ﬁ].Let8e(O,A+1).Forj=0,...,mandi=0,...,m—
Jj, we set

&0y = 140770 [ (3w’
A

+0 0™ (00! ) + 5 0] wo?) | (v, ndx,

£ji(t) 1= (14 0 HH1=0h / [0 TP 0 @ gl wy?
A

R a;;w)z] (x. 1)dx.
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where 1, - is the characteristic function on {A < 1}, which means

1, if A <1,
0, if 1 <A.

1)L<l =

If we set

o) :=p) ') =@y —Dx=~x, xeT,

then £; and £;; can be rewritten as

ej(r)=(1+z)2f—5h<1f[a“ (a,fw>2
7

(1 + )M (o“(&,j+] w)? + 6“+1(8fwx)2)] (x. 1)dx,

' ' o ) (2.9)
Eji(1) = (142 HH=0ha / [aa+l+1 (/0" w)
NN
fotis (at-’ a;w) i|(x, tdx.
Remark 2.1. By using (3.6) below, we see that actually
. ) . 2
i)~ (1 +t)2f““*“~<1/a“+l+‘ (a,fa;“w) dx. (2.10)
z
The total energy is defined by
m m—j
cn=> &0+ &0
j=0 i=0

The bound of £(¢) gives the uniform bound and decay of w and its derivatives. See (2.11) below.
Now we are ready to state the main result.

Theorem 2.2. Suppose that A = 1,2 < or 0 < A < 1,0 < . There exists a constant €y such
that if £(0) < €, then the problem (2.8) admits a global unique smooth solution in T x [0, 00)
satisfying for all t >0

E() < C&E0),
and
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max{j—3,0} 2
J
2 .
o at w(-, 1) H

m
Z(l + t)21*51x<1

Jj=0
i max{2i+;—3,0} .o 2 (21 1)
3 Qe [ e | < cew,
i+j<m L
i>1

where C is a positive constant independent of t.

As a corollary of Theorem 2.2, we have the following theorem for solutions to the original
vacuum free boundary problem (1.1).

Theorem 2.3. Suppose that A = 1,2 < p or 0 < X < 1,0 < . There exists a constant €y > 0
such that if £(0) < €, then the problem (1.1) admits a global unique smooth solution (p, u,1(t))
fort € [0, 00) satisfying

lo(n(x, 1), 1) — p(n(x, 1), )| < Cxﬁ(l +t)_%+%l*<‘, (2.12)
u(n(x, 1), 1) — @GiCx, 0, 0] < C(1 1)~ 3l (2.13)
xp (1) ~ —(1 4+ ), (2.14)
d*xp (1
‘ ;fk() <Cl4+p*** k=1,2, (2.15)

forall x e T andt > 0. Here C is a positive constant independent of t.

The pointwise behavior of the density and the convergence of the velocity for the vacuum
free boundary problem (1.1) to (1.2) and (1.3) is given by (2.12) and (2.13), respectively. (2.14)
gives the precise expanding rate of the vacuum boundaries, which is the same as x,(#). It is also
shown in (2.12) that the difference of the density of problem (1.1) and (1.3) decays at the rate of

A+l
1+ t)_<%) when A < 1 and (1 + t)_2 for A =1 in L®, where a~ denotes a constant which
is smaller than but can be arbitrarily close to a.

Due to the finite-time blow up of smooth solutions for (2.8) with A =1,0<pu <2 or 1l <
A, 0 < win [32,33] under the assumption that the density and the velocity is a small perturbation
of (p,u) = (1,0), we give the following conjecture, which will be considered in our further
work.

Conjecture 2.4. Suppose that A =1,0 < u <2 or 1 < A,0 < u. The smooth solution of (2.8)
will blow up in finite time for a family of smooth initial data (w, 9;w)|;=¢ even if (w, d;w)|;=o
are sufficiently small.

3. Proof of Theorem 2.2

At the beginning, we give a weighted Sobolev L* embedding Lemma for later use.
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Lemma 3.1. Suppose that £(t) is finite, then it holds that

m
. max 3,0}
S (14 2 o gl r)H
=0
E;
. max{2i+,;—3,0 2

Y A [ EEEE R s | S

i+j<m L

i>1

E

The idea of proving Lemma 3.1 comes from Lemma 3.7 of [30]. But there are some differ-
ences since now the integration interval, Z := (0, +00) is infinite while in Lemma 3.7 of [30],
the reference interval is finite. We give the proof in Appendix B.

The proof of Theorem 2.2 is based on the local existence of smooth solutions (cf. [7,24]) and
continuation arguments. The uniqueness of the smooth solutions can be obtained as in section 11
of [28]. In order to prove the global existence of smooth solutions, we need to obtain the uniform-
in-time a priori estimates on any given time interval [0, T] satisfying SUP;¢(0,7] E@) < o00. To
this end, we use a bootstrap argument by making the following a priori assumption: there exists
a suitably small fixed positive number ¢g € (0, 1) independent of ¢ such that

sup E(t) < Meo, 3.1
0<t<T

for some constant M, independent of €, to be determined later. Under this a priori assumption,
and by using Lemma 3.1, we see that

m
max j —3,0}

S0 ot o2

j=0

i Z (1 4 H2itti=shiat | max{2i4 3.0} 3/3zw(,,t)H2 (3.2)
i+j<m L=

i>1

<E@)<CMey, t€][0,T].

Here we can assume that M ¢ is sufficiently small such that Mey < 1. Then we show in subsec-
tion 3.2 the following elliptic estimates:

i+j
sj,i(r)gczfsg(t) wheni, j>0, i+ j<m, (3.3)
=0

where C is a positive constant independent of ¢.
With (3.2) and elliptic estimates (3.3), we show in subsection 3.3 the following nonlinear
weighted energy estimate: for some positive constant C independent of ¢
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J
Ei()<CY &), j=0.1,....m.

=0

Combining (3.3) and (3.4), we see that
E(t) < CLE(0).
By choosing M = 2C,, we see that
1
E(t) < s Meo,
2
which closes the energy estimate.

3.1. Preliminaries

(3.4)

(3.5)

In this subsection, we present some embedding estimates for weighted Sobolev spaces that

will be used later.

Lemma 3.2.If f € C'([0, +00)) and decays sufficiently fast as x — oo, then we have, for

0> 1and6 eR,
oo o0
/ngzfzdx < Cg/xefxzdx.
0 0

If fe C1([0, 11), then we have, for 6 > 1 and 6 € R,

1 1

/ 72 f2ax < Cy / x(f2 4 fHdx.

0 0
Proof.

i 6-2 2 i 2, x0Tt

T fedx = d
/x fodx ff 91
0 0

1 o0
= —m Xe_l(f2)xdx
0

o o0
§v/x0_2f2dx+CV/x9f2dx.
0 0

(3.6)

3.7)

By choosing small v to let the first term of the righthand of the above inequality be absorbed by

the left, we can get (3.6).
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0

2 1
_ - 0—1, 2
=9-1 " 9-1/"* (f)xdx

0
1

1
_ ﬁ / (O f2) dx — ﬁ / K1) edx
0

0
0+1 1 1 1
= %/ngzdx + m/(xe—i_l —xe_l)(fz)xdx
0 0

1 1

<c / « Fdx + Cy / ) fodx

0 0
o0 o
< v/x9_2f2dx+C9,vfx9(f2+fxz)dx~
0 0

Also by choosing small v to let the first term of the righthand of the above inequality be absorbed

by the left, we can get (3.7)

. O

For any a > 0 and nonnegative integer b, the weighted Sobolev space H?([0, 1]) is given by

b 1
H*’([0,1]) := Z/xﬂafﬂzdx.

k=07

Then for b > a /2, we have the following embedding of weighted Sobolev spaces (cf [26])

with the estimate

3.2. Elliptic estimates

H*?([0,1]) — H"~?([0, 1])

I F Nl go-arzgo,17) < Cab 1 Fll gabgo,17)- (3.3)

We prove the following elliptic estimates in this subsection.
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Proposition 3.3. Under the assumption of (3.1) for suitably small positive number €y € (0, 1),
then for 0 <t <T, we have
i+j
Eii) S Z&(:) wheni, j>0, i+ j<m.
=0

The proof of this proposition consists of Lemma 3.4 and Lemma 3.5 below.
Lower-Order Elliptic Estimates
Equation (2.8); can be rewritten as

% — 5 " = l =Y 1 -V _ 1
(,00 wx)x PoWsr + 7(1 T pow; + Y [Po (( + wy) + wa)]x .
Divide the above equation above by pp and expand the resulting equation to obtain

OWyxx + YWy = Wy + (1+U)x)7y71 —]:wax

_* _0[
A+0r
+ [+ w)™ =1+ yw,].

(3.9)

Lemma 3.4. Under the assumption of (3.1) for suitably small positive number €g € (0, 1), then
E0.0) SE@), Ero)+Ea1(t) SE), 0=t <T.

Proof. When i =0, we using (3.6) to see that
E0(1) := (1 4 )2+ +A—c / [0 @) wo? + 077 @] w)?] (x, ndx

<(1+ t)2j+1+)n—311<1 /0a+l(alij)2dx
SEj(),

which implies that &y o(t) < Eo(r) and £1,0(2) < £1(¢). We mainly focus on the proof of £ 1 (£) <
E1(D).
Multiply equation (3.9) by ®/2 and perform the spatial L?-norm to obtain

a +t))»+1—31A<1 2

o a
‘UH_zwxx +yo 2wy

SC <(1 + t))u+1—81)h<| 2 + (1 + t)l_)\_SIA<]

o
O 2 Wy

o 2
7

+C <(1 + t))\‘+l_61)\,<1 2 +0+ t))h+1_51)‘<1

@
‘01+2wxwxx

a 9 2
‘rﬂwa ) (3.10)

)

o 2 o
<CE 4 Cllwy |2 (1 4 1)+ 100a (Ha”fwxx H + Hofwx

)
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where we have used the Taylor expansion, the smallness of w, (which is the consequence of
(3.2)) to derive the first inequality and the definition of &£ to the second. Note that the left-hand

side of (3.10) can be expanded as

2

o o
O’H—ijx"'ygiwx
@ 2 o 2
=lloTw | +y? )afu}x‘ —i—y/aH“ (u))zc) dx
X
@ 2 o 2
=" ZTwe|| +72 )ofwx’ —y(l—}—a)/a“oxw%dx

2
1+¢ 2 2
= U+2wxx +vy

o
=o+5w,,

At the last line of the above inequality, we use the fact that (1 +a)(y — 1) =y.

By combining (3.10) and (3.11) and using (3.6), we get

2

o
(1 +t))t+]781)”<| O,]+7wxx

2
a
<C& + Ce Hal+2 Wiy

Remembering (2.10) and smallness of €, the above inequality indicates that

1) <C&E(). O

Higher-Order Elliptic Estimates
Fori > 1 and j > 0, applying 8/ 3.1 to (3.9) yields that
o8] 3w + (v — Di + 1) 8/ 8lw

=0/ 291w + (1 ft)x 8/ 1ol w + 01+ 0a,

where

01:== /3 o [+ w7 = 1]w]

+o/ 8 [+ wo) ™ — T4 yw,],

J ) '
Qri=p Yy Chof 1+~ 9w
=1

ati

Multiply equation (3.12) by o~ 2 and perform the spatial L?-norm to obtain
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o P ati— I 2
o e
oT1— . 2
5“ R TASr I le +(+n* H a;;le
—i—H Qz)H
Similar to the derivation of (3.11), we can get
H0_a+t+] ajaH_l Hz
1 —2A i1 |2
o wH + A0 o 5 0 o (3.14)
+ o (QI,Q»H

We will use this estimate to prove the following lemma by induction.

Lemma 3.5. Under the assumption of (3.1) for suitably small positive number €y € (0, 1). Then
for j>0,i>1,and0<i+j<m

i+j
Eii) S &), 1e[0.T]. (3.15)

£=0

Proof. We use induction on i + j to prove this lemma. As shown in Lemma 3.4, we know that
(3.15) holds fori + j = 1. For 1 <k <m — 1, we make the induction hypothesis that (3.15) holds
foralli, j >0,andi 4+ j <k, thatis,

i+j
EiSY &), i=1,j=0,i+j<k (3.16)
£=0

it then suffices to prove (3.15) fori > 1, j > 0,andi 4+ j =k + 1. We will bound ;41— ¢ from
£=1tok+ 1 step by step.

The main difficulty is to control the term HU - (Ql, ) H in (3.14).
We estimate Q> given by (3.13) as follows. For Q», it is easy to see that

J
1021 S A+

=1

i+1—£ qj—
o/t lw‘.
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So that by using the definition of £;; and £;, we have

a+i—l 2
|-+ 2|

J
ati—=1 4 1—p 2
gZ(H_t)—z;\—zz HU +H TAR ea;—le
=1

J
S 4 1)~ H 2D FL Z (Ejgi—elizi + Ejr1—ei—21i=2) -
=1

For Q1, it follows from (3.13) and (3.2) that

EA VI

.
OS2 Kae (|87 "0 (Gwin)

+

)

h
SN Kue (|od? "0 w4 [0 0l w])

i
Z:Z Oone.

Here the main term of K, is 9/’ E)f wy. We only go to estimate K,y for n + £ < 2 since we can

use the same method to estimate Q¢ for n 4+ £ > 3 as that forn + £ < 2.
First, for n = £ = 0, using (3.2), we have

ati—1 2 atitl i 2 ati=1 i . |2
o5 Q100 snwxnioo(Ho Fofoittu] 4+ o afain)

<eo(l+ f)_zj_2(1+)‘)+251‘<'5j,i

SE()(] +t)—2j—(l+k)+51k<1gj’i.

Here we have used the fact that § € (0,1 + A). Andforn=0,£=1,

ati—1

2 ati o 2 ati=2 i . 2
Hg 2 QIO]H ,S”Ul/zw)cx”i” <”o 2 aga;wH +”o 2 8,’8)’6 lw”

<eo(1+ t)—2/—(1+k)+81,\<1 gj,ifb

Also, case n = 1, £ = 0 can be estimated the same by using (3.2)
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e 2
|- 0]
itl i 2 a+, 1 . 2
SN (Ho e e a;wH>

560(1+t)_2_1_)h+31)h<l(1+t)_z(j_l)_l_k+81)h<lgjf],l

5 60(1 + t)_2j_l_}h+61)‘<l(€j_] ;

Here we have j > 1.
Then forn =2, ¢ =0, we have j > 2 and

o o

<llo w2 (H o~ 2a’“wH +H

o)

<eo(1 + t)*4*(1+)»)+51)\<1 a1+ t)*2(j*2)*(1+)»)+511<| 5j—2,i+l

atit2 o - 2
§||01/2wx,,||ioc ”a 2 af 8)’(+2wH

Seo(l +1) 2172 Fharg, 500y,

Here we have used the hardy inequality (3.6) to estimate

i
o

sincea+i—2>a—1>—1.
Inthe casen =¢ =1, we have i > 2.

)

2 C 2 P 2
a;wH §H0a2i8,] 28)’C+1wH §H0a+é+ 3/ 28)’C+2wH

ati— 2
|- o]
2 +i—1 j—1ai J=Tlai1 2
Sllowyexr |17 00 HU 79 '3 u)H +H 8 Bx wH
2 i 7
§||0wxxt||L00 HU 8wa
<eg(l + t)—zj—(1+)»)+3lx<1gj71
Here due to i > 2 and (3.6), we have used
o <ot

Inthe case n =0, £ =2, we have i > 3.
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ati—1 2
HO' 7 Q102 H

o+ a+i—4

i-2 . 2 - 2
<o WP <Ho : a,fa;—le +Ha : a,fa;—sz)

- . 2
3/2 2 ati=2 i—1
Sl w5 070w

560(1 + t)_Zj_(l+)L)+61A<15j,i—l~
Since the leading term of Q¢ is

n
> 1araf wi {loo) "o " wl 10/ 01w |
4

other terms for n 4+ £ > 3 can be handled with the same line.
Now combining the above estimates, we get

+i—1

o 0100

(1 + t)2j+1+)u—51A<1

j

Seoliit Y. Eurt+ ) &
Cr<it+j-1

Substituting this into (3.14), we get

ati—1 _j : 2
J+24i—1
AR

gj <1+ t)21'+1+)»—511<1

4 (1 4 )2 H1=A=00a aa+5_18f+18;_1w“2
(3.17)
J
—|—E()5j,i + Z gg’r-i-zgg.
0<et<j =0
L4r<itj—1
In particularly, when i > 2, we have
J
£iSEimnia+Eirniat Y, Eurt Y & (3.18)
0<e<j £=0
C4r<itj—1

In what follows, we use (3.18) and the induction hypothesis (3.16) to show that (3.15) holds for
i+ j=k+ 1. First, choosing j =k and i = 1 in (3.17) gives

k

i) SEnO+ED+ D Er+ ) &

0<l<k =0
l+r<k
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which, together with (3.16) implies

k+1
i) S &)
=0
Similarly, using (3.18), we have
k—1 k+1
G120 SEO+ED+ Y Er+ Y E Y &)
0<t<k—1 =0 =0
l+r<k
For &7 3, it follows from (3.18) and (3.16) that
k—2 k+1
G230 SEAO+E11+ Y Ert Y S D &,
0<t<k—2 £=0 £=0

l+r<k

The other cases can be handled similarly. So we have proved (3.16) when i 4+ j = k + 1. This
finishes the proof of Lemma 3.5. O

3.3. Nonlinear weighted energy estimates

In this subsection, we prove that the weighted energy £;(¢) can be bounded by the initial data
fortr €[0,T].

Proposition 3.6. Suppose that (3.1) holds for a suitably small positive number €y € (0, 1). Then
fort €0, T]

J
£ S E(0), j=0.1,....m.
=0

The proof of Proposition 3.6 contains Lemma 3.7 and Lemma 3.8 below.
Basic Energy Estimates

Lemma 3.7. Suppose that (3.1) holds for a suitably small positive number €y € (0, 1). Then
1
Eo(r) + / / [(1 + )1 heig®y? 4 (14 t)}‘_‘nkla"‘Hwﬂ dxdt
(3.19)
0
<& (0), tel[0,T].

Proof. In order to simplify the presentation, by using Taylor expansion and smallness of w,, we
rewrite (2.8); as follows

o

o “w; — [0 1+ o(1)wyl, =0, (3.20)

7
Wy + a —l—t))‘o-
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where o(1) means o(1) < /.

The proof will be divided into two parts. One is for 0 < A < 1,0 < u and the other is for
A=1,2<u
Casel: 0 <A <1,0<p

Multiplying (3.20) by (K +£)*w,, where K > 1 is a suitably large constant, to be determined
later, and integrating the product with respect to the spatial variable, then we can get

1d

A K+1\"
37 a“(K~|—t))‘w,2dx—§(K+t)k_1/a wtdx—l—u< + ) /G“wtzdx

141t
+ (K +1)* / o1+ o(1)wy] wydx = 0.
We then have

2dt/(1<+r)A [0 w? + (1 +o(1)o*Hw 2]dx

+ [u - S(K+ t)“] /a“wtzdx (3.21)
— oK+ [ utar <o

Now multiplying (3.20) by vw for some small v > 0, to be determined later, and integrating
the product with respect to the spatial variable, then we can get

d
VE/g“wtwdx—V/U wtdx—{— /(1+t)/\ o®w?dx

VLA (3.22)
" W/ “a“’z"”"/ T (1+o(wydx = 0.
Adding (3.21) and (3.22), we have
— e 1)d +7)‘ @24
A Tl
" [“_ K+ _”}/U“wfdx (3.23)

+ (14 0(1)) <v - %(K + t)H) f o wldx <0.

Here

- K+ 1)t
Eo(x, 1) :=% [o“wf +(+ o(l))a“+1w§]
v o, 2

=+ UO—awtw + mg

By using Cauchy-Schwartz inequality, we have
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(K +t))‘ I:O'awtz +0a+1w2] + (U_H’ _ Uz) 1 a2

4 x 2 e
< éo < (3.24)
3(K 4+ 1) 2 +1, 2 v 2 1 2
T[U“u)t +0“ wx]—i-(?—i—v )(1+I)Aao‘w .

Since A < 1, by first choosing small v and then large K, we can get, from (3.23),

d [ -~ VUA o 2
E/GO(x’t)dx+72(l+t)*+1/U wodx
(3.25)

+ g/gawfdx + %/U“Hwﬁdx <0.
Now multiplying (3.25) by (K + t)*~%, we can achieve

%/w+ﬁ”@amm-u—&m+m4%%mn

vh(K +027° 1
o [ e

K+t A—$
+ % {/0“w3dx+/o°‘+lw§dx} <0,

by using (3.24), we have
d A=383
T (K +1)"°€&y(x,t)dx

viL(K +1)*8 2v @, 2
+W<A—()\—8)(l+;))/o wodx

Ly

3
+ (K —i—t))‘_‘S <% — Z(K +t)k_1) {fa“wlzdx +/a“+lw§dx} <0.

Ly

Again, by choosing small v and large K, we can assure that L and L; are positive. Then we
have for some constant c;

d Yy

i (K +1)""°€Ep(x, )dx
(3.26)
+onu(K +1)*9 {/U“wtzdx +/o°‘+1w§dx} <0.

Now we multiply (3.21) by (K +1)' % to achieve that
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1d _
EE/(K +1)ltH? [a“w3+ (1 +o(1))a“+1w,2] dx

+c)\’M(K+t)1_8/U“wt2dx 3.27)
— (K —i—t))‘*‘s/a“*]w%dx <0.

Multiplying a small number vy to (3.27) and then adding the resulting equation to (3.26), we can
get

1l
— [ Ey(x,t)dx
di (3.28)

+ e +t)1—3/a“w,2dx+ck,ﬂ(1 —I—t)’\_‘s/aaﬂwfdx <0,

where

Eo(x, 1) := (K +)* & (x, 1)

+ (K 4 1) T8 [a“w% T+ o(l))a““w,?]

~ -+t [(7‘”wl2 + o"’“w%] + 1+ Cc%w?,
/ Eo(x, )dx = E(1).
Now integrating (3.28) with respect to time variable from O to ¢, we get (3.19) for 0 < A <
1,0 < .
Case2: A=1,2<p

Multiplying (3.20) by (1 + )?w; and integrating the product with respect to the spatial vari-
able, then we can get

37 o“(1+ t)zwtzdx —(1 +t)/0“w,2dx + (1 +t)/a°‘w,2dx
+ 1+ t)2/0“+1 [(1 4+ o(1)wy] wyrdx =0.
We then have
1d 2 a2 2 atl 2
¥ T, A+ w; +A+)"(14+0(1))oc“ w;dx
+ (-1 +t)/a°‘w,2dx (3.29)

— (A +o(1)(1+ r)/a“+1w§dx =0.

Now multiplying (3.20) by v(1 + ¢)w for some positive v to be determined later, and integrat-
ing the product with respect to the spatial variable, then we can get
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d -1
v5/0“(1+t)w,wdx—v(l+t)/0“w,2dx+%8t/0“wzdx

(3.30)
+v(l+o(1)(1+1) f o w2dx =0.
Adding (3.29) and (3.30), we have
d )
E/Q‘So(t)dx—i—(,u— 1 —v)( +t)/o wydx
(3.31)
+ W=D+ +o0(1) / o lwldx =0.
Here
2
Colx. 1) =1 J;t) [o“w? +a +o(1))o‘*+1w§]
| (3.32)
+v(d+1)o%ww + %owz.

Now, since © > 2, we assume u = 2 + 2« for some positive k. Choosing v =1 + «, we can
achieve

(141)?

Eo(x, 1) = [o“wf e +o(1))a“+1w§]

(I4+x)(1+2k) .

+(A+)A+)ow,w + >

Then (3.31) becomes

%/@o(t)dx—i-/c(l—i—t)/a“wtzdx
(3.33)

+r(1+0( +o(1))/a“+1w§dx =0.

By using Cauchy-Shwartz inequality to absorb the term involving w,w in (3.32), it is not hard
to deduce that

Eolx, 1) =~ (1+1)> (a"‘w,2 + a““w%) +o%w?, / Co(x, dx = Ey(1).

Now integrating (3.33) with respect to time variable from 0 to ¢, we get (3.19) for A =1,2 <
n. d
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Higher-Order Energy Estimates
For k > 1, 8k (2.8), yields that

k
o0k 2w + ool w4+ uo® Y clot (1 + Mo
(1 + 0
= (3.34)
— [a““ (1 +wy) 7 ok, +a°‘+1J] —0,

X

where
J = {8tk_l [(1 + wx)_y_l th] -1+ wx)_y_l atkwx} .

To obtain the leading terms of J, we single out the terms involving 3{‘_1wx. To this end, we
rewrite J as

J=te=D [ +w) 7] 0w+ wadf [+ w0
+§c,f_l (a,"*‘wx) 3¢ [(1 +wx)*y”] (3.35)

—k [(1 + wx)*H] o lw, + 7,
t

where

Ji=—(+Dwy % Chy (67" ) 3f [+ w772
. = (3.36)
+ > ci (o ) of [+ wo .
=2

Here summations le;% and le;g are understood to be 0 when k =1,2 and k=1, 2, 3,
respectively. It shpuld be noted th~at only the terms of lower-order derivatives, wy, ..., 8,]‘ 2w '
are contained in J. In particular, / =0 when k = 1.

Lemma 3.8. Suppose that (3.1) holds for some small positive number €y € (0, 1). Then for all
j=1,....,m

169



X. Pan Journal of Differential Equations 278 (2021) 146—188

t
. , 2
5,'(t)+//[(1+z)2f“‘Slkla“ (9'w)
0

. . 2
+ (1 + T)2/+)L—51)L<lo'0l+l (agwx) :|dxd.[ (337)

i
<$Y &0), tel0,T].

=0

Proof. We use induction to prove (3.37). As shown in Lemma 3.7 we know that (3.37) holds for
Jj =0.For 1 <k <m, we make the induction hypothesis that (3.37) holds forall j =0, 1,...,k—
1,1.e.,

t
. . 2
5j(z)+//[(1+z)21+‘51'A<lo°f (9'w)
0

. , 2
+ (1 + r)2]+)n—51)h<10—0l+1 (a‘gwx) i|dxd1— (338)

J
SZ&(O), tel0,T], 0<j<k—1.
=0

It suffices to prove (3.37) holds for j = k under the induction hypothesis (3.38)
We divide the proof into three steps.

Step one: Setup of the linearized main term
We begin by rewrite (3.34) as follows by using the smallness of wy,

k+2 k M k
%9 How — [ga+1(1 +o0(1))0; wx]x + mo’aat +1,

k
— MO.O[ Zcﬁatz(l + t)*)matk+17€w + |:O.O(+IJ:| (339)
X
=1

=P(x,1).

If we view Btkw as w in the proof of Lemma 3.7, we can get a similar formula with (3.28) and
(3.33) as follows

d
E/ezk(t)dwr(l + 1)l /a”‘(8f+1w)2dx

+ (14 )b / ot (@Fw,)2dx (3.40)
5(1+t)1“*5h<1/P(x,t)a[‘+1wdx+(1+t)Hl*<l /P(x,t)a,kwdx,

where
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Cew, 1) (1407 [0 () 40 (0 w)? |

+ (1 + ) 1o (w2,
(1 +z)2"/ezk(x,z)dx ~ & ().
Then substituting P (x, ) in (3.39) into (3.40) and using integration by parts, we can get
d : -
= / € (1)dx +/ [+ 07810 @ w)? 4 (14 P10 (o) dx
< — (141!l f o 9 W dx

— (1401 /a““Ja,kwxdx

k
2
=1

(3.41)

/(1 + )b gkt =ty gkt d x

k
>
=1

/(1 + 1)~ g gk =ty ok d x

Since the derivative of the term containing Btj + w, on the right hand of (3.41) exceeds the
highest order derivative on the left side of (3.41), we use (3.35) and integration by parts on time
to estimate the first term on the right-hand side of (3.41) as follows:

— (1400 /a“Ja,"“wxdx
d 1+A=81, 1 —a+1 jak
== 1+0 <lo" T JO  wydx
+ (A +r=8L)( 4+ ) = fo“+1Ja{‘wxdx
+ (1 + )b fo“+1Jt8fwxdx
d a+1 1+1-61 k
== o7 (1+1) *<1J 0 wydx (3.42)
+ (1 +r=8L)( 4+ ) = fa““Jafwxdx
2
+k(1+z)1“—3h<1/o“+1 [(1+wx)—7—1] (a,kwx) dx
t
k(1 40yl /a““ (4w 1] of N wofwndx
+ 1+ oha /a“+1i;a[‘wxdx.
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Inserting (3.42) into (3.41), we can get

d a+1 1+1—=81, <1 k

- [@k(z) ot (14 1) et g wx]dx

+/[(1+t)1—51)\<1o,a(8[k+1w)2+(1+t)k—51x<10d+1(atlcwx)2i|dx

k
S Z(l + t)l*@7811<1
(=1

k
+) A+ o

=1
/a““ [(1 + wx)*V*‘]t (B,kwx)zdx

/o—““ [(1 + wx)‘y‘l] w8 w,dx
tt

/ ook 1=tk ydx

/ ook 1=ty akwdx

+ (14000 (343)

+ (1ol

+ (l + t))‘7811<l

/o““ Jokw,dx

+ (1 + t)l+)\_81)‘<1

/U“Hzatkwxdx

6
ZZZL’.
i=1

Now we estimate /; (1 <i < 6) term by term by using (3.38) and the left of (3.43). Next we
only consider the case for A < 1 and the proof below is still valid for A = 1 by simply replacing
A =1 and § = 0. Also for simplicity of presentation and notations, sometimes we denote 8 :=
A+ 1
Step two: Estimates of the low order and nonlinear terms

For I, by using Cauchy-Schwartz inequality, we have, for a small constant v,

k
I <l +t)1_6/o"‘(8[k+1w)2dx+CUZ(1 +r)1—2‘—5/a“(a,’<+1—‘fw)2dx
=1

<v(l +z)1*5/a“(a,’<“w)2dx

k
—i—(l—i—l‘)_ZkCU Z(l+t)2(k+1—£)—1—5/Ua(atlc+l—€w)2dx
=1

§v(1+t)1_8/0“(8t]‘+1w)2dx

k
+1+n"*c, Z(l +1)2-1-8 f o%(dfw)ldx.
=1
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The first term on the right hand of the above inequality can be absorbed by the left hand
of (3.43) and the time integral of the second term can be bounded by the initial data from the
induction assumption (3.38).

For I, we can estimate it similarly with I as follows

Bl <0 4071 f o (@ w)dx

k
+y (1 +t)1—2‘—5/a“(a,"+1—€w)2dx

=1

k
SA+n7*>"a +t)2‘—1—5/o“(afw)2dx.
=1

For term I3, using the L estimate for w,, in (3.2), we have

fa““ [(1 + wx)*y”]t (a,kwx)zdx

2
<+ Dwyr e (141 / o (9w, ) dx

3] := (1 +1)! 72

2
5\/6(1“)*‘5/0““ (a{‘wx) dx,

which can be absorbed by the positive term on the righthand of (3.43) if € is small enough.
For term Iy, first using (3.2), we have

[+ w077 S el + ().

Inserting this into /4 and using Cauchy Schwartz inequality, we have

Ig] = (1 4+ 1)l T4

/a““ [(1 +wx)—y—‘] 9w, dkw,dx
113

<401 / o (Jwarl + () 105wl 0wl
< A8 atl [k, )
Sv(l+1) o (8t wx) dx
+ Cy(141)>+*3 {nal/zwx,,n%m/a“|a,k—‘wx|2dx

Fllwer 17 oo f a“+1|af—1wx|2dx}
< A8 atl (o )
Sv(l+1) o (E)I wx) dx
+Creo(14+1)73 {/a“(at]‘_lwx)2dx+/a°‘+1(8,k_1wx)2dx}.
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Remembering the definition of £ ; and £;, we have

2
|I4|A<Jv(l+t))‘7‘s/o°‘“ (a,kwx) dx + Cyeg(1 + 1) 2k-D-1=2b8bict (g g )

k
Sv(l 40 / oot (afwx)zdx + Cpeo(1 1) H 2483 g,
£=0
(3.44)
where at the last line, we have used Proposition 3.3. Since there appears & on the right hand of
the above inequality, which can not either be absorbed by the left hand of (3.43) or be controlled
by the induction assumption (3.38). We calculate it further more as follows.
By using the representation of & (), we have

60(1+t)—2k—2—)n+55k§€0(1+t)—1/I:O,(X(at/(+lw)2+O,Ot+l(atkwx)2]dx
+eo(1 +t)—2—*/a“(a,"w)2dx
Seo(l +z)1—5fo“(a,k+1w)2dx+eo(1 +t))‘_8/a“+1(3,kwx)2dx

+eo(1 1) 217219 +r)2k—‘—5/a“(a{<w)2dx.

(3.45)
Combining (3.44) and (3.45), we can achieve that

114 <(v + €) {(1 +t)1—5/o“(a,’<+1w)2dx+(1 +r)l—5/a“+1(a,’<wx)2dx}

k—1
baoll 0 g A0+ n? 1 [t furar,
=0

where 17 is a constant bigger than can be arbitrarily close to 1.
Now we come to estimate the terms involving J and J, which are a little complicated.
From (3.35), (3.36) and (3.2), we have

k—1
171:5 ) 10f w19 “we| + Lout.
=1

k—2
Slwerl 10 wel + Y 10w 1f“we| + Lot
= (3.46)
r+1-6
<Veo(l+0)7 57 ok Ty
[k/Z]_l 1-§ —1
Atlo =
+veo Y A+ 7 lem T 9wy,
(=2
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Here and thereafter the notation Lo.z. is used to represent the lower-order terms involving 8,[ Wy
with £ =2, ...,k — 2. It should be noticed that the second term on the right-hand side of (3.46)
only appears as k —2 > 2.

Using Cauchy Schwartz inequality, we can get

15| < '(1 +t)*‘3/a“+118,’<wxdx

(3.47)
2
<w(l —i—t))‘_s/a“‘H <8tkwx> dx +C,(1 —i—t)k_‘s/(r“"'llzdx.

While, from (3.46), the second term on the right hand of the above inequality can be bounded as
follows,

2
(1—I—t))‘*a/a“HszxSeo(l—i-t)%/‘a‘”] (Bfflwx) dx

[k/2]—1 5 (3.48)
+€p Z (1+t)_2z_1/(7°‘+2_4Z (B,k_[wx) dx.

=2

In view of (3.6), we see thatfor £ =2, ...,[k/2] — 1, +2 — £ > —1, then we have

dx

2
/ o2t ‘atk—l W,

2
5/0a+24+2‘a§<4w” dx

...... (349)

5(1 + t)_z(k_z)_()t-i_l)-i_sgkfé,ﬁfl )

Inserting (3.49) into (3.48) indicates that

(1+t))n—5/o_ﬂl+l|]2dx

[k/2]
S 6()(1 4 t)—zk—Z—AJrégk_l + 60(1 + t)—2k7271+8 Z 5]{—@,@—1 (350)
(=2
k—1
5 co(1 + t)—2k—2—k+5 de
£=0

Combining (3.50) and (3.47), we can get
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k—1
2
1Is| Sv(l +1)*7° / oot (alkwx) dx + Cyep(l + 1)~ 2=17 ZS‘Z'
£=0

Next we come to deal with the term /¢ involving f,. First, from (3.36), we have

k—2 k—1
1ol Slwaeel Y 10wl 18f wal + [war) Y 10F ™~ wy 0] wie|
=1 =1
k—1
+ Y 19F 7w [10f wy | + Lot
(=2

k=2 k—1
Slwae 10wyl [0y wy ] + [waer [10, wiel |9, wi|

k-3 k—2
w10 w19 wel + [wael Y 10F w10 we|
=2 =2
k—1
+ ) 10F T w10/ wy | + Lout..
=2

Then the L estimate in (3.2) implies that

Jil Seo( + 07>~ D0 2192w | 4 o (1 4+ 077D oy

teo(l+0727 o 24 T e T Y k|
=2
=3
Tt I O BN ) e e W E N
=2
(4
Va0 T Y gk .
=2

If we view the £ + 1 and £ — 1 at second line and fourth line of the above inequality to be the
new £ and combine the second and third line together, we can achieve that

il sSeo(l + 072" D0 7292w |+ eo(1 4+ 07270 gy

(54
£—1
+eo(1 1) 1 UHA=0) 5= Z 10w, |
= (3.51)

1+A—6
2

+ el +1)~ 1"
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Using Cauchy Schwartz inequality,
] Sv(l +1)*70 / o1 41) (a,kwx)zdx + Cyp(1 41> / ot Ji2dx.  (3.52)
And inserting (3.51) into the second term on the right hand of (3.52), we have
/a“+1(1 + 028 T 2dx < (1 +t)_6_)‘+8/00‘ (8,]‘_2wx)2dx

2
+e§(l+t)747)‘+5/‘o°‘+1 (3,/‘7le) dx

,1]

~

L (3.53)

+6§

[+

(1+t)—2(z+1)—x+5/0a+2—e (afk_gwx)zdx

o~

=2

~
(¥

-3

]
2
e Z(l +t)—2(£+1)+1/0a+1—z (atk—zwx) dox.
=1

Using (3.6) repeatedly as that in (3.49), we can have

2 2
/0"‘ (3,/‘72wx) dx S/a"‘“Z (Btkfzwxx) dx

5(1 + t)—Z(k—Z)—(l—&-)n)-‘ngkiz’] ;

2 2
/o_a+27€ (8f’ewx) dxg...g/g“ (a[f*eafw) dx

5(1 + t)—2(k—£)—(1+)»)+5€k_l,e_1 ,

and

2 2
/O_a+17€ (a,k*‘fwx) dxs...fg/ga* (at"*@afw> dx

S(l + t)—2(k—2)—(l+)»)+5€k_z’e.

Inserting the above three inequalities into (3.53) and using Proposition 3.3, we can obtain

/O,a+l(1 + t)2+)»—5|jt |2dx

_9k_1t+ _9_1t+
S+ (Gan + &)+ gL+ Gy
+eo(l+0) " H 208, (3.54)
T (Ek—21 + 1) + €5 (1 + o S

k
+eo(1 4 1) k2248 Z&.
=0
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The same as (3.45), we have

k
(1 4 1)~ 2K=2-2 Z&z

£=0
<d +t)‘*5/a“(a,k+1w)2dx+(1 +t)“3/o“+‘(a,’<wx)2dx (3.55)
k—1
+ A+ +z)2k—1—5/a“(a{<w)2dx +A+nH TN,
=0
Inserting (3.55) in (3.54) then into (3.52), we obtain
k—1
Is Seo(1+ 07N g+ (1 + 072 P10 / o (3 w)*dx
=0

+ (v +€) ((1 +t)1_8/0“(8,k+1w)2dx+(1 ~|—t)’\_5/a°‘+1(8,kwx)2dx).

Step 3: Finishing proof of Lemma 3.8
From all the above estimates for terms /1 to Ig, we get that

d a+1 1+A—68 yak
E/[@k(t)‘FO' (4047 akw, ] dx
+(1+t)1—5/0,a(atk+lw)2dx+(1_’_t))u—(S/O,OH-l(atkwx)zdx

<@+ eo)f [(1 + 01862 @k w)? 4 (1 + r)k—%““(a{‘wxﬁ] dx

k—1 k—1
+A+0H* N s+ A+ Z/ [(1+ 021007 (3 )
£=0 =0
+(1+ t)”f“—%“l(afwx)?] dx.
Then we get by choosing small v, for some large N, to be determined later,

d
- / [ezk(z) +o*t 1+ r)lﬂ—‘sfafwx] dx

+ N/ [(1 0106 @k w)? 4 (1 4 1) ot (a,kwx)z] dx

k—1 k—1
<A+ "N gw+a +r)—2k2/ [(1+t)2‘+1—%“(af+1w)2
=0 =0

+(1 + t)2£+)\—80_0t+] (ate wx)z:l d.x.
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Multiplying the above inequality by (1 +7)%*, we can get
d
= {(1 + r)”‘/ [ka(t) +ott 1+ t)lH_‘SJBtkwx] dx}
—2k(1 + )% / [@k(z) fotl( +z)1“—5ja,’<wx]dx

+NfI:O,Ct(l+t)2k+1—5(atk+lw)2+(l+t)2k+}»—50,a+1(8;{wx)2]dx

(3.56)
R=
SA+07" Y &
=0
k=1
+ Zf I:(l +t)25+1—80a(8f+1w)2 + (1 +t)2£+)»—3aol+1 (a[@wx)Z] dx.
=0
For the term o1 (1 4 1)!+*73 79k, , the same estimate as (3.50) implies that
‘(1 +t)l+)‘_8/0“+1.18tkwxdx
1+A—5 U ak )2
Sv(l+0)tt /o“+ (8, wx) dx
k=1
4 (14 )21 Z&‘
=0
From this, we have
(14 %! / [0+ 0 (409 5k, ax
5/H:(l+t)2k+)\786a(atk+lw)2+(l+t)2k+kfaaa+l(atkwx)2:|
(3.57)
T+ r)”“l—%“(a,kw)z} dx
k=1
+(1+nTN g,
=0
and
k-1
( —i—t)Zk/ [ek(r) +oot(l +z)1+*—5Ja{<wx]dx >&-Y & (3.58)
=0

Inserting (3.57) into (3.56), by choosing sufficiently large N and using the induction assumption
(3.38), we can get
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% {(1 +z>2"/ [€k<r) +ot (1 +z)‘+”fa{<wx]dx}

+/ [(1 +t)2k+1_80'a(8l{(+1U))2+ (1 +t)2k+)n—5o_0l+1 (atkwx)z]

k—1

<A+ &0

£=0

k—1
+Z/ [(1 2 gty 4 () +r)2@“*%“+‘(afwx)2] dx
=0

k—1
<A+ 3800
{=0

k—1
+Z/I:(l_’_t)2(+1750_a(8[£+1w)2+(1+t)25+)»750_0l+1(8tewx)2:| d.x.
=0

Integrating the above inequality from O to ¢ and remembering (3.58) and (3.38), we can get

t
gk+/ [/(1+.[)2k+1—5o,0t(atk+lw)2+(l +T)2k+)\.—5o,0t+1(8tkwx)2j| d.xdl'

0
k

SA+n* / (& + 07T 1+ 0! ofw, | dx + Y £0(0)
=0
t
+/ |:/(1 +r)2k+l—5o,0t(8tk+lw)2+ (1 +_L_)2k+)n—5o,0t+l(8tkwx)2i| d.xdf
0
k

S E0)

=0

~

k=1 1
+Z//I:(l+r)25+l—80_a(8tf+lw)2+(l_I_T)zf'i‘)n—(so_ol-’rl(atfwx)zil d.xdf
Z:OO

k

S &)

=0

~

This finishes the proof of Lemma 3.8. O

Then Proposition 3.3 and Proposition 3.6 together imply (3.5), which proves Theorem 2.2 by
continuation argument.
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4. Proof of Theorem 2.3

Proof. In this section, we prove Theorem 2.3. First, it follows from (2.4) and (2.7), and that for
(x,t) €L x [0, 00)

o) A
Nx(x,1) Nx(x,1) (1+wx)’

p(’?(x’ t)1 t) - ﬁ(ﬁ(xvt)v t) =
and

u((x, 1), 1) —u((x, 1), 1) = wy(x, ).

Hence, by virtue of (2.11), we have, for (x,7) € Z x [0, 00),

1

oG, 1), 1) — pGe, 1), )] < x7T(1 4 1)~ T3l
and
lu(n(x,t), 1) —a(n(x, 1), )] S (1 +;)—1+%1/\<1'
Then (2.12) and (2.13) follow. It follows from (2.3) and (2.7) that

xp(t) =1 (xp(0), 1) =n(0,8) = (7 +w) (0,1)
~—(1+0)* +w,1)
~—(14+0)*

Fork=1,2

d*xp (1)

—r = 3570, 1) + 3% w(0, 1).

So using (2.11) and the representation of 7, we get (2.15). O
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Appendix A. Gain of the solution (1.2) and (1.3)

First, we assume that the velocity is independent of the space variable x. So system (1.1) is
simplified as

pr + iy =0,
i) M (A.D)
’ IR
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Since p(p) = %,53’, from (A.1),, we see that

zz,+<p )X=—(1J’:mﬁ. (A2)

Let ’;y—:ll = x + f(¢) for some function f(¢), to be determined later. Then (A.2) and (A.1); imply
that

pr!
( 1) +i()=0

y==1/ (A.3)
- I
u;+1= (l—i—t))"u.

Solving the ordinary differential equation (A.3), with the initial data u(t)|;=0 = 0, we can get
(1.2). Then From (A.3);, we can get (1.3). O

Appendix B. Verification of the a priori assumption Lemma 3.1

Proof. For a one dimensional domain €2, we have the following embedding: H'/?*V(Q) —
L°°(2) with the estimate

| Fllre@) < Cv||F||H1/2+v(Q) (B.1)

for v > 0. This will be used in the rest of the proof.
We separate the proof by dividing E and E» with and without the space weight, respectively.
Casel: E; with0 < j <3 and E; withi =1, j=0,1.
The L estimates will be done in the intervals [0, 1] and [1, +00) separately.
It follows from (3.8) that for j <3 <5+ [a] —«
J

Hawa S tlol- —Ha,w

. m—j+14a
H 2 ([0,1D) HH'"_]'H_ J+7 - (10,11

o,
Hm—j+l+a,m— j+1([0 11

m—j+1 5

Z O_a+1+m j akaj )dx

k=0

» (B2)

m—

~
+

~
Il
=}

0
fo“+k a"af 2dx
0

m=j
SU+n b L g, 4384 1(0)
k=1

S+ HPhagr.
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Alsofor j <1 <3+ [o] —«,

j 2
8, Wy —j+1

w .om +a
L H™ 77 ((0,1)

3-jtal=a =
H (10,1

Hm—j+1+a,m— 1(01)

3

2
getitm=j 3k+18J ) dx

AN
-

=0
(B.3)

m—j

N

P ak+13 w) dx

f
[

bl

=0

m—j
5 (1 +t)72j7()r‘r])+81)h<| Z g]’k(t)
k=0

S (1 4 t)72j7()‘+1)+511<15(t)'

The above two inequality (B.2) and (B.3) together indicate that

2(1 + t)2f 81«1

o/,
L([0,1)
(B.4)

< E@).

1
2j+ (A D —815 <1
+ -2(:)(1 o k ! H L>2((0,1))
j=

Besides, we have for0 < j <3

o0

187 w1 1 ooy S / (0@ w? + 0+ (3 w)?) dx

—

(B.5)
<1+ t)—2j+81x<1gj

<(+0)7Hhag@),

andfor0<j <1
o0

18/ well (1 ooy S / o (3] w4+ 0 20 wy)?) dx

—

(B.6)
<A+~ 2j— (A+1)+81,\<15 1

( +t) 2] ()\+1)+51)L<16(t)

Then combining the above (B.4), (B.5) and (B.6), we can get
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‘a,fwa; <E).

3
Z(] + t)21—511<1
=0

Case 2: E; with j >4 and E; withi >1,2i + j > 4.
We denote

1
. 2
2j4 (1) =51,
‘8fijLoo+;)(1+t) JHA+1D) =815
j:

2i+j-3 ;.
R Jai
Y=o 2 9/0,w,

here i > 0. It is easy to see that

2 2
||W ||L00([1,+oo)) S.; |W ||H1([1,+oo))

oo oo

L P 2i4i—3 o+ . 2
5/02’+1_3(8f8;w)2dx+/(8x (a 3 a,fa;w» dx

1

1
o0 o0
5/02"+f—3(afa;;w)2dx+/02"+f—5(a,fa;;w)2
1 1
2iti3 il 2
folitis (a{a;f w) dx
- 2
< / o+ (9] 8l w)2dx + oo FiH! (a;'a;;“w) dx.
0

Here we have used the fact that forx > 1l andi + j <m — 1 = [a] + 3,
204+ j—-5<2i+j-3<a+i<a+i+1.
Then when i = 0, we have

2 —2j+81, <
”w”Lw([l,-&-oo)) 5(1+t) J+oh lgj

<1+ Hheg@),
and when i > 1, we have

“Vf”%oo([],Jroo)) 5(1 + t)—2j—()»+l)+81)L<I (5].‘0 +5j‘l)

B.7
In the following, we prove that

1110 qo.1y S (1 + 072 H1<1E@) fori =0,
||1/f||%00([()‘1]) SA+ t)_zj_()‘+l)+8h<15(t) fori > 1.

Without loss of generality, we only show the case of i > 1. The case for i = 0 follows the same
line.
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Since o — [«¢] € [0, 1), we can choosing a small v such that @ — [a] + v € [v, 1), so it follows
from (B.1) and (3.8), we have that

2 2
112 oy SIVI? | aoiaren
H 2

2
= " W ” Herl*i*j* Z(mfifj)zwtuf[aH»v
2
S”W ” H2m—i—j)+a—[a]l+v,m+1—i—j (B8)
ml—i—j 1 )
=y /Uz(m—z—n+a—[a]+u oy dx.
k=0
Now we make some calculations for the right terms in (B.8)
A simple calculation yields
k 2i+j-3
i+ =3 P idk—
ajgl/f‘ < ‘o F=—p gl gtk ”w( fork=1,2,....m+1—j—i. (B.9)
p=0

It follows from (B.9) thatfor | <k <m+1—i —j

1
k
2 .
3)]:1#’ de/ Ua+m—j+l—2p+v
o r=0

k7
8/ it ”w‘ dx

1
f o 2m—i—j)ta—laltv
0

1
1
. 2
—i—i41— ik — k—
S/Gm i—j+1 k+v§ :Goz+t+k Zp‘atfa)‘c“‘ Pw) dx

p=0

(=}

o 2
k—
8{8? pw’ dx

Lk
+/Zo,a+mfj+172p+v
0

p=2

1
1
o 2
o e
szaa-i-l-‘rk Zp‘atla)lc+ ”w‘ dx
o r=0

k

1
+/\Zo.a+mfj+172p+v
0

p=2

Lo 2
k—
Btj8;+ pw‘ dx

5 (1 + t)72j7()»+1)+(31)h<15j’i+k_l

L
+/Zo.a+mfj+172p+v
o p=2

Lo 2
k—
Btj8;+ pw‘ dx.

To bound the second term on the right-hand side of the inequality above, notice that
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ao+m—j+1-2p+v=2m+1—i—j—k)+2(k—p)
t@—lah+v+Qi+j—-3)-2>-1,

for p € [2, k], and 2i 4+ j > 4. We then have, with the aid of (3.7), that for p € [2, k],

1
. 2
/O_a+m—j+l—2p‘atja)lc+k I’w‘ dx
0

1
1
.o 2
—itl— k—p+t
§/Ga+m Jj+1 2p+2§ :)at/a)lc-i' P+ w‘ dx
0 £=0

P
- 2
i k—p-+e
< [ gotm ]Jrlz‘alja)lc‘*‘ p+ w‘ dx

£=0

oY _

M~

. 2
. . k ¢
O_(m+1—l—j—k)+(p—(3)aa+l+k—p+ﬁ ‘atjal—i- p+ wl dx

o~
Il
=}

Il
o _

A

1
14
. S 2
Z/Ga+z+k—p+z 3;]3)l<+k p+€w’ dx
:()0

i+k—
N Eje-1.
L=i+k—p

That yields, for k=1,2,...,m+1—j —1i,

2 .
8}?1#‘ d.x S (l + t)_2]_(A+1)+81A<15j,i+k—l

1
/ O_2(m—i—j)+ot—[oz]+v
0

k i+k—1
+ Z Z a +f)_zj_()\+1)+81’\<15j,e—1 (B.10)
p=2L=i+k—p
m—j
<A+ t)—2/—(k+l)+51»\<1 Z e
l=i—1

Therefore, it follows from (B.8) and (B.10) that
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m—j
oz(m_i_j)-l,-a—[(x]—i-(sh/j'zdx_i_(1+t)—2j_()»+1)+311<1 Z g],ﬁ
=i—1

2
W 13 qo.r S

S

1
4
1
< / gt =i ] glwPdx + (1 4 1) =X 0D H e g )
0
1
/ ot 9] 0l w Pdx + (1412~ HLag(p)
0

<+ t)_zj_()“*'l)“lklg(t),

This and (B.7) completes the L> estimate for Case 2.
Combining results in case 1 and case 2, we finish the proof of Lemma 3.1. O
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