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Abstract. We show that weak solutions to parabolic equations in divergence
form with conormal boundary conditions are continuously differentiable up to

the boundary when the leading coefficients have Dini mean oscillation and the

lower order coefficients verify certain integrability conditions.

1. Introduction. In a recent work [6], the first author et al. obtained interior
and boundary C1 estimates for divergence form elliptic equations with conormal
boundary conditions, under the assumption that the coefficients and data have Dini
mean oscillation. This work was motivated by a question raised by Yanyan Li [17].
In this paper, we consider the corresponding parabolic equations with conormal
boundary conditions under the assumption that the coefficients and data have Dini
mean oscillation with respect to all the variables, and establish global C1 estimates.

Let ΩT = (0, T ) × Ω ⊂ Rn+1 be a cylindrical domain, where Ω is a bounded
domain in Rn with n ≥ 1. We consider a second order parabolic operator P in
divergence form

Pu = ∂tu−
n∑

i,j=1

Di

(
aij(t, x)Dju+ ai(t, x)u

)
+

n∑
i=1

bi(t, x)Diu+ c(t, x)u. (1)

Here, the coefficients A =
(
aij
)n
i,j=1

, a =
(
a1, . . . , an

)
, b =

(
b1, . . . , bn

)
, and c

are measurable functions defined on ΩT . We assume that the leading coefficients
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A =
(
aij
)

are defined on Rn+1 and satisfy the uniform parabolicity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(t, x)ξiξj ,

∣∣∣∣∣∣
n∑

i,j=1

aij(t, x)ξiηj

∣∣∣∣∣∣ ≤ λ−1|ξ‖η|,

∀ξ =
(
ξ1, . . . , ξn

)
, η =

(
η1, . . . , ηn

)
∈ Rn, ∀(t, x) ∈ Rn+1

(2)

for some positive constant λ.
Throughout the paper, we shall use X = (t, x) to denote a point in Rn+1 =

R×Rn, and x = (x1, . . . , xn) will always be a point in Rn. We also write Y = (s, y),
X0 = (t0, x0), and Z = (τ, z), etc. We define the parabolic distance between the
points X = (t, x) and Y = (s, y) in Rn+1 as

|X − Y | = max(
√
|t− s|, |x− y|).

For a domain Ω in Rn, we shall write

Ωr(x) = Ω ∩Br(x)

and

Q−r (X) = Q−r (t, x) = (t− r2, t)× Ωr(x).

For any ε ∈ (0, T ) and Ω′ ⊂⊂ Ω, We denote (ε, T )×Ω and (0, T )×Ω′ by Ωε,T and
Ω′T , respectively.

We say that a non-negative measurable function ω : (0, 1]→ R is a Dini function
provided that there are constants c1, c2 > 0 such that

c1ω(t) ≤ ω(s) ≤ c2ω(t) (3)

whenever 0 < t/2 ≤ s ≤ t < 1, and∫ 1

0

ω(s)

s
ds < +∞.

For a function g on ΩT = (0, T )× Ω, we say that g is uniformly Dini continuous if
the function %g : R+ → R defined by

%g(r) := sup {|g(Y )− g (Y ′)| : Y, Y ′ ∈ ΩT , |Y − Y ′| ≤ r}

is a Dini function. We write g ∈ Ck,Dini if Dαg is uniformly Dini continuous for
each multi-index α with |α| ≤ k. We say that a locally integrable function g is of
Dini mean oscillation over ΩT and write g ∈ DMO if the function ωg : R+ → R
defined by

ωg(r) := sup
Q−r (X)⊂ΩT

−
∫
Q−r (X)

|g(Y )− gX,r| ,

(
gX,r := −

∫
Q−r (X)

g

)
is a Dini function. We shall also say that g is of Dini mean oscillation in x over
ΩT and write g ∈ DMOx if the function ωx

g : R+ → R defined by

ωx
g(r) := sup

Q−r (X)⊂ΩT

−
∫
Qr(X)

∣∣g(s, y)− ḡx
x,r(s)

∣∣ , (
ḡx
x,r(s) := −

∫
Ωr(x)

g(s, ·)

)
is a Dini function. In view of the proof on [17, p. 495], we know that ωg and ωx

g

satisfy (3).
The main theorem of this paper is as follows. We refer the reader to Section 2

for the definitions of the function spaces such as H1
2, C̊

1/2,1, etc.
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Theorem 1.1. Let q > n + 2,Ω have C1,Dini boundary, and the coefficients of P
in (1) satisfy the following conditions in addition to (2) : A ∈ DMO and a ∈ DMO
over ΩT , b ∈ Lq (ΩT ), and c ∈ Lq (ΩT ). Let u ∈ H1

2 (ΩT ) be a weak solution of
Pu = div g + f in ΩT ,

A∇u · ν + au · ν + a0u = −g · ν + g0 on (0, T )× ∂Ω,

u = 0 on {t = 0} × Ω,

where g =
(
g1, . . . , gn

)
∈ DMO (ΩT ), f ∈ Lq (ΩT ), a0 and g0 are uniformly Dini

continuous in (0, T ) × Ω. Then, we have u ∈ C̊1/2,1(Ωε,T ) ∩ C̊1/2,1(Ω′T ) for any
ε ∈ (0, T ) and Ω′ ⊂⊂ Ω.

Moreover, if we set g = g·ν−g0 and assume that for any point (0, x0) ∈ {0}×∂Ω,
we have the compatibility condition

g(0, x0) = 0, (4)

and there exists a Dini function %g : (0, 1] → R such that for any (t, x) ∈ ΩT and
|t, x− x0| ≤ 1,

|g(t, x)| = |g(t, x)− g(0, x0)| ≤ %g(|t, x− x0|), (5)

then u ∈ C̊1/2,1(ΩT ).

Remark 1. For general initial data u(0, ·) = u0 ∈ C1,Dini(Ω) satisfying the com-
patibility condition

A(0, ·)∇u0 · ν + a(0, ·)u0 · ν + a0(0, ·)u0 = −g(0, ·) · ν + g0(0, ·) on ∂Ω,

by considering u − u0, we can show that u ∈ C̊1/2,1(ΩT ) under the additional
assumptions that A and a are uniformly Dini continuous near the corner {0}×∂Ω.

Remark 2. For divergence form parabolic equations with the homogeneous Dirich-
let boundary condition, it was proved in [8] that if the leading coefficients and data

are DMO with respect to x only, then any weak solution is in C̊1/2,1 up to the
boundary. For the conormal problem, in Theorem 1.1 we require more regularity
assumptions on the coefficients and data, which is necessary. In fact, consider the
equation

ut −D1(a1(t)D1u)−D2(a2(t)D2u) = div g in (0, T )× R2
+

with the conormal derivative boundary condition, where a1 and a2 are bounded
from below and above, and R2

+ = {(x1, x2) ∈ R2 : x2 > 0}. It is easily seen that the
conormal derivative boundary condition in this case is equivalent to D2u = −g2/a2

on {x2 = 0}. Therefore, D2u may not be continuous up to the boundary unless
g2/a2 is continuous. We also note that similar to [12, Theorem 2.4], from the proof
below we can see that regularity assumptions on the coefficients and data with
respect to the time variable are only required near the boundary.

Elliptic and parabolic equations with Dini mean oscillation coefficients consid-
ered in this paper were recently studied in [11, 7, 6, 8]. Using Hölder’s inequality,
it is easily seen that the Dini mean oscillation condition (or L1-Dini mean oscilla-
tion condition) considered here can be derived from the Lp-Dini mean oscillation
condition for any p > 1, i.e., the function

ω(p)(r) := sup
Q−r (X)⊂ΩT

(
−
∫
Q−r (X)

|g(Y )− gX,r|p
) 1
p

,

(
gX,r := −

∫
Q−r (X)

g

)
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is a Dini function, which has been used in [17, 15, 4] for the case when p = 2.
However, whether the converse holds is still unclear.

If we instead consider the function

ω̂(p)(r) := sup
0<s≤r

ω(p)(s),

the proof of [1, Proposition 1.13] shows that ω̂(1) is a Dini function implies that ω̂(p)

are also Dini functions for all p ∈ [1,∞), which indicates that the conditions are
equivalent for any p ∈ [1,∞). Also it is clear that ω̂(p) is a Dini function implies
that ω(p) is also a Dini function. However, the converse is not always true as shown
in [5, Remark 2.2].

Besides, these Dini mean oscillation conditions are in fact strictly weaker than
the uniform Dini continuity condition. See an example in [11, p. 418]. Elliptic
and parabolic equations with uniformly Dini continuous coefficients have been well
studied. See, for instance, [20, 18, 21, 2] and references therein. The DMO condi-
tion considered here is one of the weakest conditions to guarantee the continuous
differentiability of solutions. As in [11, 7, 6, 8], the proof of Theorem 1.1 is based
on Campanato′s approach, which was used previously, for instance, in [14, 18]. The
main step of Campanato′s approach is to show the mean oscillation of Du in balls
(or cylinders) vanishes to a certain order as the radii of the balls (or cylinders) go
to zero. Here because we only impose the assumption on the L1 -mean oscillation
of the coefficients and data with respect to (t, x), the usual argument based on
the L2 (or Lp for p > 1) estimates does not work in our case. To this end, we
exploit weak type−(1, 1) estimates, the proof of which involves a duality argument,
as well as the Sobolev estimates for parabolic equations with constant coefficients.
See Lemma 2.7 in Section 2. We then adapt Campanato′s idea in the Lp setting
for some p ∈ (0, 1). Compared to the Dirichlet case considered in [8], under the

conormal boundary condition the proof of the C̊1/2,1 regularity of the solution near
the corner {t = 0} × ∂Ω is more intricate. We use a suitable extension argument
which relies on the fact that g defined in Theorem 1.1 satisfies the compatibility
condition (4) and the uniformly Dini continuous condition (5) at the corner. As the
compatibility condition (4) is a pointwise condition, the DMO condition on g is not
sufficient for the continuity of Du near the corner {0} × ∂Ω. Therefore, it seems
that (5) is also necessary.

The paper is organized as follows. In Section 2, we introduce some notation,
and function spaces, and provide some preliminary lemmas. Section 3 is devoted
to interior and boundary C̊1/2,1 estimates for the solutions. Throughout the rest of
paper, the usual summation convection over repeated indices is assumed. For non-
negative (variable) quantities A and B, we denote A . B if there exists a generic
positive constant C such that A ≤ CB. We may add subscript letters like A .a,b B
to indicate the dependence of the implicit constant C on the parameters a and b.

2. Notation and preliminary.

2.1. Basic notation. We define the standard parabolic cylinder as

C−r (X) = C−r (t, x) = (t− r2, t)×Br(x),

where Br(x) denotes the standard Euclidean ball in Rn. We use B+
r (x) to denote

Br(x) ∩ {xn > 0}. We also define the double centered cylinder as

Cr(X) =
(
t− r2, t+ r2

)
×Br(x).
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Moreover, C−r , Q−r , Br, and B+
r denote respectively C−r (X), Q−r (X), Br(x), and

B+
r (x) when their center X = (0,0) and x = 0 .

2.2. Function spaces. For any domain D ⊂ Rn+1 and p ∈ (0,∞], we shall denote
by Lp(D) the standard Lebesgue space, i.e., the set of all functions for which

‖f‖Lp(D) :=

(∫
D
|f |p

)1/p

<∞ when p <∞,

‖f‖Lp(D) := ess sup
D
|f | <∞ when p =∞.

We define the function spaces

W 1,2
p (D) =

{
u : u, ∂tu,Du,D

2u ∈ Lp(D)
}
,

H−1
p (D) = {u : u = div f + g, for some f , g ∈ Lp(D)} ,
H1
p(D) =

{
u : u,Du ∈ Lp(D), ∂tu ∈ H−1

p (D)
}
,

which are equipped with the norms

‖u‖W 1,2
p (D) := ‖u‖Lp(D) + ‖Du‖Lp(D) + ‖D2u‖Lp(D) + ‖∂tu‖Lp(D) ,

‖u‖H−1
p (D) := inf

{
‖f‖Lp(D) + ‖g‖Lp(D) : u = div f + g, f , g ∈ Lp(D)

}
,

‖u‖H1
p(D) := ‖u‖Lp(D) + ‖Du‖Lp(D) + ‖∂tu‖H−1

p (D) ,

respectively. We denote by C0,0(D) the space of all continuous functions over D.
For a constant δ ∈ (0, 1], we denote

[u]Cδ/2,δ(D) = sup
X,Y ∈D
X 6=Y

|u(X)− u(Y )|
|X − Y |δ

, ‖u‖Cδ/2,δ(D) = [u]Cδ/2,δ(D) + sup
D
|u|.

By Cδ/2,δ(D) we denote the space of all functions u for which ‖u‖Cδ/2,δ(D) < ∞.

Let C̊1/2,1(D) be the set of all functions u ∈ C1/2,1(D) for which Du ∈ C0,0(D) and

|u(t, x)− u(s, x)|
|t− s|1/2

→ 0 as |t− s| → 0 for (t, x), (s, x) ∈ D.

2.3. Preliminary lemmas. First, we state Sobolev-Morrey embedding theorems
in the parabolic setting. The first one is a special case of [19, Lemma 3.3, §II. p.
80]. For the second lemma, we refer the reader to [16, Lemma 8.1].

Lemma 2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume u ∈W 1,2
q (ΩT ).

(i) If 1 ≤ q < (n + 2)/2, then u ∈ Lp (ΩT ), where 1/p = 1/q − 2/(n + 2), and we
have

‖u‖Lp(ΩT ) ≤ C‖u‖W 1,2
q (ΩT ).

(ii) If q > (n+ 2)/2, then u ∈ Cα/2,α (ΩT ) and

‖u‖Cα/2,α(ΩT ) ≤ C‖u‖W 1,2
q (ΩT ),

where

α =

{
2− n+2

q if q < n+ 2,

1− ε ∀ ε ∈ (0, 1), if q ≥ n+ 2.

(iii) If 1 ≤ q < n + 2, then Du ∈ Lp (ΩT ), where 1/p = 1/q − 1/(n + 2), and we
have

‖Du‖Lp(ΩT ) ≤ C‖u‖W 1,2
q (ΩT ).



4572 HONGJIE DONG AND XINGHONG PAN

(iv) If q > n+ 2, then Du ∈ Cα/2,α (ΩT ), where α = 1− (n+ 2)/q, and we have

‖Du‖Cα/2,α(ΩT ) ≤ C‖u‖W 1,2
q (ΩT ).

Here, C is a constant depending only on n, q, Ω, and T .

Lemma 2.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume u ∈ H1
q (ΩT ).

(i) If 1 ≤ q < n+ 2, then u ∈ Lp (ΩT ), where 1/p = 1/q − 1/(n+ 2), and we have

‖u‖Lp(ΩT ) ≤ C‖u‖H1
q(ΩT ).

(ii) If q > n+ 2, then u ∈ Cα/2,α (ΩT ), where α = 1− (n+ 2)/q, and we have

‖u‖Cα/2,a(ΩT ) ≤ C‖u‖H1
q(ΩT ).

Here, C is a constant depending only on n, q, Ω, and T .

Next we introduce a trace theorem in the cylindrical domain ΩT , which is a
natural extension of that in a space domain.

Lemma 2.3. Let Ω ⊂ Rn be a bounded Lipschitz domain and denote (0, T ) × ∂Ω
by ∂ΩT . Assume u ∈ H1

q (ΩT ) for 1 < q < +∞. Then there exists a bounded linear
operator

L : H1
q(ΩT )→ Lp(∂ΩT )

such that for each u ∈ H1
q (ΩT ),

(i) If 1 < q < n+ 2,

‖Lu‖Lp(∂ΩT ) ≤ C‖u‖H1
q(ΩT ), ∀ p ∈

[
q,

(n+ 1)q

n+ 2− q

]
;

(ii) if q ≥ n+ 2,

‖Lu‖Lp(∂ΩT ) ≤ C‖u‖H1
q(ΩT ), ∀ p ∈ [q,+∞)

with the constant C depending on q, p, n, and ΩT .

Proof. The proof is a modification of the classical trace theorem in a space domain.
See for example, [13, p 274, Theorem 1]. We only consider Case (i) for 1 < q < n+2,
as Case (ii) follows from Case (i) and Hölder’s inequality. We also only need to
consider the endpoint situation p = (n+ 1)q/(n+ 2− q), since the other situations
can be obtained by simply using Hölder’s inequality.

1. Assume first u ∈ C1(ΩT ). Let us first suppose that x0 ∈ ∂Ω and ∂Ω is flat
near x0, lying in the plane {xn = 0}. Assume that

∂Ω ∩B1/2(x0) = {xn = 0} ∩B1/2(x0)

Take a cutoff function ζ ∈ C∞c (B1(x0)) with ζ ≥ 0 in B1(x0) and ζ ≡ 1 in B1/2(x0).
Denote by Γ the portion of ∂Ω within B1/2(x0).
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Set x′ = (x1, . . . , xn−1) ∈ Rn−1 = {xn = 0}. Then with p = (n+ 1)q/(n+ 2− q),

∫ T

0

∫
Γ

|u|p dx′dt ≤
∫ T

0

∫
{xn=0}

ζ|u|p dx′dt

= −
∫ T

0

∫
B+

1 (x0)

(ζ|u|p)xn dxdt

= −
∫ T

0

∫
B+

1 (x0)

|u|pζxn + p|u|p−1(sgnu)uxnζ dxdt

≤ C

(∫ T

0

∫
B+

1 (x0)

|u|
(n+2)q
n+2−q dxdt

)n+1
n+2

+ C

(∫ T

0

∫
B+

1 (x0)

|Du|q dxdt

)1/q (∫ T

0

∫
B+

1 (x0)

|u|(p−1) q
q−1 dxdt

)1−1/q

= C

(∫ T

0

∫
B+

1 (x0)

|u|
(n+2)q
n+2−q dxdt

)n+1
n+2

+ C

(∫ T

0

∫
B+

1 (x0)

|Du|q dxdt

)1/q (∫ T

0

∫
B+

1 (x0)

|u|
(n+2)q
n+2−q dxdt

)1−1/q

≤ C‖u‖pH1
q(ΩT ),

(6)

where in the fourth and fifth lines of the above inequality, we used Hölder’s inequal-
ity and in the last line, we used Lemma 2.2.

2. If x0 ∈ ∂Ω, but ∂Ω is not flat near x0, we as usual flatten the boundary near
x0 to obtain the setting above. We give the details below.

Without loss of generality, under a linear transform of the coordinates, we assume
that near x0, locally ∂Ω can be expressed by xn = Φ(x′), where Φ(x′) is a Lipschitz
function and xn0 = Φ(x′0). We make the following bi-Lipschitz changes of variables

y = (y′, yn) = Φ(x) := (x′, xn − Φ(x′))

and set ũ(t, y) := u(t, x). It is easy to see that such change of variables maps the
neighborhood of ∂Ω near x0 to the neighborhood {yn = 0} near y0 = (x′0, 0) and
detDΦ = 1. Now set Γ := Φ−1(B1/2(y0) ∩ {yn = 0}).

Applying the estimate (6) and changing variables, we have

∫ T

0

∫
Γ

|u(t, x)|p dSdt

=

∫ T

0

∫
B1/2(y0)∩{yn=0}

|ũ(t, y′, 0)|p
√

1 + |Φx′ |2 dy′dt

≤ C
∫ T

0

∫
B1/2(y0)∩{yn=0}

|ũ(t, y′, 0)|p dy′dt,
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which is further bounded by

≤ C

(∫ T

0

∫
B+

1 (y0)

|ũ|
(n+2)q
n+2−q dydt

)n+1
n+2

+ C

(∫ T

0

∫
B+

1 (y0)

|Dũ|q dydt

)1/q (∫ T

0

∫
B+

1 (y0)

|ũ|
(n+2)q
n+2−q dydt

)1−1/q

≤ C

(∫ T

0

∫
Φ−1(B+

1 (y0))

|u|
(n+2)q
n+2−q dxdt

)n+1
n+2

+ C

(∫ T

0

∫
Φ−1(B+

1 (y0))

|Du|q |DΦ−1|qdX

) 1
q
(∫ T

0

∫
Φ−1(B+

1 (y0))

|u|
(n+2)q
n+2−q dX

)1− 1
q

≤ C‖u‖pH1
q(ΩT ).

In the above computation, we used the boundedness of |Φx′ | and |DΦ−1|.
3. Since ∂Ω is compact, there exist finitely many points xi ∈ ∂Ω and open

subsets Γi ⊂ ∂Ω (i = 1, . . . , N) such that ∂Ω =
⋃N
i=1 Γi and

‖u‖Lp((0,T )×Γi) ≤ C‖u‖H1
q(ΩT ) (i = 1, . . . , N).

Consequently, if we write

Lu := u |∂ΩT ,

then

‖Lu‖Lp(∂ΩT ) ≤ C‖u‖H1
q(ΩT ) (7)

for some appropriate constant C, which does not depend on u.
4. Inequality (7) holds for u ∈ C1(ΩT ). Assume now u ∈ H1

q(ΩT ). Then there

exist functions um ∈ C∞(ΩT ) converging to u in H1
q(ΩT ). According to (7), we

have

‖Lum − Lul‖Lp(∂ΩT ) ≤ C ‖um − ul‖H1
q(ΩT ) , (8)

so that {Lum}∞m=1 is a Cauchy sequence in Lp(∂ΩT ). We define

Lu := lim
m→∞

Lum

with the limit taken in Lp(∂ΩT ). According to (8), this definition does not depend
on the particular choice of smooth functions approximating u. The lemma is proved.

It should be clear that if g is uniformly Dini continuous, then it is of Dini mean
oscillation and ωg(r) ≤ %g(r). It is worthwhile to note that if Ω is such that for any

x ∈ Ω,

|Ωr(x)| ≥ A0r
n, ∀r ∈ (0,diam Ω] (A0 is a positive constant) (9)

and if g is of Dini mean oscillation, then g is uniformly continuous with a modulus
of continuity determined by ωg.

Lemma 2.4. Let Ω satisfy the condition (9). If f is uniformly Dini continuous
and g is DMO in ΩT , then fg is DMO in ΩT .

The proof of Lemma 2.4 is similar with that in [6, Lemma 2.6]. Here we omit
the details.
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Lemma 2.5 (Lemma 2.7 of [11]). Let ω be a nonnegative bounded function. Suppose
there exist c1, c2 > 0 and 0 < κ < 1 such that

c1ω(t) ≤ ω(s) ≤ c2ω(t) whenever κt ≤ s ≤ t and 0 < t < r.

Then, we have
∞∑
i=0

ω
(
κir
)
.
∫ r

0

ω(t)

t
dt.

Proof. The proof follows immediately from the comparison principle for Riemann
integrals.

Next we assume that D := (a, b)×B is a cylindrical domain in Rn+1, where B is
a bounded and smooth domain in Rn.

Lemma 2.6. Let T be a bounded linear operator from L2(D) to L2(D). Suppose
that there are constants c > 1 and C > 0 such that for any Y ∈ D and 0 < r < 1/2,
we have ∫

D\Ccr(Y )

|T b| ≤ C
∫
C−r (Y )∩D

|b|

whenever b ∈ L2 (D) is supported in C−r (Y ) ∩ D and
∫
D b = 0. Then, for any

f ∈ L2(D) and γ > 0, we have

|{X ∈ D : |Tf(X)| > γ}| ≤ C ′

γ

∫
D
|f |,

where C ′ = C ′(n, c, C,B) is a constant.

Proof. We refer to Stein [22, p. 22], where the proof is based on the Calderón-
Zygmund decomposition and the domain is assumed to be the whole space. In our
case, we can modify the proof there by using the “dyadic cubes” decomposition of
D. See Christ [3, Theorem 11] and [7, Lemma 4.1].

Lemma 2.7. Let Ā = (āij) be a constant matrix satisfying (2). Consider the
operator P0 defined by

P0u := ∂tu−Di(ā
ijDju).

For f = (f1, . . . , fn) ∈ L2(D), let u ∈ H1
2(D) be the weak solution to

P0u = div f in D,
−Ā∇u · ν = f · ν on (a, b)× ∂B,

u = 0 on {t = a} × B,
where ν is the unit outward normal vector on ∂B. Then for any γ > 0, we have

|{X ∈ D : |Du(X)| > γ}| .n,λ,D,B
1

γ

∫
D
|f |.

Proof. The proof is a modification of [8, Lemma 3.6]. Since the map T : f 7→ Du
is a bounded linear operator on L2(D), it suffices to show that T satisfies the
hypothesis of Lemma 2.6. We set c = 2. Fixing Y ∈ D and 0 < r < 1/2, let
b ∈ L2(D) be supported in C−r (Y ) ∩ D with mean zero. Let u ∈ H1

2(D) be the
unique weak solution of

P0u = div b in D,
−Ā∇u · ν = b · ν on (a, b)× ∂B,

u = 0 on {t = a} × B.
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For any R ≥ 2r such that D\CR(Y ) 6= ∅ and g ∈ C∞c ((C2R(Y )\CR(Y )) ∩ D), let
v ∈ H1

2(D) be a weak solution of
P ∗0 v = div g in D,

−ĀT∇v · ν = g · ν on (a, b)× ∂B,
v = 0 on {t = b} × B,

where P ∗0 := −∂t + Di(ā
jiDj) is the adjoint operator of P0. By the definition of

weak solutions and the properties of b, we have the identity∫
D
Du · g =

∫
D
b ·Dv =

∫
C−r (Y )∩D

b ·
(
Dv −DvC−r (Y )∩D

)
.

Therefore, ∣∣∣∣∣
∫

(C2R(Y )\CR(Y ))∩D
Du · g

∣∣∣∣∣
. ‖b‖L1(C−r (Y )∩D)‖Dv − (Dv)C−r (Y )∩D‖L∞(C−r (Y )∩D)

. ‖b‖L1(C−r (Y )∩D)r[Dv]C1/2,1(C−r (Y )∩D).

(10)

Since P ∗0 v = 0 in CR(Y )∩D and v satisfies the zero conormal boundary condition
on CR(Y ) ∩ ((a, b)× ∂B), we have

R[Dv]C1/2,1(C−
R/2

(Y )∩D) ≤ C

(
−
∫
C−R (Y )∩D

|Dv|2
)1/2

. (11)

See, for instance, [18, Theorem 1.2] or [12, Theorem 2.4]. Since r ≤ R/2, inserting
(11) into (10), we get∣∣∣∣∣

∫
(C2R(Y )\CR(Y ))∩D

Du · g

∣∣∣∣∣
. ‖b‖L1(C−r (Y )∩D)

r

R
R−

n+2
2 ‖Dv‖L2(C−R (Y )∩D)

. ‖b‖L1(C−r (Y )∩D)rR
−1−n+2

2 ‖Dv‖L2(D)

. ‖b‖L1(C−r (Y )∩D)rR
−1−n+2

2 ‖g‖L2(D)

= ‖b‖L1(C−r (Y )∩D)rR
−1−n+2

2 ‖g‖L2((C2R(Y )\CR(Y ))∩D).

(12)

Therefore, by the duality, from (12) we get

‖Du‖L2((C2R(Y )\CR(Y ))∩D) 6 rR−1−n+2
2 ‖b‖L1(C−r (Y )∩D),

and thus by Hölder’s inequality, we have

‖Du‖L1((C2R(Y )\CR(Y ))∩D) . rR−1‖b‖L1(C−r (Y )∩D). (13)

Now let N be the smallest positive integer such that D ⊂ C2N+1r(Y ). By taking
R = 2r, 4r, . . . , 2Nr in (13), we have∫

D\C2r(Y )

|Du| .
N∑
k=1

2−k‖b‖L1(C−r (Y )∩D) ∼
∫
C−r (Y )∩D

|b|.

Therefore, T satisfies the hypothesis of Lemma 2.6 and the lemma is proved.
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3. Proof of Theorem 1.1. In this section, we first reduce the problem to an equa-
tion without lower-order terms and with the standard conormal boundary condition,
and derive interior estimates by using theH1

p andW 1,2
p estimates for divergence form

parabolic equations. We then prove the corresponding boundary estimates near the
lateral boundary and the bottom boundary of the domain by a modified Campanato
argument.

3.1. Interior estimates.

Proposition 1. For any open set Ω′ ⊂⊂ Ω , we have u ∈ C̊1/2,1
(

Ω′T

)
.

Proof. Since aij are in VMO in ΩT , by moving the lower-order terms to the right-
hand side of the equation, we can show that u,Du ∈ Lp (ΩT ) for any 1 < p < ∞.
Indeed, let v solve

vt −∆v = f − biDiu− cu in ΩT ,

∇v · ν = 0 on (0, T )× ∂Ω,

v = 0 on {t = 0} × Ω.

(14)

Then w := u− v satisfies
wt −Di(a

ijDjw) = Dih
i in ΩT ,

aijDjwν
i + a0u = −hiνi + g0 on (0, T )× ∂Ω,

w = 0 on {t = 0} × Ω,

(15)

where

hi := gi + aiu+
(
aij − δij

)
Djv.

As the boundary condition in (15)2 is not the standard conormal boundary condi-
tion, we argue as follows.

Since ∂Ω ∈ C1, we locally flatten the boundary so that ν = −en and the bound-
ary condition becomes (by an abuse of notation)

−
n∑
j=1

anjDjw = hn + g0 − a0u on Γ ⊂ (0, T )× {xn = 0}.

Note that if we set

h̃n(t, x) = h̃n(t, x′, xn) := hn(t, x′, xn) + g0(t, x′, 0)− a0(t, x′, 0)u(t, x′, 0),

then we have Dnh̃
n = Dnh

n. Therefore by replacing hn with h̃n, the above system
(15) becomes (after the transformation)

wt −Di(a
ijDjw) = Dih̃

i in (0, T )×B+
1 ,

−
n∑
j=1

anjDjw = h̃n on (0, T )× (∂B+
1 ∩ {xn = 0}),

w = 0 on {t = 0} ×B+
1 ,

(16)

where h̃i = hi for i = 1, 2, . . . , n − 1. This reduces the boundary condition to the
standard conormal boundary condition. Now we can use the interior and bound-
ary H1

p theory for divergence form parabolic equations and bootstrap argument to

conclude that u ∈ H1
p(ΩT ) for any p ∈ (1,∞). The details are given as follows.

Below, the default integration domain is always ΩT if it is not explicitly stated.
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Note that f − biDiu − cu in (14) belongs to Lq1 = Lq1 (ΩT ), where 1/q1 =
1/q + 1/2. By the parabolic Lp estimate, Hölder’s inequality, and the parabolic
Sobolev embedding (Lemma 2.1), we have

‖v‖Lp1 + ‖Dv‖Lp1 . ‖v‖W 1,2
q1

. ‖f‖Lq + ‖b‖Lq‖Du‖L2 + ‖c‖Lq‖u‖L2 , (17)

where
1

p1
:=

1

q1
− 1

n+ 2
=

1

q
+

1

2
− 1

n+ 2
.

Now we estimates h̃ = (h̃1, . . . , h̃n). Since there is a boundary term a0u|∂ΩT in

h̃n, we need to use the trace theorem in Lemma 2.3 to bound it. Initially we have
u ∈ H1

2(ΩT ). By choosing p = 2(n+ 1)/n in Lemma 2.3, we have

‖u‖L 2(n+1)
n

(∂ΩT ) ≤ C‖u‖H1
2(ΩT ). (18)

Therefore, by choosing p̃1 = min
{
p1, 2(n+1)/n

}
> 2, from (17), (18), and Hölder’s

inequality, we see that h̃ = (h̃1, . . . , h̃n) satisfies

‖h̃‖Lp̃1 .‖g, g0‖L∞ + ‖u‖Lp̃1 + ‖u‖Lp̃1 (∂ΩT ) + ‖Dv‖Lp̃1
.‖g, g0‖L∞ + ‖u‖L 2(n+2)

n

+ ‖u‖L 2(n+1)
n

(∂ΩT ) + ‖Dv‖Lp1

.‖g, g0‖L∞ + ‖u‖H1
2

+ ‖f‖Lq .

Then we apply the parabolic Lp estimate (see, for instance, [12] ) to w and get

‖w‖H1
p̃1
≤ C

(
‖f‖Lq + ‖g, g0‖L∞ + ‖u‖H1

2

)
,

where C is a constant depending only on n, λ, q, Ω, ∂Ω, ‖A,a, a0‖L∞ , and ‖b, c‖Lq .
Therefore, we have u,Du ∈ Lp̃1 and

‖u‖Lp̃1 + ‖Du‖Lp̃1 . ‖f‖Lq + ‖g, g0‖L∞ + ‖u‖H1
2
.

Feeding it back to the equations (14) and (16) (i.e., bootstrapping), we eventually
get u,Du ∈ Lp for any 1 < p <∞, and

‖u‖Lp + ‖Du‖Lp ≤ C
(
‖f‖Lq + ‖g, g0‖L∞ + ‖u‖H1

2

)
as claimed, with C also depending on p.

It then follows from the equation of u that u ∈ H1
p for any p ∈ (n+2, q) and thus

by the Sobolev embedding (Lemma 2.2), we particularly have u ∈ Cα/2,α (ΩT ) for
α = 1− (n+ 2)/p ∈ (0, 1). Recall that v solves (14) with f − biDiu− cu ∈ Lp (ΩT )
for p ∈ (n + 2, q). By the parabolic Lp theory for non-divergence form parabolic

equations and the Sobolev embedding (Lemma 2.1), we find Dv ∈ Cδ/2,δ (ΩT ) with

δ = 1− (n+ 2)/p. Therefore, by Lemma 2.4, we see that h̃ ∈ DMO in ΩT .
In summary, w = u − v is a weak solution of (15), where h ∈ DMO, and ωh is

completely determined by the given data (namely, n, λ,Ω, T , ωA, q, ‖f, b, c‖Lq , ωa,

ωg and ‖g, g0, a0‖L∞ . By the interior estimates in [8, Theorem 3.1], we find that

w ∈ C̊1/2,1(Ω′T ) and ‖w‖C̊1/2,1(Ω′T ) is bounded by a constant C depending only on

the above mentioned given data, and Ω′. Since v ∈ C(1+δ)/2,1+δ(Ω′T ), we see that

u ∈ C̊1/2,1(Ω′T ).

Remark 3. In the proof above, to apply the H1
p and W 1,2

p estimates for parabolic

equations, instead of the DMO condition, we only require aij to be VMO with
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respect to the x variable. See, for instance, [16]. For the interior estimate in [8,
Theorem 3.1], the leading coefficients and data only need to be in DMOx.

3.2. Boundary estimates. Next, we turn to C̊1/2,1 estimate near the lateral
boundary and the bottom boundary. Under a volume preserving mapping of lo-
cally flattening boundary

y = Φ(x) =
(
Φ1(x), . . . ,Φn(x)

)
, (detDΦ = 1),

let ũ(t, y) = u(t, x), which satisfies

ũt −Di

(
ãijDj ũ+ ãiũ

)
+ b̃iDiũ+ c̃ũ = div g̃ + f̃

with

ãij(t, y) = DlΦ
i(x)DkΦj(x)akl(t, x), ãi(t, y) = DlΦ

i(x)al(t, x),

b̃i(t, y) = DlΦ
i(x)bl(t, x), c̃(t, y) = c(t, x),

g̃i(t, y) = DlΦ
i(x)gl(t, x), f̃(t, y) = f(t, x).

Without loss of generality, we assume that the above equation is satisfied in
(−16, 0) × B, with a smooth domain B ⊂ Rn satisfying B+

4 (0) ⊂ B ⊂ B+
5 (0).

By Lemma 2.4, we see that the coefficients and data satisfy the same conditions in
(−16, 0)×B. Now write u = v+w, where v and w are as in the proof of Proposition 1
with ΩT replaced by (−16, 0)×B. By the global parabolic Lp estimate and Sobolev

embedding v ∈ C(1+δ)/2,1+δ((−16, 0) × B), it is sufficient to show that w is C̊1/2,1

near the flat lateral boundary and bottom boundary. Since a0 and g0 are uniformly
Dini continuous, it is easily seen that (4) and (5) are satisfied with h̃n in place of

g, where h̃n is defined in Section 1. Thus we are reduced to prove the following
proposition. Hereafter, for any X ∈ ∂Rn+1

+ = {xn = 0}, we write

Q−r (X) = C−r ∩ {xn > 0}+X, ∆−r (X) = C−r ∩ {xn = 0}+X.

Proposition 2. Assume that A := (aij) ∈ DMO
(
Q−4
)

and g ∈ DMO
(
Q−4
)
. Let

u ∈ H1
2

(
Q−4
)

be a weak solution of
ut −Di(a

ijDju) = div g in Q−4 ,

−A∇u · en = g · en on ∆−4 ,

u = 0 on {t = −16} ×B+
4 .

(19)

Then u ∈ C̊1/2,1
(
Q−1

)
.

Moreover, if we assume that gn satisfies the compatibility condition

gn(−16, x̄0) = 0, ∀x̄0 ∈ B4 ∩ {xn = 0}, (20)

and there exists a Dini function %gn : (0, 1] → R such that ∀ (t, x) ∈ Q−4 ∩
C1(−16, x̄0),

|gn(t, x)| = |gn(t, x)− gn(−16, x̄0)| ≤ %gn(|t+ 16, x− x̄0|), (21)

then u ∈ C̊1/2,1((−16, 0)×B+
1 ).

The rest of this subsection is devoted to the proof of Proposition 2. We shall
derive an a priori estimate of the modulus of continuity of Du by assuming that u is

in C1/2,1((−16, 0)×B+
3 ). The general case follows from a standard approximation

argument.
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We present a series of lemmas that will provide key estimates for the proof of
Proposition 2.

Lemma 3.1. Let Ā := (āij) be a constant matrix satisfying (2). Consider the
operator P0 defined by

P0u := ∂tu−Di(ā
ijDju).

Let u ∈ H1
2 be a weak solution of{

P0u = 0 in Q−r ,

Ā∇u · en = c · en on ∆−r ,
(22)

where c ∈ Rn is a constant vector. Then, for any constant vector q ∈ Rn, we have

r[Du]C1/2,1(Q−
r/2

) ≤ C
(
−
∫
Q−r

|Du− q|1/2
)2

, (23)

where C is a constant depending only on n and λ.

Proof. We set r = 1. The general case follows from the scaling. First we make a
linear transformation in the space-variable to reduce the conormal boundary con-
dition in (22) to the Neumann boundary condition. Let Oy = x, where O is the
following invertible matrix

O =

 En−1

an1

...
an,n−1

0 · · · 0 ann

 ,
where En−1 is the n − 1 dimensional unit matrix. Note that this linear transfor-
mation maps {x | xn = 0} to {y | yn = 0}. The inverse matrix O−1 of O is given
by

O−1 =

 En−1

−an1/ann

...
−an,n−1/ann

0 · · · 0 1/ann

 .
Define ũ(y) := u(Oy) = u(x). By a direct calculation, we see that ũ(y) satisfies{

∂tũ−Di(ã
ijDj ũ) = 0 in Q̃−1 ,

Dnũ = c · en on ∆−1 ,

where (ãij) = O−1ĀO−T , and Q̃−1 = O−1(Q−1 ). By using a covering argument, for

simplicity, we may assume in the proof below that Q̃−1 = Q−1 .
First using the result in [8, Lemma 4.15] (reverse the time there), for any qn ∈ R,

we have

[Dnũ]C1/2,1(Q−
1/2

) ≤ C

(
−
∫
Q−1

|Dnũ− qn|1/2
)2

. (24)

Then for any qk ∈ R and k = 1, 2, . . . , n− 1, vk := Dkũ− qk satisfies{
∂tv

k −Di(ã
ijDjv

k) = 0 in Q−1 ,

Dnv
k = 0 on ∆−1 .
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By using the W 1,2
p estimate for parabolic equations with constant coefficients and

the zero Neumann boundary condition, and the Sobolev embedding in Lemma 2.1,
we have, for γ ∈ (0, 1/2], and θ ∈ [1/2, 1− γ],

‖vk‖L∞(Q−θ ) + γ[vk]C1/2,1(Q−θ ) ≤ Cγ
−n+2

2 ‖vk‖L2(Q−θ+γ), (25)

where C is independent of θ and γ. Also it is easily seen that

‖vk‖L2(Q−θ+γ) ≤ ‖v
k‖3/4
L∞(Q−θ+γ)

‖vk‖1/4
L1/2(Q−θ+γ)

. (26)

We define
Mθ := ‖vk‖L∞(Q−θ ) + [vk]C1/2,1(Q−θ ).

Inserting (26) into (25), we get

Mθ ≤ Cγ−1−n+2
2 M

3/4
θ+γ‖v

k‖1/4
L1/2(Q−1 )

.

Now we choose θ0 = 1/2 and θi = θi−1 + 1/2i+2, γ = 1/2i+3 for i ≥ 1. Then the
above inequality indicates that

Mθi ≤ C2(1+n+2
2 )(i+2)M

3/4
θi+1
‖vk‖1/4

L1/2(Q−1 )
for i ≥ 0.

By iteration on i, we have

Mθ0 ≤
(
C‖vk‖1/4

L1/2(Q−1 )

)∑i
k=0(3/4)k

2(1+n+2
2 )

∑i
k=0(k+2)(3/4)kM

(3/4)i+1

θi+1
.

Note that θi ↗ 3/4 as i → +∞ and from (25), M3/4 is bounded. Then letting
i→ +∞ from the above inequality, we have

Mθ0 ≤ C‖vk‖L1/2(Q−1 ).

From the above inequality, we have

[Dkũ]C1/2,1(Q−
1/2

) = [vk]C1/2,1(Q−
1/2

) ≤ C‖v
k‖L1/2(Q−1 ) ≤ C

(
−
∫
Q−1

∣∣Dkũ− qk
∣∣1/2)2

.

(27)
Combining (24), (27), going back to the original variable x, and scaling, we get
(23). The lemma is proved.

Suppose that u is the weak solution of (19). Define

ũ(t, x) =

{
u(t, x) (t, x) ∈ Q−4 ,

0 (t, x) ∈ (−17,−16]×B+
4 .

Then ũ is defined in (−17, 0) × B+
4 . Later on, when talking about u and ũ, we

automatically take their domains to be Q−4 and (−17, 0) × B+
4 , respectively. For

simplification of notation, we denote (−17, 0)×B+
4 by Q̃−4 .

For X ∈ Q̃−4 and r > 0, define

φ(X, r) := inf
q∈Rn

(
−
∫
C−r (X)∩Q̃−4

|Dũ− q| 12
)2

and choose a vector qX,r ∈ Rn satisfying

φ(X, r) :=

(
−
∫
C−r (X)∩Q̃−4

|Dũ− qX,r|
1
2

)2

. (28)
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Lemma 3.2. Let β ∈ (0, 1). For any X̄0 = (t0, x̄0) ∈ (−16, 0) × (B3 ∩ {xn = 0})
and for 0 < ρ ≤ r ≤ 1/2, we have

φ
(
X̄0, ρ

)
.n,λ,β

(ρ
r

)β
φ
(
X̄0, r

)
+ [t0 < −16 + 4r2]%̃gn(2ρ)

+ C‖Du‖L∞(Q−2r(X̄0)∩Q−4 )ω̃A(2ρ) + Cω̃g(2ρ),

where ω̃• and %̃• are Dini functions given by (37). Here, we used the Iverson bracket
notation, i.e., [P ] = 1 if P is true and [P ] = 0 otherwise.

Proof. We fix a smooth set B ⊂ Rn satisfying B+
2/3(0) ⊂ B ⊂ B+

3/4(0) and denote

Br (x̄0) = rB + x̄0.

We divide the proof into two cases.
Case 1: t0− 4r2 ≥ −16. Then Q−2r

(
X̄0

)
∩Q−4 = Q−2r

(
X̄0

)
, ũ = u in Q−2r

(
X̄0

)
, and

φ(X̄0, r) := inf
q∈Rn

(
−
∫
Q−r (X̄0)

|Du− q| 12
)2

.

Define

āij = −
∫
Q−2r(X̄0)

aij(t, x) dxdt, ḡi = −
∫
Q−2r(X̄0)

gi(t, x) dxdt.

Next we decompose u = v + w as follows. Let w ∈ H1
2 be the weak solution of

the problem
∂tw −Di

(
āijDjw

)
= Diĝ

i in (t0 − 4r2, t0)× B2r (x̄0) ,

−āijDjwν
i = ĝiνi on (t0 − 4r2, t0)× ∂B2r (x̄0) ,

w = 0 on {t = t0 − 4r2} × B2r (x̄0) ,

where

ĝi := (aij − āij)Dju+ (gi − ḡi).
Then v := u− w satisfies{

vt −Di

(
āijDjv

)
= 0 in Q−r (X̄0),

−ānjDjv = ḡn on ∆−r (X̄0).

We apply a modified and scaled version of Lemma 2.7 to w to find that for any
γ > 0, ∣∣{X ∈ Q−r (X̄0) : |Dw(X)| > γ

}∣∣
.

1

γ

(
‖Du‖L∞(Q−2r(X̄0))

∫
Q−2r(X̄0)

|A−A|+
∫
Q−2r(X̄0)

|g − ḡ|

)
,

where we also used

Q−r (X̄0) ⊂ (t0 − 4r2, t0)× B2r(x̄0) ⊂ Q−2r(X̄0).

Then, using Hölder’s inequality, we have(
−
∫
Q−r (X̄0)

|Dw|1/2
)2

. ωA(2r)‖Du‖L∞(Q−2r(X̄0)) + ωg(2r). (29)
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Let 0 < κ < 1/2 be a number to be fixed later. Note that we have(
−
∫
Q−κr(X̄0)

∣∣∣Dv −DvQ−κr(X̄0)

∣∣∣1/2)2

≤ Nκr[Dv]C1/2,1(Q−κr(X̄0)).

Combining the above inequality and (23) of Lemma 3.1, we have(
−
∫
Q−κr(X̄0)

∣∣∣Dv −DvQ−κr(X̄0)

∣∣∣1/2)2

≤ C0κ

(
−
∫
Q−r (X̄0)

|Dv − q|1/2
)2

, ∀ q ∈ Rn,

(30)
where C0 is an absolute constant depending only on n and λ. By using the decom-
position u = v + w, we obtain from (30) that(
−
∫
Q−κr(X̄0)

∣∣∣Du−DvQ−κr(X̄0)

∣∣∣1/2)2

≤ 2

(
−
∫
Q−κr(X̄0)

∣∣∣Dv −DvQ−κr(X̄0)

∣∣∣1/2)2

+ 2

(
−
∫
Q−κr(X̄0)

|Dw|1/2
)2

≤ C0κ

(
−
∫
Q−r (X̄0)

|Du− q|1/2
)2

+ C0(1 + κ−2(n+2))

(
−
∫
Qr(X̄0)

|Dw|1/2
)2

.

(31)

Since q ∈ Rn is arbitrary, by using (29), we thus obtain

φ
(
X̄0, κr

)
≤C0κφ

(
X̄0, r

)
+ CC0

(
1 + κ−2(n+2)

)(
ωA(2r)‖Du‖L∞(Q−2r(X̄0)) + ωg(2r)

)
.

(32)

Case 2: t0−4r2 < −16. Recall that from (19) u is a weak solution of the following
problem

∂tu−Di

(
aijDju

)
= div g in (−16, t0)× B2r (x̄0) ,

−anjDju = gn on (−16, t0)× (Br (x̄0) ∩ {xn = 0}) ,
u = 0 on {t = −16} × B2r (x̄0) .

We take the even extensions of aij and g with respect to {t = −16} and still denote
them by aij and g. We note that by the triangle inequality, the DMO condition is
preserved under the even extension. Denote

g̃i = χ{t>−16}(g
i − ḡi), i = 1, . . . , n− 1, g̃n = χ{t>−16}g

n,

where

ḡi = −
∫
Q−2r(X̄0)

gi(t, x) dxdt.

Then we see that ũ is a weak solution of the following equation
∂tũ−Di

(
aijDj ũ

)
= Dig̃

i in (−17, t0)× B2r (x̄0) ,

−anjDj ũ = g̃n on (−17, t0)× (Br (x̄0) ∩ {xn = 0}) ,
ũ = 0 on {t = −17} × B2r (x̄0) .

Define

āij = −
∫
Q−2r(X̄0)

aij(t, x) dxdt.
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We then decompose ũ = ṽ + w̃ as follows. Let w̃ ∈ H1
2 be the weak solution of

the problem
∂tw̃ −Di

(
āijDjw̃

)
= Di

(
(aij − āij)Dj ũ

)
+Dig̃

i in (t0 − 4r2, t0)× B2r (x̄0) ,

−āijDjw̃ν
i = (aij − āij)Dj ũν

i + g̃iνi on (t0 − 4r2, t0)× ∂B2r (x̄0) ,

w̃ = 0 on {t = t0 − 4r2} × B2r (x̄0) .

Here we note that when t0 > −16 and 0 < r ≤ 1/2, we have t0 − 4r2 > −17. Then
ṽ := ũ− w̃ satisfies {

ṽt −Di

(
āijDj ṽ

)
= 0 in Q−r (X̄0),

−ānjDj ṽ = 0 on ∆−r (X̄0).

Again we apply Lemma 2.7 to w̃ to find that for any γ > 0,∣∣{X ∈ Q−r (X̄0) : |Dw̃(X)| > γ
}∣∣

.
1

γ

(
‖Dũ‖L∞(Q−2r(X̄0))

∫
Q−2r(X̄0)

|A−A|+
∫
Q−2r(X̄0)

|g̃i|

)
.

If we go back to the original solution u, recall the definition of g̃i and use (21), we
have ∣∣{X ∈ Q−r (X̄0) : |Dw̃(X)| > γ

}∣∣
.

1

γ
‖Du‖L∞(Q−2r(X̄0)∩Q−4 )ωA(2r) +

n−1∑
i=1

ωgi(2r) + %gn(2r).

Then, using Hölder’s inequality, we have(
−
∫
Q−r (X̄0)

|Dw̃|1/2
)2

. ωA(2r)‖Du‖L∞(Q−2r(X̄0)∩Q−4 ) +

n−1∑
i=1

ωgi(2r)+%gn(2r). (33)

Also similar to (30) in Case 1, we have(
−
∫
Q−κr(X̄0)

∣∣∣Dṽ −DṽQ−κr(X̄0)

∣∣∣1/2)2

≤ C0κ

(
−
∫
Q−r (X̄0)

|Dṽ − q|1/2
)2

, ∀ q ∈ Rn.

(34)
Combining (33) and (34), similar to (31), we have(

−
∫
Q−κr(X̄0)

∣∣∣Dũ−DṽQ−κr(X̄0)

∣∣∣1/2)2

≤ 2

(
−
∫
Q−κr(X̄0)

∣∣∣Dṽ −DṽQ−κr(X̄0)

∣∣∣1/2)2

+ 2

(
−
∫
Q−κr(X̄0)

|Dw̃|1/2
)2

≤ C0κ

(
−
∫
Q−r (X̄0)

|Dũ− q|1/2
)2

+ C0(1 + κ−2(n+2))

(
−
∫
Qr(X̄0)

|Dw̃|1/2
)2

.

Since q ∈ Rn is arbitrary, by using (33), we thus obtain

φ
(
X̄0, κr

)
≤ C0κφ

(
X̄0, r

)
+ CC0

(
1 + κ−2(n+2)

)(
ωA(2r)‖Du‖L∞(Q−2r(X̄0)∩Q−4 ) + ωg(2r) + %gn(2r)

)
.

(35)
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Combining (32) in Case 1 and (35) in Case 2, we have

φ
(
X̄0, κr

)
≤ C0κφ

(
X̄0, r

)
+ CC0

(
1 + κ−2(n+2)

)
·
(
ωA(2r)‖Du‖L∞(Q−2r(X̄0)∩Q−4 ) + ωg(2r) + %gn(2r)[t0 < −16 + 4r2]

)
.

For ∀ β ∈ (0, 1), let κ ∈ (0, 1/2) be sufficiently small so that C0κ ≤ κβ . Then, we
obtain

φ
(
X̄0, κr

)
≤ κβφ

(
X̄0, r

)
+ C

(
ωA(2r)‖Du‖L∞(Q−2r(X̄0)∩Q−4 ) + ωg(2r) + %gn(2r)[t0 < −16 + 4r2]

)
.

Note that κβ < 1. By iterating, for j = 0, 1, 2, . . ., we get

φ(X̄0, κ
jr) ≤ κjβφ(X̄0, r) + C[t0 < −16 + 4r2]

j∑
i=1

κ(i−1)β%gn(2κj−ir)

+ C‖Du‖L∞(Q−2r(X̄0)∩Q−4 )

j∑
i=1

κ(i−1)βωA(2κj−ir) + C

j∑
i=1

κ(i−1)βωg(2κj−ir).

Therefore, we have

φ(X̄0, κ
jr) ≤κjβφ(X̄0, r) + C[t0 < −16 + 4r2]%̃gn(2κjr)

+ C‖Du‖L∞(Q2r(X̄0)∩Q−4 )ω̃A(2κjr) + Cω̃g(2κjr),
(36)

where the Dini function f̃• (for f = ω or %) is given by

f̃•(t) =

∞∑
i=1

κiβ
(
f•
(
κ−it

) [
κ−it ≤ 1

]
+ f•(1)

[
κ−it > 1

])
. (37)

We remark that ω̃•(t) and %̃•(t) are Dini functions. See [4, Lemma 1].
Note that for any ρ satisfying 0 < ρ ≤ r, if we set j to be the integer satisfying

κj+1 < ρ/r ≤ κj . Then by (36) we get

φ
(
X̄0, ρ

)
≤ κ−β

(ρ
r

)β
φ
(
X̄0, κ

−jρ
)

+ C[t0 < −16 + 4r2]%̃gn(2ρ)

+ C‖Du‖L∞(Q−2r(X̄0)∩Q−4 )ω̃A(2ρ) + Cω̃g(2ρ)

≤ κ−β−2(n+2)
(ρ
r

)β
φ
(
X̄0, r

)
+ C[t0 < −16 + 4r2]%̃gn(2ρ)

+ C‖Du‖L∞(Q−2r(X̄0)∩Q−4 )ω̃A(2ρ) + Cω̃g(2ρ)

and

φ
(
X̄0, ρ

)
.
(ρ
r

)β
φ
(
X̄0, r

)
+ [t0 < −16 + 4r2]%̃gn(2ρ)

+ C‖Du‖L∞(Q−2r(X̄0)∩Q−4 )ω̃A(2ρ) + Cω̃g(2ρ).

The lemma is proved.

Lemma 3.3. Let β ∈ (0, 1). For any X0 ∈ (−16, 0)×B+
3 and 0 < ρ ≤ r ≤ 1/5, we

have

φ (X0, ρ) .n,λ,βρ
βr−β−n−2‖Du‖L1(C−3r(X0)∩Q−4 ) + [t0 < −16 + 16r2]%̂gn(ρ)

+ ‖Du‖L∞(C−5r(X0)∩Q−4 )ω̂A(ρ) + ω̂g(ρ),
(38)
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where f̂•(t) (for f = ω or %) is a Dini function defined by

f̂•(t) := sup
s∈[t,1]

(
t

s

)β
f̃•(s) (0 < t ≤ 1). (39)

Proof. In this proof, we shall denote

X0 = (t0, x0) =
(
t0, x

1
0, x

2
0, . . . , x

n
0

)
and X̄0 = (t0, x̄0) =

(
t0, x

1
0, . . . , x

n−1
0 , 0

)
.

First, we note that for θ ≤ 5, Q−θr
(
X̄0

)
∩ Q̃−4 = Q−θr

(
X̄0

)
and

φ
(
X̄0, θr

)
≤

(
−
∫

Q−θr(X̄0)

|Dũ| 12
)2

.n,θ r
−n−2‖Du‖L1(Q−θr(X̄0)∩Q−4 ). (40)

There are three possibilities.
(i) ρ ≤ r ≤ xn0 . Since Br (x0) ⊂ B+

4 , we observe that φ (X0, ρ) is equal to that
introduced in [8, Section 3.2], which satisfies [8, (3.15)]. Also as (40), we have

φ (X0, r) ≤

(
−
∫
C−r (X̄0)∩Q−4

|Du| 12
)2

. r−n−2‖Du‖L1(C−r (X0)∩Q−4 ).

Thus, by the same argument as in deriving [8, (3.15)], we have

φ (X0, ρ) .
(ρ
r

)β
φ (X0, r) + ‖Du‖L∞(C−r (X0)∩Q−4 )ω̃A(ρ) + ω̃g(ρ)

.
(ρ
r

)β
r−n−2‖Du‖L1(C−r (X0)∩Q−4 ) + ‖Du‖L∞(C−r (X0)∩Q−4 )ω̃A(ρ) + ω̃g(ρ).

(41)
Note that for [8, (3.15)], we only need A and g to be in DMO with respect to x.

(ii) xn0 ≤ ρ ≤ r. Since C−ρ (X0) ∩ Q̃−4 ⊂ Q
−
2ρ(X̄0) ∩ Q̃−4 , we have

φ (X0, ρ) =

(
−
∫
C−ρ (X0)∩Q̃−4

∣∣Dũ− qX0,ρ

∣∣ 12)2

≤

(
−
∫
C−ρ (X0)∩Q̃−4

∣∣Dũ− qX̄0,2ρ

∣∣ 12)2

≤ C

(
−
∫
Q−2ρ(X̄0)∩Q̃−4

∣∣Dũ− qX̄0,2ρ

∣∣ 12)2

= Cφ
(
X̄0, 2ρ

)
.

(42)
Therefore, by Lemma 3.2 and (40), we have

φ (X0, ρ) .

(
2ρ

2r

)β
φ
(
X̄0, 2r

)
+ [t0 < −16 + 16r2]%̃gn(4ρ)

+ ‖Du‖L∞(Q−4r(X̄0)∩Q−4 )ω̃A(4ρ) + ω̃g(4ρ)

.ρβr−β−n−2‖Du‖L1(Q−2r(X̄0)∩Q−4 ) + [t0 < −16 + 16r2]%̂gn(ρ)

+ ‖Du‖L∞(Q−4r(X̄0)∩Q−4 )ω̂A(ρ) + ω̂g(ρ),

(43)

where we used the fact

ω̃•(4ρ) 6 4βω̂•(ρ), %̃•(4ρ) 6 4β %̂•(ρ)

in the last step since 4ρ ≤ 1.
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(iii) ρ ≤ xn0 ≤ r. Take R = xn0 . Since C−R (X0) ⊂ Q−2R(X̄0), we have (42) with R
in place of ρ. Therefore, by [8, (3.15)] and Lemma 3.2, we get

φ (X0, ρ) .
( ρ
R

)β
φ (X0, R) + ‖Du‖L∞(C−R (X0)∩Q−4 )ω̃A(ρ) + ω̃g(ρ)

.
( ρ
R

)β
φ
(
X̄0, 2R

)
+ ‖Du‖L∞(C−R (X0)∩Q−4 )ω̃A(ρ) + ω̃g(ρ)

.
( ρ
R

)β {(2R

2r

)β
φ
(
X̄0, 2r

)
+ [t0 < −16 + 16r2]%̃gn(4R)

+‖Du‖L∞(Q−4r(X̄0)∩Q−4 )ω̃A(4R) + ω̃g(4R)
}

+ ‖Du‖L∞(Q2R(X̄0)∩Q−4 )ω̃A(ρ) + ω̃g(ρ).

Notice that from (39) for f = ω or %, we find( ρ
R

)β
f̃•(4R) 6 4β f̂•(ρ), f̃•(ρ) ≤ f̂•(ρ).

Therefore, we have

φ (X0, ρ) .ρβr−β−n−2‖Du‖L1(Q−2r(X̄0)∩Q−4 )

+ ‖Du‖L∞(Q−4r(X̄0)∩Q−4 )ω̂A(ρ) + [t0 < −16 + 16r2]%̂gn(ρ) + ω̂g(ρ).

(44)
We have thus covered all three possible cases and obtained bounds for φ (X0, ρ),

namely, (41), (43) and (44). Notice that
∣∣X0 − X̄0

∣∣ = xn0 ≤ r in Cases (ii) and (iii).
Therefore, we have for any θ ∈ (0, 4],

Q−θr
(
X̄0

)
∩Q−4 ⊂ C

−
(θ+1)r (X0) ∩Q−4 ,

and (38) follows immediately. We note that ω̂• and %̂• are Dini functions. See
[7].

Lemma 3.4. We have

‖Du‖L∞((−16,0)×B+
2 ) ≤C‖Du‖L1(Q−4 )

+ C

∫ 1

0

ω̂g(t)

t
dt+ C

∫ 1

0

%̂gn(t)

t
dt,

(45)

where C > 0 is a constant depending only on n, λ, and ωA.

Proof. For X = (t, x) ∈ Q̃−4 and 0 < r ≤ 1/5, let
{
qX,2−kr

}∞
k=0

be a sequence of

vectors in Rn as given in (28). Since we have∣∣∣qX,r − qX,r/2∣∣∣ 12 ≤ ∣∣Dũ(Y )− qX,r
∣∣ 12 +

∣∣∣Dũ(Y )− qX,r/2
∣∣∣ 12 ,

by taking average over Y ∈ C−r/2(X) ∩ Q̃−4 and then taking squares, we obtain∣∣∣qX,r − qX,r/2∣∣∣ ≤ 4n+22φ(X, r) + 2φ(X, r/2).

Then, by iteration, we get

∣∣qX,2−kr − qX,r∣∣ ≤ C k∑
j=0

φ
(
X, 2−jr

)
. (46)
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Therefore, by taking k →∞ in (46), using (38) and Lemma 2.5, we obtain∣∣Dũ(X)− qX,r
∣∣ .r−n−2‖Du‖L1(C−3r(X)∩Q−4 ) + ‖Du‖L∞(C−5r(X)∩Q−4 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+ [t < −16 + 16r2]

∫ r

0

%̂gn(t)

t
dt.

By averaging the obvious inequality∣∣qX,r∣∣ 12 ≤ ∣∣Dũ(Y )− qX,r
∣∣ 12 + |Dũ(Y )| 12

over Y ∈ C−r (X) ∩ Q̃−4 and taking square, we get

∣∣qX,r∣∣ ≤ 2φ(X, r) + 2

(
−
∫
Cr(X)∩Q̃4

|Dũ| 12
)2

.

Combining these together and using

φ(X, r) ≤

(
−
∫
C−r (X)∩Q̃−4

|Dũ| 12
)2

. r−n−2‖Du‖L1(C−r (X)∩Q−4 ),

we obtain

|Dũ(X)| .r−n−2‖Du‖L1(C−3r(X)∩Q−4 ) + ‖Du‖L∞(C−5r(X)∩Q−4 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+ [t < −16 + 16r2]

∫ r

0

%̂gn(t)

t
dt.

Now, taking the supremum for X ∈ C−r (X0) ∩Q−4 , where X0 ∈ (−16, 0)×B+
3 and

r ≤ 1/5, we have

‖Du‖L∞(C−r (X0)∩Q−4 )

≤ Cr−n−2‖Du‖L1(C−4r(X0)∩Q−4 ) + C‖Du‖L∞(C−6r(X0)∩Q−4 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+

∫ r

0

%̂gn(t)

t
dt.

We fix r0 < 1/5 such that for any 0 < r ≤ r0,

C

∫ r

0

ω̂A(t)

t
dt ≤ 1

3n+2
.

Then, we have for any X0 ∈ (−16, 0)×B+
3 and 0 < r ≤ r0 that

‖Du‖L∞(C−r (X0)∩Q−4 )

≤ 3−n−2‖Du‖L∞(C−6r(X0)∩Q−4 ) + Cr−n−2‖Du‖L1(C−4r(X0)∩Q−4 )

+

∫ r

0

ω̂g(t)

t
dt+

∫ r

0

%̂gn(t)

t
dt.

For k = 1, 2, . . ., denote rk = 3 − 21−k. Note that rk+1 − rk = 2−k for k ≥ 1
and r1 = 2. For X0 ∈ (−16, 0) × B+

rk
and r = 2−k−3, we have C−6r (X0) ∩ Q−4 ⊂
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(−16, 0) × B+
rk+1

. We take k0 sufficiently large such that 2−k0−3 ≤ r0. It then
follows that for any k ≥ k0,

‖Du‖L∞((−16,0)×B+
rk) ≤C2k(n+2)‖Du‖L1(Q−4 ) + 3−n−2‖Du‖L∞((−16,0)×B+

rk+1)

+ C

∫ 1

0

ω̂g(t)

t
dt+

∫ 1

0

%̂gn(t)

t
dt.

By multiplying the above by 3−k(n+2) and then summing over k ≥ k0, we reach
∞∑

k=k0

3−k(n+2)‖Du‖L∞((−16,0)×B+
rk)

≤ C‖Du‖L1(Q−4 ) +

∞∑
k=k0

3−(k+1)(n+2)‖Du‖L∞((−16,0)×B+
rk+1)

+ C

∫ 1

0

ω̂g(t)

t
dt+

∫ 1

0

%̂gn(t)

t
dt.

Since we assume that u ∈ C1/2,1((−16, 0)×B+
3 ), the summations on both sides

are convergent and we obtain (45) after absorbing the summation on the right-hand
side to the left-hand side.

Remark 4. By the same proof as that in Lemma 3.4, we have

‖Du‖L∞(Q−3 ) ≤C‖Du‖L1(Q−4 ) + C

∫ 1

0

ω̂g(t)

t
dt.

Lemma 3.5. Let β ∈ (0, 1). For any X0 ∈ (−16, 0) × B+
3 and 0 < r ≤ 1/5, we

have ∣∣Du(X0)− qX0,r

∣∣
.n,λ,β r

β‖Du‖L1(C−
3/5

(X0)∩Q−4 ) + ‖Du‖L∞(C−1 (X0)∩Q−4 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+ [t0 < −15]

∫ r

0

%̂gn(t)

t
dt.

Proof. Let
{
qX0,2−kr

}∞
k=0
∈ Rn be as in the proof of Lemma 3.4. By taking k →∞

in (46), we get∣∣Du (X0)− qX0,r

∣∣ . ∞∑
k=0

∣∣qX0,2−kr − qX0,2−k−1

∣∣ . ∞∑
k=0

φ
(
X0, 2

−kr
)
.

Note that by taking 2−kr and 1/5 in place of ρ and r in (38), we have

φ(X0, 2
−kr) .2−kβrβ‖Du‖L1(C−

3/5
(X0)∩Q−4 ) + ‖Du‖L∞(C−1 (X0)∩Q−4 )ω̂A(2−kr)

+ ω̂g(2−kr) + [t0 < −15]%̂gn(2−kr).
(47)

Therefore, the lemma follows from Lemma 2.5.

Proof of Proposition 2. Now we are ready to give the C̊1/2,1 estimate of u. We only

prove that u ∈ C̊1/2,1((−16, 0)×B+
1 ) under the additional assumptions (20) and

(21) besides A and g are in DMO(Q−4 ) as the other case is simpler, and can be
proved in the same way.
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For any X,Y ∈ (−16, 0)×B+
1 , we have

|Du(X)−Du(Y )| ≤
∣∣Du(X)− qX,r

∣∣+
∣∣qX,r − qY,r∣∣+

∣∣Du(Y )− qY,r
∣∣ .

In the case when |X − Y | < 1/2, we set r = 2|X − Y | and apply Lemma 3.5 to get∣∣Du(X)− qX,r
∣∣+
∣∣Du(Y )− qY,r

∣∣
. rβ‖Du‖L1((−16,0)×B+

2 ) + ‖Du‖L∞((−16,0)×B+
2 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+

∫ r

0

%̂gn(t)

t
dt.

We take the average over Z ∈ C−r (X) ∩ C−r (Y ) ∩ Q̃−4 of the inequality∣∣qX,r − qY,r∣∣ 12 ≤ ∣∣Dũ(Z)− qX,r
∣∣ 12 +

∣∣Dũ(Z)− qY,r
∣∣ 12 ,

take the square, and apply Lemma 3.3 to get∣∣qX,r − qY,r∣∣ . φ(X, r) + φ(Y, r)

. rβ‖Du‖L1((−16,0)×B+
2 ) + ‖Du‖L∞((−16,0)×B+

2 )

∫ r

0

ω̂A(t)

t
dt

+

∫ r

0

ω̂g(t)

t
dt+

∫ r

0

%̂gn(t)

t
dt.

Combining these inequalities together and using Lemma 3.4, we obtain

|Du(X)−Du(Y )|

. ‖Du‖L1((−16,0)×B+
2 )|X − Y |

β

+

(
‖Du‖L1(Q−4 ) +

∫ 1

0

ω̂g(t)

t
dt+

∫ 1

0

%̂gn(t)

t
dt

)∫ 2|X−Y |

0

ω̂A(t)

t
dt

+

∫ 2|X−Y |

0

ω̂g(t)

t
dt+

∫ 2|X−Y |

0

%̂gn(t)

t
dt.

(48)

In the case when |X − Y | ≥ 1/2, we use

|Du(X)−Du(Y )| ≤ 2‖Du‖L∞((−16,0)×B+
1 ).

Applying Lemma 3.4 still gives (48).
Finally, by almost the same proof as that of (3.22) in [8], one gets

|u(t, x)− u(s, x)|
|t− s|1/2

→ 0 as |t− s| → 0 for (t, x), (s, x) ∈ (−16, 0)×B+
1 . (49)

Here we make a simple explanation since now x ∈ B+
1 which is slightly different

from the case x ∈ B1. For X = (t, x), we separate the discussion into two cases.
(i) x ∈ B+

1 . For fixed (t, x) ∈ (−16, 0) × B+
1 , we have Br(x) ⊂ B1 for r < xn.

By exactly the same argument of proving (3.22) in [8], we have

r−1|u(t− r2, x)− u(t, x)| ≤ C
(

oscC−r (X)Du+ ωADu(r) + ωg(r)
)

(50)

for sufficiently small r. The right-hand of the above inequality goes to zero as r → 0.
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(ii) x = (x′, 0) ∈ ∂B+
1 ∩ {xn = 0}. For any 0 < r < 1/2, we set x2r = (x′, 2r).

Then
r−1|u(t− r2, x)− u(t, x)|
≤ r−1|u(t− r2, x)− u(t− r2, x2r) + u(t, x2r)− u(t, x)|

+ r−1|u(t− r2, x2r)− u(t, x2r)|.
Using the mean value formula and (50), for sufficiently small r, we have

r−1|u(t− r2, x)− u(t, x)|

≤ 2
(
|Dnu(t− r2, x̃2r)−Dnu(t, x̂2r)|

)
+ C

(
oscC−r (t,x2r)Du+ ωADu(r) + ωg(r)

)
. oscQ−3r(X)Du+ ωADu(r) + ωg(r),

(51)
where x̃2r and x̂2r lie on the line segment connecting x and x2r.

Combining (50) and (51), we get (49). Then we finish the proof of Proportion 2
and that of Theorem 1.1.

Remark 5. The estimate (48) together with the definition of ω̂•(t) in (39) shows
that in the case when A and g are Cα/2,α functions with α ∈ (0, 1), by choosing β ∈
(α, 1), Du is a Cα/2,α function. In short, we recover the classical Schauder estimates
for divergence form parabolic equations with the conormal boundary condition.

Acknowledgments. The authors would like to thank the referee for careful read-
ing and very useful comments.
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