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1. Introduction

In this paper, we investigate decay and vanishing properties of axially symmetric 
solutions to the steady Navier-Stokes equations

{
(u · ∇)u + ∇p− Δu = f, inD ⊂ R3

∇ · u = 0,
(1.1)

with finite Dirichlet integral
∫
D

|∇u(x)|2dx < +∞; (1.2)

here D ⊂ R3 is a noncompact, connected and axially symmetric domain on which the 
standard Sobolev inequality:

‖φ‖L6(D) ≤ S0‖∇φ‖L2(D)

holds for all φ vanishing at infinity and for a constant S0; f is an divergence free forcing 
term; it is also required that u vanishes at infinity. These kind of solutions were studied 
in the pioneer work of Leray [10] (p. 24) by variational method and are often referred 
as D-solutions. If f = 0 and u = 0 on ∂D, then the solution (not necessarily axially 
symmetric) is called a homogeneous D-solution. The following has been an old open 
question:

Is a homogeneous D-solution equal to 0?

Despite the apparent simplicity, it is not even known if a general D-solution has any 
definite decay rate comparing with the distance function near infinity, even when the 
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domain is R3. Under some extra integral or decay assumptions for the solution u, van-
ishing results were derived by a number of authors. For instance, Galdi [8] Theorem X.9.5 
proved that if u is a homogeneous D-solution in the domain D = R3 and u ∈ L9/2(R3), 
then u = 0. This result was improved by a log factor in Chae and Wolf [4]. In the pa-
per [3], Chae proved that homogeneous D-solutions in R3 is 0 if also Δu ∈ L6/5(R3), 
a condition scaled the same way as ‖∇u‖2. Seregin [17] proved that homogeneous D-
solutions in R3 is 0 if u ∈ L6(R3) ∩BMO−1. In a recent paper [12], Kozono etc showed 
that if the vorticity w = w(x) decays faster than C/|x|5/3 at infinity, then homogeneous 
D-solutions in R3 is 0. Under certain smallness assumption, vanishing result for homo-
geneous 3 dimensional solutions in a slab was also obtained in the book [8], Chapter 
XII.

We will concentrate on the axially symmetric homogeneous D-solutions in this paper. 
The following cylindrical coordinates will be used through out: x = (x1, x2, z), θ =
tan−1 x2/x1 and r =

√
x2

1 + x2
2. er = (x1/r, x2/r, 0), eθ = (−x2/r, x1/r, 0) and ez =

(0, 0, 1). For convenience, we often write x′ = (x1, x2) and x3 = z.
Recall that if a smooth vector field u(x) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez is an 

axially symmetric solution of (1.1), then ur, uθ, uz satisfy the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)ur − (uθ)2

r
+ ∂rp = (∂2

r + 1
r
∂r + ∂2

z − 1
r2 )ur,

(ur∂r + uz∂z)uθ + uruθ

r
= (∂2

r + 1
r
∂r + ∂2

z − 1
r2 )uθ,

(ur∂r + uz∂z)uz + ∂zp = (∂2
r + 1

r
∂r + ∂2

z )uz,

∂ru
r + ur

r
+ ∂zu

z = 0.

(1.3)

The vorticity w is defined as w(x) = ∇ × u(x) = wr(r, z)er + wθ(r, z)eθ + wz(r, z)ez, 
where

wr = −∂zu
θ, wθ = ∂zu

r − ∂ru
z, wz = 1

r
∂r(ruθ).

The equations for wr, wθ, wz are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)wr − (wr∂r + wz∂z)ur = (∂2
r + 1

r
∂r + ∂2

z − 1
r2 )wr,

(ur∂r + uz∂z)wθ − ur

r
wθ − 1

r
∂z(uθ)2 = (∂2

r + 1
r
∂r + ∂2

z − 1
r2 )wθ,

(ur∂r + uz∂z)wz − (wr∂r + wz∂z)uz = (∂2
r + 1

r
∂r + ∂2

z )wz.

(1.4)

Although the solution u is independent of the angle θ in the cylindrical system, the 
aforementioned question is also wide open. However certain decay estimates exist for 
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the homogeneous D-solution u and vorticity w. More specifically, the combined result of 
Chae-Jin [6] and Weng [19] state that, for x ∈ R3,

|u(x)| ≤ C

(
log r
r

)1/2

, |wθ(x)| ≤ Cr−(19/16)− , |wr(x)| + |wz(x)| ≤ Cr−(67/64)− .

(1.5)

Here C is a positive constant and for a positive number a, we write a− as a number 
which is smaller than but close to a. These authors use line integral techniques from the 
work on 2 dimensional D-solutions by Gilbarg and Weinberger [9]. In a recent paper [14], 
among other things, Liouville property for bounded, axially symmetric solutions of the 
Navier-Stokes equation were studied. Assuming in addition that ruθ is bounded and u
is periodic in the z variable, then it was shown that u ≡ 0.

The first result of this paper is an a priori decay estimate of the velocity for general 
domains. The second result is an a priori decay estimate of the vorticity in R3, which 
improves the corresponding results (1.5) in the literature. In the process of the proof, we 
also give a very short proof of the decay estimate of the velocity in (1.5) under a more 
general condition. Next we turn to D-solutions which are periodic in the third variable 
and prove vanishing result under a reasonable condition. As a corollary we prove that 
axially symmetric D-solutions in R2 × I with suitable boundary condition is 0. Here I
is any finite interval. To the best of our knowledge, this seems to be the first vanishing 
result on D-solutions without extra integral or decay assumption on the solution.

Now let us present the main results in detail. In most of this paper, typically the 
domain D is either R3 or R2×S1. In the later case the flow is periodic in the Z direction 
with period 2π, a number chosen for convenience. Any other positive period is fine. We 
will always take f = 0 through out the paper, although the decay estimates are still 
valid for f that decays sufficiently fast.

The next three theorems are the main results of the paper, which cover a little more 
general class of solutions, namely the Dirichlet integral is allowed to be log divergent.

Theorem 1.1. Let u be a smooth axially symmetric solution to the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u · ∇)u + ∇p− Δu = 0, in R3,

∇ · u = 0,

lim
|x|→∞

u = 0,
(1.6)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,

∞∫
−∞

∫
′

(
|∇u(x)|2dx + |u(x)|6

)
dx′dx3 < C < ∞. (1.7)
R≤|x |≤2R
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Then the velocity and vorticity satisfy the following a priori bound. For a constant C0 >

0, depending only on the constant C in (1.7) such that

|u(x)| ≤ C0
(ln r)1/2√

r
;

|wθ(x)| ≤ C0
(ln r)3/4

r5/4 , |wr(x)| + |wz(x)| ≤ C
(ln r)11/8

r9/8 , r ≥ e.

Theorem 1.2. Let u be a smooth axially symmetric solution to the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u + ∇p− Δu = 0, in R2 × S1 = R2 × [−π, π],

∇ · u = 0,

u(x1, x2, z) = u(x1, x2, z + 2π),

lim
|x|→∞

u = 0,

(1.8)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,

π∫
−π

∫
R≤|x′|≤2R

|∇u(x)|2dx < C < ∞. (1.9)

Suppose also 
∫ π

−π
uθ(·, z)dz =

∫ π

−π
uz(·, z)dz = 0. Then u = 0.

Corollary 1.1. Let u be an axially symmetric solution to the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u + ∇p− Δu = 0, in R2 × [0, π],

∇ · u = 0,

uθ|z=0,π = 0, uz|z=0,π = 0, ∂zu
r|z=0,π = 0

lim
|x|→∞

u = 0,

(1.10)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,

π∫
−π

∫
R≤|x′|≤2R

|∇u(x)|2dx < C < ∞.

Then u = 0.

Remark 1.1. Clearly, if the Dirichlet integral is finite i.e. ‖∇u‖L2(R3) or ‖∇u‖L2(R2×[−π,π])
is finite, then (1.7) or (1.9) is satisfied. With some extra work, then one can reach the 
vanishing result assuming the integral in (1.9) grows at certain power of R, namely 
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∫ π

−π

∫
|x′|≤r

|∇u(x)|2dx < (1 +r)α for some suitable and positive α. In a subsequent paper 
[2], the extra condition in Theorem 1.2 that uz, uθ have zero mean in the z direction has 
been removed, under the stronger assumption that the Dirichlet integral is finite. Also 
the current method, being much different from that one, potentially allows application 
for flows with infinite Dirichlet energy such as Kolmogorov flows.

Now we outline the proof of the above results briefly. We start with the observation 
that in a dyadic ball, after scaling, the axially symmetric Navier-Stokes equation re-
sembles a 2 dimensional one. Then the Brezis − Gallouet inequality introduced in [1]
implies that a smooth vector field with finite Dirichlet energy is almost bounded. After 
returning to the original scale, one can show that u is bounded by C

( ln r
r

)1/2 for large 
r. Next by combining the equations for w in (1.4), Brezis − Gallouet inequality and 
scaling technique, we will show that, with z taken as 0 for convenience,

|wθ(r, 0)| ≤ Cr−1(ln r)1/2‖(ur, uθ, uz)‖1/2
L∞([ 34 r,

5
4 r]×[−r,r]), (1.11)

and

|wr(r, 0)| + |wz(r, 0)| ≤ Cr−1(ln r)1/2‖(ur, uz)‖1/2
L∞([ 34 r,

5
4 r]×[−r,r])

+ Cr−1/2(ln r)1/2‖(∇ur,∇uz)‖1/2
L∞([ 34 r,

5
4 r]×[−r,r]).

(1.12)

The details are given in (3.15) and (3.17). Then using the decay of u and (1.11), we can 
deduce that the decay rate of wθ is r−5/4(ln r)3/4.

In order to obtain decay of wr and wz from (1.12), we need the decay of ∇ur, ∇uz

which can be connected with wθ by the Biot −Savart law −Δ(urer+uzez) = ∇ ×(wθeθ). 
Then ∇ur, ∇uz can be written as integral representations of wθ, 

∫
R3 K(x, y)wθ(y)dy, 

where K(x, y) are Calderon-Zygmund kernels. The decay relations between ∇ur, ∇uz

and wθ are shown in Lemma 3.2. At last a combination of (1.12), decay of u and ∇ur, ∇uz

imply the decay of wr, wz in Theorem 1.1.
In the z-periodic case such that D = R2 × S1, we will show that the decay rate of 

the velocity u is r−( 3
2 )− for large r which implies that u ≡ 0 by the work [5] and [11]. 

Several steps are needed to get the decay of u. As a preparation, the Green’s function 
G on R2 × S1 for those functions whose integral on S1 is zero will be introduced and 
a series of properties of G will be displayed. The key point is that G and its gradient 
have exponential decay near infinity and the radial component of the velocity ur is the 
z derivative of the angular stream function Lθ. This rapid decay makes the difference 
between the periodic case and the full space case where the decay rate of G is polyno-
mial.

The details are done in a few steps. In step one: first we will use the Biot −Savart law
to get the representations of ur, uz by G and wθ, displayed in (4.32) and (4.38), which 
indicate that ur, uz decay in the same rate as wθ modulo a log term and an exponentially-
decay term
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‖(ur, uz)‖L∞([ 34 r,
5
4 r]×[−π,π]) ≤ C ln r‖wθ‖L∞([ 12 r,

3
2 r]×[−π,π]) + Ce−

r
64 . (1.13)

Then using Brezis −Gallouet inequality and scaling technique, we will show that

‖(wr, wz)‖L∞([ 78 r,
9
8 r]×[−π,π])

≤ C(ln r)1/2‖(ur, uz)‖L∞([ 34 r,
5
4 r]×[−π,π]).

(1.14)

Then a simple observation indicates that

‖uθ‖L∞([ 78 r,
9
8 r]×[−π,π]) ≤ ‖wr‖L∞([ 78 r,

9
8 r]×[−π,π]). (1.15)

Using almost the same technique as the one for (1.11), we can deduce

‖wθ‖L∞([ 1516 r,
17
16 r]) ≤ Cr−1/2(ln r)1/2‖(ur, uθ, uz)‖1/2

L∞([ 78 r,
9
8 r]×[−π,π]). (1.16)

The above four estimates allow us to improve the decay of u and w to r−1− after finitely 
many iterations.

In step two, we differentiate the equations of w to get the equations for ∇w. By using 
the above estimates, we can prove that the decay rate of |∇w| will be r−( 3

2 )− .
At last, we use the representations of ur, uz again and another observation for uθ to 

show that the decay rate of u is r−( 3
2 )− .

As an application of Theorem 1.2, to prove the vanishing of u in (1.10), we perform 
even extension for ur, the pressure p, and odd extension for uθ, uz with respect to the 
z variable. After such extensions, it is easy to see that (ur, uθ, uz) is a solution of (1.8)
satisfying the assumption in Theorem 1.2. Consequently, we can prove Corollary 1.1.

Using the method described above, we can further prove a similar decay estimate for 
full 3 dimensional D solutions except for a small set of angles.

Theorem 1.3. Let u be a smooth solution to the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u · ∇)u + ∇p− Δu = 0, in R3,

∇ · u = 0,

lim
|x|→∞

u = 0,
(1.17)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,

∞∫
−∞

∫
R≤|x′|≤2R

(
|∇u(x)|2dx + |u(x)|6

)
dx′dx3 < C < ∞. (1.18)

Let {er, ez, eθ} be any given cylindrical system in which x = (r, z, θ) ∈ R3. Then for 
any δ ∈ (0, 1), r ∈ [R/2, 2R], R ≥ 2, there exists a measurable set E = ER ⊂ [0, 2π] with 
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|[0, 2π] − E| < δ, and a constant C0 > 0, depending only on the constant C in (1.18)
such that

|u(r, z, θ)| ≤ C0

δ1/2

(
ln r

r

)1/2

, ∀θ ∈ E, r ≥ e, z ∈ R.

Remark 1.2. We should mention that Robert Finn [7] (p. 229), already proved that for 
any vector field having a finite Dirichlet integral and tending to a constant vector u∞ as 
|x| → ∞, then for any δ > 0, there exists a measurable set Eδ ⊂ S2, such that |Eδ| ≤ δ

and

|u− u∞| ≤ C

δ1/2|x|1/2 , for ∀x = |x|ω, ω ∈ S2\Eδ. (1.19)

This result and our result in the above theorem do not contain each other. On one hand, 
we have a worse term (ln r)1/2. On the other hand, our decay estimate is uniform in all z
variable and the Dirichlet bounded integral is replaced by the more general (1.18). The 
exception set is of two dimensional in [7] and our exception set is one dimensional. We 
wish to thank one referee for informing this.

We conclude the introduction with a list of frequently used notations. For (x, t) ∈
R3×R and r > 0, we use Qr(x, t) to denote the standard parabolic cube {(y, s) | |x −
y| < r, 0 < t −s < r2}. The symbol ... � ... stands for ... ≤ C... for a positive constant C. 
B(x, r) denotes the ball of radius r centered at x. C with or without an index denotes a 
positive constant whose value may change from line to line.

2. Mean value inequalities for velocity and decay in general domains

In this section, we present mean value inequalities for the velocity for local smooth 
D-solutions of the Navier-Stokes equation in 3 dimensions. It is helpful in proving bound-
edness of local solutions without explicit dependence on the pressure term. It is especially 
useful in proving a priori decay of D-solutions in the axially symmetric case with little 
restriction on the domain. The result is an extension of those in [16] and [21] and its 
addendum, Lemma 5.1.

To start with, let us recall a basic inequality from [16] Proposition 5, as modified 
in the addendum of [21] since the former omitted the under-braced term in (2.2) in 
the time dependent case. Since D solutions are independent of time, our proof is not 
affected.

Lemma 2.1. Let ũ be a smooth solution of the Navier-Stokes equation (2.1) in Q2r(x, t) ⊂
R3 × [0, ∞),

{
∂tũ + (ũ · ∇)ũ + ∇p− Δũ = 0,

∇ · ũ = 0.
(2.1)
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Then there exists an absolute constant λ, independent of r or u, such that

|ũ(x, t)| ≤ λ
1
r5

∫
Qr(x,t)−Qr/2(x,t)

|ũ(y, s)|dyds+λ
1
r3

∫
Br(x)−Br/2(x)

|ũ(y, t)|dy

︸ ︷︷ ︸
+ λ

∫
Qr(x,t)

K(x, t; y, s)|ũ(y, s)|2dyds,

(2.2)

where K(x, t; y, s) is defined as K(x, t; y, s) =
(
|x − y| +

√
t− s

)−4.

Next we present a mean value inequality for a solution of (1.1), which is not necessarily 
axially symmetric.

Proposition 2.1 (Mean value inequality). Let u be a solution of (1.1). Then there exists 
a sufficiently small constant δ0 and another constant C with the following property. If 
B(x, 2r0) ⊂ D and 0 < r0 ≤ δ0‖u‖−2

L6(D), then

|u(x)| ≤ C

r3
0

∫
B(x,r0)

|u(y)|dy,

where C is independent of r0.

Before the proof of Proposition 2.1, we need to recall, without proof, a short lemma 
in [20], concerning the kernel function K defined in Lemma 2.1.

Lemma 2.2. For any locally integrable scalar function u = u(y, s) and t1 > t2, set

K(u; t1, t2) � sup
x∈R3

t1∫
t2

∫
R3

(
K(x, t1; y, s) + K(x, s; y, t2)

)
|u(y, s)|dyds.

Then, for x, y, z ∈ R3 and t1 > s > τ > t2, we have

t1∫
t2

∫
R3

(
|x− y| +

√
t1 − s

)−4(|y − z| +
√
s− τ

)−4|u(y, s)|dyds

≤ CK(u; t1, t2)K(x, t1; z, τ),

(2.3)

where C is independent of t1, t2.



10 B. Carrillo et al. / Journal of Functional Analysis 279 (2020) 108504
Proof of Proposition 2.1. For simplicity we replace r0 by r in the proof. First we regard 
the solution u = u(x) as a stationary solution of the Navier-Stokes equation (2.1) in 
space-time domain D × [0, ∞). i.e. Set ũ(x, t) = u(x). Then ũ(x, t) is a solution to 
(2.1) in D × [0, ∞). Since the solution is independent of time, the two terms on the 
right hand side of line 1 in (2.2) merge into one term. Here the constant λ may be 
adjusted.

To simplify the notation, we use capital letters to denote points in space and time. 
Such as X = (x, t), Y = (y, s), Z = (z, τ). From Lemma 2.1, we have

|ũ(X)| ≤ λ
1
r5

∫
Qr(X)

|ũ(Y )|dY + λ

∫
Qr(X)

K(X;Y )|ũ(Y )|2dY . (2.4)

For Y ∈ Qr(X), we apply (2.4) in Qr/2(Y ) and get

|ũ(Y )| ≤ λ
25

r5

∫
Qr/2(Y )

|ũ(Z)|dZ + λ

∫
Qr/2(Y )

K(Y ;Z)|ũ(Z)|2dZ (2.5)

Inserting (2.5) into the second term of the right hand of (2.4), we obtain

|ũ(X)| ≤

λ
1
r5

∫
Qr(X)

|ũ(Y )|dY + λ

∫
Qr(X)

K(X;Y )|ũ(Y )|λ25

r5

∫
Qr/2(Y )

|ũ(Z)|dZdY

+λ

∫
Qr(X)

K(X;Y )|ũ(Y )|λ
∫

Qr/2(Y )

K(Y ;Z)|ũ(Z)|2dZdY

Note that Qr/2(Y ) ⊂ Q3r/2(X) when Y ∈ Qr(X). Then we have

|ũ(X)| ≤ λ
1
r5

∫
Qr(X)

|ũ(Y )|dY + λ2 25

r5 ‖ũ‖L1(Q2r(X))

∫
Qr(X)

K(X;Y )|ũ(Y )|dY

+ λ2
∫

Q3r/2(X)

∫
Qr(X)

K(X;Y )K(Y ;Z)|ũ(Y )|dY |ũ(Z)|2dZ
(2.6)

Applying Lemma 2.2, where we choose t1 = t and t2 = t − 4r2 and u = |ũ|, we can 
get

∫
K(X;Y )K(Y ;Z)|ũ(Y )|dY ≤ cK(|ũ|; t, t− 4r2)K(X;Z).
Qr(X)
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Inserting this into (2.6), we obtain

|ũ(X)| ≤ λ
1
r5 ‖ũ‖L1(Q2r(X)) + λ2 25

r5 ‖ũ‖L1(Q2r(X))K(|ũ|)

+ λ2cK(|ũ|)
∫

Q3r/2(X)

K(X;Z)||ũ(Z)|2dZ
(2.7)

where K(|ũ|) = K(|ũ|; t, t − 4r2).
For ũ(Z), we use the inequality (2.4) in Qr/4(Z):

|ũ(Z)| ≤ λ
45

r5

∫
Qr/4(Z)

|ũ(W )|dW + λ

∫
Qr/4(X)

K(Z;W )|ũ(W )|2dW.

Note that for Z ∈ Q3r/2(X), we have Qr/4(Z) ⊂ Q7r/4(X) ⊂ Q2r(X). Hence, we can 
substitute the preceding inequality into the last term of (2.7) to deduce

|ũ(X)| ≤ λ
1
r5 ‖ũ‖L1(Q2r(X)) + λ2 25

r5 ‖ũ‖L1(Q2r(X))K(|ũ|)

+λ3 45

r5 ‖ũ‖L1(Q2r(X))cK(|ũ|)
∫

Q3r/2(X)

K(X;Z)|ũ(Z)|dZ

+λ3cK(|ũ|)
∫

Q3r/2(X)

K(X;Z)K(Z;W )|ũ(Z)|dZ
∫

Qr/4(Z)

|ũ(W )|2dW.

≤ λ
1
r5 ‖ũ‖L1(Q2r(X)) + λ2 25

r5 ‖ũ‖L1(Q2r(X))K(|ũ|)

+λ3 45

r5 ‖ũ‖L1(Q2r(X))c
(
K(|ũ|)

)2
+λ3(cK(|ũ|)

)2 ∫
Q7r/4(X)

K(X;W )|ũ(W )|2dW.

Iterating this process and halving the size of cubic each time, by induction, we arrive 
at

|ũ(X)| ≤ C

r5 ‖ũ‖L1(Q2r(X))

∞∑
i=1

(
25cK(|ũ|)

)i
. (2.8)

Here the constant in the sum c may contain λ as a factor.
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Now we come to compute K(|ũ|).

K(|ũ|) = K(|ũ|; t, t− 4r2)

= sup
x∈R3

t∫
t−4r2

∫
R3

(
K(x, t; y, s) + K(x, s; y, t− 4r2)

)
|ũ(y, s)|dyds

= sup
x∈R3

t∫
t−4r2

∫
R3

(
|x− y| +

√
t− s

)−4|ũ(y, s)|dyds

+ sup
x∈R3

t∫
t−4r2

∫
R3

(
|x− y| +

√
s− t + 4r2

)−4|ũ(y, s)|dyds

≤ 2 sup
x∈R3

4r2∫
0

(∫
R3

|u(y)|6dy
)1/6(∫

R3

(
|x− y| +

√
s
)−24/5

dy
)5/6

ds

≤ 2C
(∫
R3

|u(y)|6dy
)1/6

4r2∫
0

(∫
R3

(
|y| +

√
s
)−24/5

dy
)5/6

ds

≤ 2Cr1/2‖u‖L6(R3).

(2.9)

In the above, if the domain of u is D, then R3 should be replaced by D.
We can choose a sufficiently small δ0 < 1, such that when r < δ0‖u‖−2

L6(R3), the 
following holds

25cK(|ũ|) < 1.

Then the series on the right hand side (2.8) converges, implying

|ũ(X)| ≤ C

r5 ‖ũ‖L1(Q2r(X)).

Remember that ũ(x, t) = u(x) actually is a function of x, independent of t. Then we 
have

|u(x)| ≤ C

r3

∫
B(x,r)

|u(y)|dy. � (2.10)

As an application, we prove an a priori decay estimate for general axially symmetric 
D-solutions. Notice that the domain can be any axially symmetric, noncompact one. 
When the domain is R3, better estimate exists see (1.5) (cf. [6], [19]).
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Corollary 2.1. Let D ⊂ R3 be a noncompact, connected and axially symmetric domain. 
Suppose B(x, 2) ⊂ D with |x′| = r. Then there exists a constant C independent of u and 
r such that

|u(x)| ≤ C

r1/6 ‖u‖
5/3
L6(D).

Proof. Fixing a radius r0 = min{0.5δ0‖u‖−2
L6(D), 1} such that Proposition 2.1 holds. Then

|u(x)| ≤ C

r3
0

∫
Br0 (x)

|u(y)|dy ≤ C

r
1/2
0

⎛
⎜⎝ ∫
Br0 (x)

|u(y)|6dy

⎞
⎟⎠

1/6

.

Since u is axially symmetric, using the rotation method in [13], we know that∫
Br0 (x)

|u(y)|6dy ≤ C
r0
r

∫
D

|u(y)|6dy.

Hence

|u(x)| ≤ C

r
1/2
0

Cr
1/6
0

r1/6 ‖u‖L6(D) ≤
C

r1/6 ‖u‖
5/3
L6(D). �

3. A priori decay of vorticity and velocity in the full space case

The goal of the section is to give a proof Theorem 1.1, which will take a few steps.
We will frequently use the following notations. If a, b, c are scalars, then (a, b), 

(a, b, c) denote, respectively, a 2-tuple and a 3-tuple, and |(a, b)| = |a| + |b|, etc. If 
x = (x1, x2, x3) ∈ R3, then r = |x′| =

√
x2

1 + x2
2.

3.1. Decay of ur, uθ, uz: |(ur, uθ, uz)|(x) ≤ C( ln r
r )1/2

As mentioned earlier, this bound was proven in [6], [19] when the Dirichlet integral is 
finite. Here we give a very short proof, which shows that this type of decay is typical for 
smooth axially symmetric vector fields and there is almost no use of equations.

Fixing x0 ∈ R3 such that |x′
0| = r0 is large. Without loss of generality, we can assume, 

in the cylindrical coordinates, that x0 = (r0, 0, 0), i.e. z0 = 0, θ0 = 0. Consider the scaled 
solution

ũ(x̃) = r0u(r0x̃)

which is also axially symmetric. Hence ũ can be regarded as a two variable function of 
the scaled variables r̃, ̃z. Consider the two dimensional domain
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D̃ = {(r̃, z̃) |, 1/2 ≤ r̃ ≤ 2, |z̃| ≤ 1}.

Then for ũ = ũ(r̃, ̃z), we have ũ(1, 0) = r0u(x0).
To proceed, we need the Brezis −Gallouet inequality ([1]):

Lemma 3.1. Let f ∈ H2(Ω) where Ω ⊂ R2. Then there exists a constant CΩ, depending 
only on Ω, such that

‖f‖L∞(Ω) ≤ CΩ‖f‖H1(Ω) ln1/2 (e +
‖Δf‖L2(Ω)

‖f‖H1(Ω)

)
. (3.1)

We mention that the original Brezis −Gallouet inequality can be written in the form 
of

‖f‖L∞(Ω) ≤ CΩ‖f‖H1(Ω) ln1/2 (e +
‖f‖H2(Ω)

‖f‖H1(Ω)

)
.

However, by going through the proof on p. 678 of [1], one can see that the norm ‖f‖H2(Ω)
in the log term can be replaced by ‖Δf‖L2(Ω) + ‖f‖L2(Ω). Hence (3.1) is valid.

After a simple adjustment on the constant in (3.1), considering separately the cases 
‖f‖H1(Ω) ≤ 1 and ‖f‖H1(Ω) > 1, we find that (3.1) can be replaced by

‖f‖L∞(Ω) ≤ CΩ

(
‖f‖H1(Ω) + 1

)
ln1/2 (e + ‖Δf‖L2(Ω)

)
. (3.2)

Here is the detailed proof. If ‖f‖H1(Ω) > 1, then the above inequality clearly follows 
from (3.1). If ‖f‖H1(Ω) ≤ 1, then write a = ‖f‖H1(Ω) and b = ‖Δf‖L2(Ω), we compute, 
from (3.1):

a ln1/2(e + (b/a)) ≤ a ln1/2(ae + b) + a ln1/2(1/a) ≤ C ln1/2(e + b),

which implies (3.2).
Applying the Brezis-Gallouet inequality (3.2) on D̃, we can find an absolute constant 

C such that

|ũ(1, 0)| ≤ C

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|∇̃ũ|2dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|2dr̃dz̃

⎞
⎟⎠

1/2

+ 1

⎤
⎥⎥⎦×

ln1/2

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|Δ̃ũ|2dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|2dr̃dz̃

⎞
⎟⎠

1/2

+ e

⎤
⎥⎥⎦ ,

where ∇̃ = (∂r̃, ∂z̃) and Δ̃ = ∂2
r̃ + ∂2

z̃ . By Hölder inequality and the assumption that 
1/2 ≤ r̃ ≤ 2, we see that
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|ũ(1, 0)| ≤ C

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|∇̃ũ|2r̃dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|6r̃dr̃dz̃

⎞
⎟⎠

1/6

+ 1

⎤
⎥⎥⎦×

ln1/2

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|Δ̃ũ|2r̃dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|2r̃dr̃dz̃

⎞
⎟⎠

1/2

+ e

⎤
⎥⎥⎦ .

(3.3)

Now we can scale this inequality back to the original solution u and variables r = r0r̃

and z = r0z̃ to get

r0|u(x0)| ≤ C

⎡
⎢⎣√r0

⎛
⎝ ∫

D0

|∇u|2rdrdz

⎞
⎠1/2

+
√
r0

⎛
⎝ ∫

D0

|u|6rdrdz

⎞
⎠1/6

+ 1

⎤
⎥⎦×

ln1/2

⎡
⎢⎣r3/2

0

⎛
⎝ ∫

D0

(|∂2
ru|2 + |∂2

zu|2)rdrdz

⎞
⎠1/2

+ r
−1/2
0

⎛
⎝ ∫

D0

|u|2rdrdz

⎞
⎠1/2

+ e

⎤
⎥⎦,

where

D0 = {(r, z) |r0/2 ≤ r ≤ 2r0, |z| ≤ r0}.

Since the solution has bounded C2 norm, from assumption (1.7), this proves the claimed 
decay of velocity.

3.2. Decay of w: |wθ(x)| ≤ Cr−5/4(ln r)3/4, |(wr, wz)|(x) ≤ Cr−9/8(ln r)11/8

Step 1. Proof of |wθ| ≤ Cr−5/4(ln r)3/4 and a weaker decay of (wr, wz).
Picking x0 ∈ R3 such that |x′

0| = λ is large. Without loss of generality, we can assume, 
in the cylindrical coordinates, that x0 = (λ, 0, 0), i.e. z0 = 0, θ0 = 0.

Consider the scaled solution:

ũ(x̃) = λu(λx̃) = λu(x)

w̃(x̃) = λ2w(λx̃) = λ2w(x)

where x̃ = x
λ .

First for simplification of notation, we drop the “∼” for a moment when computations 
take place under the scaled sense. Select the domains

C1 = {(r, θ, z) : 1
2 < r <

3
2 , 0 ≤ θ ≤ 2π, |z| ≤ 1},

C2 = {(r, θ, z) : 3
< r <

5
, 0 ≤ θ ≤ 2π, |z| ≤ 1}.
4 4 2
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Let ψ(y) be a cut-off function satisfying supψ(y) ⊂ C1 and ψ(y) = 1 for y ∈ C2 such 
that the gradient of ψ is bounded. Now testing the vorticity equation (1.4) with wrψ2, 
wθψ2 and wzψ2 respectively, we have

−
∫
C1

wrψ2(Δ − 1
r2 )wrdy = −

∫
C1

[
(ur∂r + uz∂z)wr · wrψ2−(wr∂r + wz∂z)ur · wrψ2] dy.

−
∫
C1

wθψ2(Δ− 1
r2 )wθdy = −

∫
C1

[
(ur∂r +uz∂z)wθ · wθψ2−ur

r
(wθ)2ψ2 + 2w

r

r
uθwθψ2

]
dy.

−
∫
C1

wzψ2Δwzdy = −
∫
C1

[
(ur∂r + uz∂z)wz · wzψ2−(wr∂r + wz∂z)uz · wzψ2] dy.

Then we have∫
C1

(
|∇(wrψ)|2 + (wr)2ψ2

r2

)
dy

=
∫
C1

(
(wr)2|∇ψ|2 − 1

2ψ
2(ur∂r + uz∂z)(wr)2

+ (wr)2ψ2∂ru
r + wrwzψ2∂zu

r
)
dy

=
∫
C1

(
(wr)2|∇ψ|2 + 1

2(wr)2(ur∂r + uz∂z)ψ2

−ur

r
(wrψ)2 − 2urwrψ∂r(wrψ) − ur∂z(wrψwzψ)

)
dy

≤ C(1 + ‖(ur, uz)‖L∞(C1))‖wr‖2
L2(C1) + 1

4
(
‖∇(wrψ)‖2

L2(C1) + ‖∇(wzψ)‖2
L2(C1)

)
+ C‖ur‖2

L∞(C1)
(
‖wr‖2

L2(C1) + ‖wz‖2
L2(C1)

)
≤ C(1 + ‖(ur, uz)‖2

L∞(C1))‖(w
r, wz)‖2

L2(C1) + 1
4‖
(
∇(wrψ),∇(wzψ)

)
‖2
L2(C1),

(3.4)

or ∫
C1

(
|∇(wrψ)|2 + (wr)2ψ2

r2

)
dy

=
∫
C1

(
(wr)2|∇ψ|2 − 1

2ψ
2(ur∂r + uz∂z)(wr)2 + (wr)2ψ2∂ru

r + wrwzψ2∂zu
r
)
dy

=
∫
C1

(
(wr)2|∇ψ|2 + 1

2(wr)2(ur∂r + uz∂z)ψ2 + (wr)2ψ2∂ru
r + wrwzψ2∂zu

r
)
dy

≤ C
(
1 + ‖(ur, uz)‖ ∞ + ‖(∇ur,∇uz)‖ ∞

)
‖(wr, wz)‖2

2 .

(3.5)
L (C1) L (C1) L (C1)
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∫
C1

(
|∇(wθψ)|2 + (wθ)2ψ2

r2

)
dy

=
∫
C1

(
(wθ)2|∇ψ|2 − 1

2(ur∂r + uz∂z)(wθ)2ψ2+ur

r
(wθ)2ψ2 − 2w

r

r
uθwθψ2

)
dy

≤ C(1 + ‖(uθ, ur)‖L∞(C1))‖(wr, wθ)‖2
L2(C1) −

1
2

∫
C1

(ur∂r + uz∂z)(wθ)2ψ2dy

≤ C(1 + ‖(uθ, ur)‖L∞(C1))‖(wr, wθ)‖2
L2(C1) + 1

2

∫
C1

(wθ)2(ur∂r + uz∂z)ψ2dy

≤ C
(
1 + ‖(ur, uθ, uz)‖L∞(C1)

)
‖(wr, wθ)‖2

L2(C1).

(3.6)

∫
C1

|∇(wzψ)|2dy

=
∫
C1

(
(wz)2|∇ψ|2 − 1

2ψ
2(ur∂r + uz∂z)(wz)2

+ wrwzψ2∂ru
z + (wzψ)2∂zuz

)
dy

=
∫
C1

(
(wz)2|∇ψ|2 + 1

2(wz)2(ur∂r + uz∂z)ψ2

− 2uzwzψ∂z(wzψ)−uz

r
wrwzψ2 − uz∂r(wrψwzψ)

)
dy

≤ C(1 + ‖(ur, uz)‖L∞(C1))‖wz‖2
L2(C1) + 1

4
(
‖∇(wrψ)‖2

L2(C1) + ‖∇(wzψ)‖2
L2(C1)

)
+ C‖uz‖2

L∞(C1)
(
‖wr‖2

L2(C1) + ‖wz‖2
L2(C1)

)
≤ C(1 + ‖(ur, uz)‖2

L∞(C1))‖(w
r, wz)‖2

L2(C1) + 1
4‖
(
∇(wrψ),∇(wzψ)

)
‖2
L2(C1),

(3.7)

or

∫
C1

|∇(wzψ)|2dy

=
∫
C1

(
(wz)2|∇ψ|2 − 1

2ψ
2(ur∂r + uz∂z)(wz)2 + wrwzψ2∂ru

z + (wzψ)2∂zuz
)
dy

=
∫
C1

(
(wz)2|∇ψ|2 + 1

2(wz)2(ur∂r + uz∂z)ψ2 + wrwzψ2∂ru
z + (wzψ)2∂zuz)

)
dy

≤ C(1 + ‖(ur, uz)‖ ∞ + ‖(∇ur,∇uz)‖ ∞ )‖(wr, wz)‖2
2 .

(3.8)
L (C1) L (C1) L (C1)
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From (3.4), (3.5) and (3.7) (3.8), we obtain

‖
(
∇wr,∇wz

)
‖2
L2(C2)

≤ C(1 + ‖(ur, uz)‖2
L∞(C1))‖(w

r, wz)‖2
L2(C1),

(3.9)

or

‖
(
∇wr,∇wz

)
‖2
L2(C2)

≤ C(1 + ‖(ur, uz)‖L∞(C1) + ‖(∇ur,∇uz)‖L∞(C1))‖(wr, wz)‖2
L2(C1).

(3.10)

From (3.6), we obtain

‖∇wθ‖2
L2(C2)

≤ C
(
1 + ‖(ur, uθ, uz)‖L∞(C1)

)
‖(wr, wθ)‖2

L2(C1).
(3.11)

Now we set

C̄2 := {(r, z) : 3
4 < r <

5
4 , |z| ≤ 1/2}.

Applying Lemma 3.1 and using (3.5), we have

‖wθ‖L∞(C̄2)

� ‖wθ‖H1(C̄2) ln1/2 (e +
‖Δwθ‖L2(C2)

‖wθ‖H1(C̄2)

)
�
(
1 + ‖wθ‖H1(C̄2)

)
ln1/2 (e + ‖Δwθ‖L2(C̄2)

)
�
(
1 + (1 + ‖(ur, uθ, uz)‖1/2

L∞(C1))‖(w
r, wθ)‖L2(C1)

)
ln1/2 (e + ‖Δwθ‖L2(C1)

)
;

(3.12)

Similarly applying Lemma 3.1 and using (3.9), we find

‖(wr, wz)‖L∞(C̄2)

� ‖(wr, wz)‖H1(C̄2) ln1/2 (e +
‖(Δwr,Δwz)‖L2(C̄2)

‖(wr, wz)‖H1(C̄2)

)
�
(
1 + ‖(wr, wz)‖H1(C̄2)

)
ln1/2 (e + ‖(Δwr,Δwz)‖L2(C̄2)

)
�
(
1 + (1 + ‖(ur, uz)‖L∞(C1))‖(wr, wz)‖L2(C1)

)
× ln1/2 (e + ‖(Δwr,Δwz)‖L2(C1)

)
.

(3.13)

Similarly applying Lemma 3.1 and using (3.10), we find
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‖(wr, wz)‖L∞(C̄2)

� ‖(wr, wz)‖H1(C̄2) ln1/2 (e +
‖(Δwr,Δwz)‖L2(C̄2)

‖(wr, wz)‖H1(C̄2)

)
�
(
1 + ‖(wr, wz)‖H1(C̄2)

)
ln1/2 (e + ‖(Δwr,Δwz)‖L2(C̄2)

)
�
(
1 + (1 + ‖(ur, uz)‖1/2

L∞(C1) + ‖(∇ur,∇uz)‖1/2
L∞(C1))‖(w

r, wz)‖L2(C1)

)
× ln1/2 (e + ‖(Δwr,Δwz)‖L2(C1)

)
.

(3.14)

Now scaling back, to the domains

C1,λ = {(r, θ, z) : λ2 < r <
3λ
2 , 0 ≤ θ ≤ 2π, |z| ≤ λ},

C2,λ = {(r, θ, z) : 3λ
4 < r <

5λ
4 , 0 ≤ θ ≤ 2π, |z| ≤ λ

2 },

we have

λ2‖wθ‖L∞(C2,λ)

�
(
1 +

(
1 + λ1/2‖(ur, uθ, uz)‖1/2

L∞(C1,λ)
)
λ1/2‖(wr, wθ)‖L2(C1,λ)

)
×

ln1/2 (λ5/2‖Δwθ‖L2(C2,λ) + e
)

� λ1/2
(
1 +

(
1 + λ1/2‖(ur, uθ, uz)‖1/2

L∞(C1,λ)
)
‖(wr, wθ)‖L2(C1,λ)

)
×

ln1/2 (λ5/2‖Δwθ‖L2(C2,λ) + e
)

(3.15)

and

λ2‖(wr, wz)‖L∞(C2,λ)

≤ Cλ1/2
(
1 +

(
1 + λ‖(ur, uz)‖L∞(C1,λ)

)
‖(wr, wz)‖L2(C1,λ)

)
× ln1/2 (λ5/2‖(Δwr,Δwz)‖L2(C2,λ) + e

)
.

(3.16)

λ2‖(wr, wz)‖L∞(C2,λ)

≤ Cλ1/2
(
1 +

(
1 + λ1/2‖(ur, uz)‖1/2

L∞(C1,λ)

+ λ‖(∇ur,∇uz)‖1/2
L∞(C1,λ)

)
‖(wr, wz)‖L2(C1,λ)

)
× ln1/2 (λ5/2‖(Δwr,Δwz)‖L2(C2,λ) + e

)
.

(3.17)

We mention here that, according to scaling and routine energy estimates, Δw can 
only grow as a polynomial order at the far field. Thus we need not to calculate the exact 
order, since ‖Δw‖L2(C ) appears in a “log” function.
2,λ
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From (3.15), (3.16), assumption (1.7) and by the a priori bound on u, we have

‖wθ‖L∞(C2,λ) ≤ Cλ−5/4(lnλ)3/4, ‖(wr, wz)‖L∞(C2,λ) ≤ Cλ−1 lnλ (3.18)

In addition, carrying out a similar estimate on the unit ball centered at x ∈ C2,λ, it is 
routine to show that

‖∇wθ‖L∞(C2,λ) ≤ Cλ−5/4(lnλ)3/4.

Step 2. Proof of |(wr, wz)| ≤ Cr−9/8(ln r)11/8.
In order to get more decay estimates of wr, wz, we will use (3.17) and further L∞

estimates of ∇ur, ∇uz. Note that according to Majda and Betozzi [15] (page 77)

∇(urer + uzez) = C · wθeθ + K ∗ (wθeθ), (3.19)

where C is a constant matrix and K is a Calderon-Zygmund kernel.
It is also easy to check that the y integral of kernels K(x, y) on any balls centered at 

x is 0.
Next we present a lemma to describe a property of the Calderon-Zygmund kernel 

when it acts on some axially symmetric functions.

Lemma 3.2. Assume that K(x, y) be a Calderon-Zygmund kernel and f is a smooth ax-
isymmetric function satisfying, for x = (x′, z) ∈ R3

|f(x)| + |∇f(x)| ≤ lnb(e + |x′|)
(1 + |x′|)a for 0 < a < 2, b > 0.

Define Tf(x) :=
∫
K(x, y)f(y)dy. Then there exists a constant c0 such that

|Tf(x)| ≤ c0
lnb+1(e + |x′|)

(1 + |x′|)a . (3.20)

Proof. Note that for the Calderon-Zygmund kernel, we have

P.V.

∫
|x−y|≤1

K(x, y)dy = 0.

So we decompose Tf(x) as follows

Tf(x) =
∫

{|x−y|≤1}

K(x, y)(f(y) − f(x))dy

+
∫

′ ′

K(x, y)f(y)dy +
∫

′ ′

K(x, y)f(y)dy

{|x−y|≥1}∩{|x −y |≥1/2} {|x−y|≥1}∩{|x −y |≤1/2}
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:=
3∑
1

Ii.

Then using mean-value inequality, we have

|I1| �
∫

{|x−y|≤1}

|K(x, y)||x− y||∇f(ξ)|dy |ξ| ∈ (min{|x|, |y|},max{|x|, |y|})

�
∫

{|x−y|≤1}

1
|x− y|3 |x− y| ln

b(e + |ξ′|)
(1 + |ξ′|)a dy

� lnb(e + |x′|)
(1 + |x′|)a

∫
{|x−y|≤1}

1
|x− y|2 dy

� lnb(e + |x′|)
(1 + |x′|)a .

(3.21)

For the term I2, we have

I2 �
∫

{|x−y|≥1}
{|x′−y′|≥1/2}

lnb(e + |y′|)
(1 + |y′|)a

+∞∫
−∞

1
(|x′ − y′| + |x3 − y3|)3

dy3dy
′

�
∫

{|x′−y′|≥1/2}

1
|x′ − y′|2

lnb(e + |y′|)
(1 + |y′|)a dy′

=
( ∫
{|x′−y′|≥1/2}
{|y′|≥2|x′|}

+
∫

{|x′−y′|≥1/2}
{1/2|x′|≤|y′|≤2|x′|}

+
∫

{|x′−y′|≥1/2}
{|y′|≤1/2|x′|}

)
1

|x′ − y′|2
lnb(e + |y′|)
(1 + |y′|)a dy′

:=
3∑
i

I2,i.

Now we estimate I2,i term by term

I2,1 �
∫

{|y′|≥max{1/3,2|x′|}}

lnb(e + |y′|)
(1 + |y′|)2+a

dy′

�
∫

{|y′|≥max{1/3,2|x′|}}

lnb(e + |y′|)
(1 + |y′|)1+a

d|y′|

� lnb(e + |x′|)
′ a

.
(1 + |x |)
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I2,2 � lnb(e + |x′|)
(1 + |x′|)a

∫
{|x′−y′|≥1/2}

{1/2|x′|≤|y′|≤2|x′|}

1
|x′ − y′|2 dy

′

� lnb(e + |x′|)
(1 + |x′|)a

∫
{1/2|x′|≤s≤3|x′|}

1
s
ds

� lnb+1(e + |x′|)
(1 + |x′|)a .

I2,3 � lnb(e + |x′|)
(1 + |x′|)2

∫
{|x′−y′|≥1/2}
{|y′|≤1/2|x′|}

1
(1 + |y′|)a dy

′

� lnb(e + |x′|)
(1 + |x′|)2

∫
{|y′|≤1/2|x′|}

1
(1 + |y′|)a−1 d|y

′|

� lnb(e + |x′|)
(1 + |x′|)a .

The above estimates indicate that

I2 � lnb+1(e + |x′|)
(1 + |x′|)a . (3.22)

For the term I3, we have

I3 �
∫

{|x−y|≥1}
{|x′−y′|≤1/2}

1
|x− y|3

lnb(e + |y′|)
(1 + |y′|)a dy

�
∫

{|x3−y3|≥1/2}
{|x′−y′|≤1/2}

1
|x− y|3

lnb(e + |y′|)
(1 + |y′|)a dy

� lnb(e + |x′|)
(1 + |x′|)a

∫
{|x′−y′|≤1/2}

∫
{|x3−y3|≥1/2}

1
(|x′ − y′| + |x3 − y3|)3

dy3dy
′

� lnb(e + |x′|)
(1 + |x′|)a .

(3.23)

Combining (3.21), (3.22) and (3.23), we get (3.20), finishing the proof of the 
lemma. �
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Now applying Lemma 3.2 to (3.19) and noting the decay rate of wθ in (3.18), we can 
get

|∇ur| + |∇uz| � r−5/4(ln r)7/4 for large r. (3.24)

Now we go back to (3.17), we can get more decay on wr, wz

|wr| + |wz| � r−3/2(r1/2r−1/4(ln r)1/4 + r(r−5/4(ln r)7/4)1/2)(ln r)1/2

� r−9/8(ln r)11/8 for large r.
(3.25)

This proves Theorem 1.1. �
3.3. Proof of Theorem 1.3, decay of full 3d solutions except for a small set

Now u is a full 3 d solution. Fixing x0 ∈ R3 such that |x′
0| = r0 is large. Without loss 

of generality, we can assume, in the cylindrical coordinates, that x0 = (r0, 0, θ). Consider 
the scaled solution

ũ(x̃) = r0u(r0x̃).

Fixing θ, then ũ can be regarded as a two variable function of the scaled variables r̃, ̃z. 
Consider the two dimensional domain

D̃ = {(r̃, z̃) |, 1/2 ≤ r̃ ≤ 2, |z̃| ≤ 1}.

Then for ũ = ũ(r̃, ̃z, θ), we have ũ(1, 0, θ) = r0u(x0).
Just as in Section 3.1, the inequality (3.3) continues to hold, namely,

|ũ(1, 0, θ)| ≤ C1

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|∇̃ũ|2(r̃, z̃, θ)r̃dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|6(r̃, z̃, θ)r̃dr̃dz̃

⎞
⎟⎠

1/6

+ 1

⎤
⎥⎥⎦×

ln1/2

⎡
⎢⎢⎣
⎛
⎜⎝∫

D̃

|Δ̃ũ|2(r̃, z̃, θ)r̃dr̃dz̃

⎞
⎟⎠

1/2

+

⎛
⎜⎝∫

D̃

|ũ|2(r̃, z̃, θ)r̃dr̃dz̃

⎞
⎟⎠

1/2

+ e

⎤
⎥⎥⎦ .

(3.26)

Here ∇̃ = (∂r̃, ∂z̃). Note that there is no integration in the θ direction. Now we can scale 
this inequality back to the original solution u and variables r = r0r̃ and z = r0z̃ to 
get
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r0|u(r0, 0, θ)|

≤ C1

⎡
⎢⎣√r0

⎛
⎝ ∫

D0

|∇u|2(r, z, θ)rdrdz

⎞
⎠1/2

+
√
r0

⎛
⎝ ∫

D0

|u|6(r, z, θ)rdrdz

⎞
⎠1/6

+ 1

⎤
⎥⎦×

ln1/2

⎡
⎢⎣r3/2

0

⎛
⎝ ∫

D0

(|∂2
ru|2 + |∂2

zu|2)rdrdz

⎞
⎠1/2

+ r
−1/2
0

⎛
⎝ ∫

D0

|u|2rdrdz

⎞
⎠1/2

+ e

⎤
⎥⎦ ,

where

D0 = {(r, z) |r0/2 ≤ r ≤ 2r0, |z| ≤ r0}.

Since the solution has bounded C2 norm, this implies

r0|u(r0, 0, θ)|

≤ C2

⎡
⎢⎣√r0

⎛
⎝ ∫

D0

|∇u|2(r, z, θ)rdrdz

⎞
⎠1/2

+
√
r0

⎛
⎝ ∫

D0

|u|6(r, z, θ)rdrdz

⎞
⎠1/6

+ 1

⎤
⎥⎦ ln1/2 r0

≤ C2
√
r0

⎛
⎜⎝

r0∫
−r0

2r0∫
r0/2

|∇u|2(r, z, θ)rdrdz

⎞
⎟⎠

1/2

ln1/2 r0.

(3.27)

Recall our assumption

2π∫
0

∞∫
−∞

∞∫
0

|∇u|2(r, z, θ)rdrdzdθ ≤ C.

Hence, for any δ ∈ (0, 1), there exists a measurable set E with |[0, 2π] − E| < δ such 
that

∞∫
−∞

∞∫
0

|∇u|2(r, z, θ)rdrdz ≤ C2

δ

for all θ ∈ E. Plugging this into (3.27), we deduce

|u(r0, 0, θ)| ≤ C

(
ln r0
δr0

)1/2

for all θ ∈ E. This proves the theorem. �
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4. z-periodic D-solutions of axisymmetric Navier-Stokes equations with the 
assumption 

∫ π

−π
uθdz =

∫ π

−π
uzdz = 0

This section is divided into three subsections. The following notations are frequently 
used from now on. For x = (x1, x2, x3) ∈ R3, we write x = (x′, x3) or x = (x′, z), and 
for y = (y1, y2, y3) ∈ R3, we write y = (y′, y3).

4.1. The Green function on R2 × S1 for functions whose integral on S1 is zero

Lemma 4.1. Let Γ̃1 and Γ2 be the standard heat kernel on S1 and R2 respectively.
(a). Then the function

G(x, y) =
∞∫
0

(Γ̃1 −
1
2π )(x3, y3, t)Γ(x′, y′, t)dt (4.1)

is well defined except when x = y.
(b). Let u and f be smooth, bounded functions on R2 × S1 such that

Δu = −f.

Suppose 
∫
S1 f(x′, x3)dx3 = 0 for all x′ ∈ R2 and f is compactly supported. Then

u(x) =
∫

R2×S1

G(x, y)f(y)dy + C.

Thus G is the Green’s function for those f .

Proof. Let S1 = [−π, π]. Define Γ̃1(t; x3, y3) := 1
2π
(
1 + 2 

∑
m∈Z+

e−m2t cos(m(x3 − y3))
)
, 

where (x3, y3) ∈ [−π, π]2. Then it is known that Γ̃1(t; x3, y3) is the heat kernel on S1, 
which means that {

Δx3 Γ̃1 − ∂tΓ̃1 = 0,

Γ̃1|t=0 = δ(x3 − y3).

For completeness we give a proof. It is easy to check that Γ̃1 satisfies the equation, we 
only check that Γ̃1|t=0 = δ(x3 − y3). For any test function ϕ(y3) ∈ C∞

0 (R),

lim
t→0

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3)

= 1
2π lim

t→0+

π∫ (
(1 + 2

∑
m∈Z+

cos(m(x3 − y3))e−m2t
)
ϕ(y3)dy3 −

1
2π

π∫
ϕ(x3)dy3
−π −π
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= 1
2π lim

n→+∞

π∫
−π

(
(1 + 2

n∑
m=1

cos(m(x3 − y3))
)
ϕ(y3)dy3 −

1
2π

π∫
−π

ϕ(x3)dy3

= 1
2π lim

n→+∞

π∫
−π

[sin(n + 1/2)(x3 − y3)]
sin x3−y3

2
ϕ(y3)dy3 −

1
2π

π∫
−π

ϕ(x3)dy3

= 1
2π lim

n→+∞

π∫
−π

sin(n + 1/2)(x3 − y3)
sin x3−y3

2

(
ϕ(y3) − ϕ(x3)

)
dy3

= 1
2π lim

n→+∞

π∫
−π

ϕ(y3) − ϕ(x3)
sin x3−y3

2
sin(n + 1/2)(x3 − y3)dy3.

Due to the fact

lim
x3→y3

ϕ(y3) − ϕ(x3)
sin x3−y3

2
= 2ϕ′(y3).

ϕ(y3)−ϕ(x3)
sin x3−y3

2
is integrable on S1. By using Riemann-Lebesgue Lemma, we can get

lim
t→0

〈Γ̃(t;x3, y3), ϕ(y3)〉 − ϕ(x3) = 0.

Now we define Γ1(t; x3, y3) = Γ̃1(t; x3, y3) − 1
2π . Then Γ1(t; x3, y3) is still a heat kernel 

for the test function ϕ(y3) with 
∫ π

−π
ϕ(y3)dy3 = 0 due to the fact

lim
t→0

〈Γ1(t;x3, y3), ϕ(y3)〉 − ϕ(x3)

= lim
t→0

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) −
1
2π

π∫
−π

ϕ(y3)dy3

= 0.

Next we construct the heat kernel on R2 × [−π, π] for bounded smooth functions 
ϕ = ϕ(y) such that

π∫
−π

ϕ(y′, y3)dy3 = 0. (4.2)

Set Γ2(t; x′, y′) = (4πt)−1e−
|x′−y′|2

4t be the heat kernel on R2. Define

Γ(t;x, y) = Γ2(t;x′, y′)Γ1(t;x3, y3). (4.3)
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Then we claim that {
ΔxΓ − ∂tΓ = 0

Γ|t=0 = δ(x, y)
(4.4)

with bounded, smooth test functions satisfying (4.2). Here the second line means 
limt→0+ Γ ∗ ϕ = ϕ.

First it is clear that

ΔxΓ − ∂tΓ

= Γ1Δ2Γ2 + Γ2Δ1Γ1 − Γ1∂tΓ2 − Γ2∂tΓ1

= 0.

Next for any bounded, smooth test function ϕ(y) satisfying (4.2), we have

lim
t→0

∫
R2×S1

Γ(t;x, y)ϕ(y)dy

= lim
t→0

∫
R

Γ2(t;x′, y′)
∫
S1

Γ1(t;x3, y3)ϕ(y′, y3)dy3dy
′

= lim
t→0

∫
R

Γ2(t;x′, y′)
∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3dy
′

= lim
t→0

∫
R

Γ2(t;x′, y′)ϕ(y′, x3)dy′ + lim
t→0

∫
R

Γ2(t;x′, y′)[−ϕ(y′, x3)

+
∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3]dy′

= ϕ(x′, x3)

= ϕ(x).

So we have proven that Γ is the heat kernel on R2 × [−π, π] for those functions whose 
integrals on S1 are zero. Now we define

G(x, y) =
∞∫
0

Γ(t;x, y)dt,

which is finite except when x = y, due the exponential decaying property of Γ1. See the 
next lemma for details. Let f be a smooth, compactly supported function on R2 × S1, 
whose integral on S1 is 0. From the above computation, it is easy to see that
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−
∫

ΔxG(x, y)f(y)dy =
∫ ∞∫

0

−ΔxΓ(t;x, y)dtf(y)dy

= −
∫ ∞∫

0

∂tΓ(t;x, y)dtf(y)dy =
∫

Γ(t;x, y)|t=0f(y)dy = f(x).

Hence

Δ[u(x) −
∫

G(x, y)f(y)dy] = 0.

Note the function u −
∫
G(x, y)f(y)dy is bounded. Therefore, the classical Liouville 

theorem implies that

u =
∫

G(x, y)f(y)dy + C.

This shows that G is the Green function on R2 × [−π, π] of those functions with its 
integral on S1 is zero. �
Lemma 4.2. Let G(x, y) be the Green function on R2 × S1 defined above. Then we have 
the following estimates: for a positive constant c0,

|G(x, y)| � 1
|x− y|e

−c0|x′−y′|, |∇G(x, y)| � 1
|x− y|2 e

−c0|x′−y′|, (4.5)

with x′ = (x1, x2) and y′ = (y1, y2).

Proof. We will prove Lemma 4.2 by dividing the estimate in two cases: |x′ − y′| > 1 and 
|x′ − y′| ≤ 1.

Case 1: |x′ − y′| > 1, we will show

|G(x, y)| + |∇G(x, y)| � e−
|x′−y′|

2 . (4.6)

From (4.1), we have

G(x, y) =
∞∫
0

(4πt)−1e−
|x′−y′|2

4t
1
π

∑
m∈Z+

e−m2t cos(m(x3 − y3))dt

= 1
4π2

∞∑
m=1

∞∫
0

t−1e−
|x′−y′|2

4t e−m2tdt cos(m(x3 − y3))

:= 1
4π2

∞∑
Im cos(m(x3 − y3)).

(4.7)
m=1
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Now we come to estimate Im. Making a variable change, it is easy to see that

Im =
∞∫
0

t−1e−
(m|x′−y′|)2

4t e−tdt

=
( m|x′−y′|

2∫
0

+
∞∫

m|x′−y′|
2

)
t−1e−

(m|x′−y′|)2
4t e−tdt

= 2
∞∫

m|x′−y′|
2

t−1e−
(m|x′−y′|)2

4t e−tdt

�
∞∫

m|x′−y′|
2

t−1e−tdt

� ln
( 1
m|x′ − y′| + 2

)
e−

m|x′−y′|
2 .

(4.8)

From (4.7) and (4.8), we have

∣∣G(x, y)
∣∣ � ∞∑

m=1
ln
( 1
m|x′ − y′| + 2

)
e−

m|x′−y′|
2

� ln
( 1
|x′ − y′| + 2

)∑
m

e−
m|x′−y′|

2 .

� ln
( 1
|x′ − y′| + 2

) e−
|x′−y′|

2

1 − e−
|x′−y′|

2

� e−
|x′−y′|

2 .

(4.9)

This finishes the proof for G(x, y).
Also from (4.7), we have

∣∣∂x3G(x, y)
∣∣ =

∣∣∣ 1
4π2

∞∑
m=1

m

∞∫
0

t−1e−
|x′−y′|2

4t e−m2tdt cos′(m(x3 − y3))
∣∣∣

�
∣∣∣ ∞∑
m=1

∞∫
0

t−
3
2 e−

|x′−y′|2
4t e−

m2t
2 dt

∣∣∣

�
∣∣∣ ∞∑
m=1

m

∞∫
t−

3
2 e−

(m|x′−y′|)2
4t e−

t
2 dt

∣∣∣ (4.10)

0
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�
∣∣∣ ∞∑
m=1

m
( ∞∫

m|x′−y′|
2

+

m|x′−y′|
2∫

0

)
t−

3
2 e−

(m|x′−y′|)2
4t e−

t
2 dt

∣∣∣

� 1
|x′ − y′|

∣∣∣ ∞∑
m=1

∞∫
m|x′−y′|

2

(t−1 + t−
1
2 )e− t

2 dt
∣∣∣

� e−
|x′−y′|

2 .

The estimate of ∂y3G(x, y) is the same as (4.10).
From (4.7), we have

∣∣∂x′,y′G(x, y)
∣∣ � ∣∣∣ ∞∑

m=1

∞∫
0

t−1 |x′ − y′|
t

e−
|x′−y′|2

4t e−m2tdt
∣∣∣

� |x′ − y′|
∣∣∣ ∞∑
m=1

m2
∞∫
0

t−2e−
(m|x′−y′|)2

4t e−tdt
∣∣∣

� |x′ − y′|
∣∣∣ ∞∑
m=1

m2
( ∞∫

m|x′−y′|
2

+

m|x′−y′|
2∫

0

)
t−2e−

(m|x′−y′|)2
4t e−tdt

∣∣∣

� 1
|x′ − y′|

∣∣∣ ∞∑
m=1

∞∫
m|x′−y′|

2

(t−1 + 1)e−tdt
∣∣∣

� e−
|x′−y′|

2 .

(4.11)

Case 2: |x′ − y′| ≤ 1, we will show there exists a positive constant c such that

|G(x, y)| ≤ 1
|x− y|e

−c|x−y|, |∇G(x, y)| ≤ 1
|x− y|2 e

−c|x−y|. (4.12)

Let Γ(t, x, y) be the heat kernel in (4.3) on R2 ×S1. The explicit formula for the heat 
kernel in R2 together with the well known global behavior of the heat kernel on S1 and 
gradient with mean 0 tell us that there exist two positive constants c1 and c2 such that

|Γ(t, x, y)| � t−3/2e−c1
|x−y|2

t e−c2t, |∇Γ(x, y, t)| � t−2e−c1
|x−y|2

t e−c2t. (4.13)

In fact one can choose c2 as any positive number less than 1/4. Readers can see, for 
example [18] for more details for the estimate of (4.13), even when S1 is replaced by 
more general compact manifold. Integrating (4.13) on t from 0 to +∞ implies (4.12).
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By choosing c0 small (c0 = 1
3 min{c, 12}) and remembering the fact |x3 − y3| ≤ 4π, we 

see that (3.11) is a direct consequence of (4.6) and (4.12). �
Lemma 4.3. Let G(x, y) be defined as above. Denote x = (r cos θ, r sin θ, z) and y =
(ρ cosφ, ρ sinφ, l), then we have the following estimates.

For |ρ − r| ≤ 1
4r,

2π∫
0

|∇G(x, y)|dφ � 1
ρ(|ρ− r| + |z − l|)e

−c0|ρ−r|. (4.14)

2π∫
0

|G(x, y)|dφ � e−c0|ρ−r| 1
r

ln
(
2 + r

|ρ− r|
)
. (4.15)

When 1
8r ≤ |ρ − r| ≤ 1

4r, we have

2π∫
0

(
|G(x, y)| + |∇G(x, y)|

)
dφ � e−c0|ρ−r|. (4.16)

Proof. Remember that x′ = (r cos θ, r sin θ), y′ = (ρ cosφ, sinφ), then we can get

|x′ − y′| =
√

ρ2 + r2 − 2ρr cos(θ − φ) θ=0====
√

(ρ− r)2 + 4ρr sin2 φ

2 .

Denote J :=
∫ 2π
0

1
|x−y|dφ and K :=

∫ 2π
0

1
|x−y|2 dφ. Next we will prove

J � 1
r

ln(2 + r

|ρ− r| ), K � 1
ρ(|ρ− r| + |z − l|) . (4.17)

Then (3.11) and (4.17) together prove (4.14), (4.15).
It is easy to see that

J �
2π∫
0

1
|x′ − y′|dφ

�
π∫

0

dφ√
(ρ− r)2 + 4ρr sin2 φ

�

π
2∫

dφ√
(ρ− r)2 + 4ρr sin2 φ

(4.18)

0
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≈

1
r

π
2∫

0

dφ√
κ2 + sin2 φ

with κ2 = |ρ− r|2
4ρr � 1

≈

1
r

( π
4∫

0

+

π
2∫

π
4

) dφ√
κ2 + sin2 φ

.

If φ ∈ [0, π4 ], sinφ ≈ φ and if φ ∈ [π4 , 
π
2 ], sinφ ≈ 1, then (4.18) implies that

J ≈

1
r

( π
4∫

0

dφ√
κ2 + φ2

+

π
2∫

π
4

dφ√
κ2 + 1

)

≈

1
r

( π
4κ∫
0

dφ

1 + φ
+ 1

)

� 1
r

ln
(
2 + 1

κ

)
� 1

r
ln
(
2 + r

|ρ− r|
)

� 1
r

ln
(
2 + r

|ρ− r|
)
.

The estimate for K in (4.17) will essentially the same as J , we omit the detail. Then 
(4.16) is a direct consequence of (4.14), (4.15) when 1

8r ≤ |ρ − r| ≤ 1
4r. �

4.2. First decay on u and w with the assumption 
∫ π

−π
uθdz =

∫ π

−π
uzdz = 0

We start with a simple

Observation.
Assume u = urer + uθeθ + uzez is a z-periodic axisymmetric solution of (1.10), then 

for r �= 0 and k ∈ N, we have

π∫
−π

∂k
r u

r(r, z)dz = 0. (4.19)

This can be seen from the formula ur = −∂zL
θ where Lθ is the angular stream 

function which is also periodic in z variable.
Alternatively, by the incompressible condition, we have

1
∂r(rur) + ∂zu

z = 0.

r
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Integrating the equation on z from −π to π implies

1
r
∂r
(
r

π∫
−π

urdz
)

= −
π∫

−π

∂zu
zdz = uz

∣∣∣π
−π

= 0

which indicates

∂r
(
r

π∫
−π

urdz
)

= 0.

Thus we have

π∫
−π

urdz = 1
r

( r∫
0

∂r̃
(
r̃

π∫
−π

urdz
)
dr̃
)

= 0.

Differentiating the above equation k times with respect to r, we prove (4.19). The rest 
of the subsection is divided into 3 steps.

Step 1. First decay of wθ.
Again we pick a point x0 ∈ R3 such that |x′

0| ≡ λ is large and carry out the scaling 
for the velocity and vorticity:

ũ(x̃) = λu(λx̃) = λu(x)

w̃(x̃) = λ2w(λx̃) = λ2w(x)

where x̃ = x
λ .

For simplification of notation, we temporarily drop the “∼” symbol when computa-
tions take place under the scaled sense. Define the domains

D1 = {(r, θ, z) : 1
2 < r <

3
2 , 0 ≤ θ ≤ 2π, z ∈ [−π

λ
,
π

λ
]}

and

D2 = {(r, θ, z) : 3
4 < r <

5
4 , 0 ≤ θ ≤ 2π, z ∈ [−π

λ
,
π

λ
]}.

Almost identical computations to (3.9) and (3.11) lead to

‖
(
∇wr,∇wz

)
‖2
L2(D2)

≤ C(1 + ‖(ur, uz)‖2
L∞(D1))‖(w

r, wz)‖2
L2(D1),

(4.20)

and
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‖∇wθ‖2
L2(D2)

≤ C
(
1 + ‖(ur, uθ, uz)‖L∞(D1)

)
‖(wr, wθ)‖2

L2(D1).
(4.21)

Comparing with the full space case in the previous section, since all functions here are 
periodic in z variable, the cut off function that leads to the above inequality only depends 
on r.

Recall the Brezis-Gallouet inequality of Lemma 3.1. Let f ∈ H2(Ω) where Ω ⊂ R2

is a piecewise smooth domain. Then there exists a constant CΩ, depending only on Ω, 
such that

‖f‖L∞(Ω) ≤ CΩ‖f‖H1(Ω) ln1/2
(
e +

‖Δf‖L2(Ω)

‖f‖H1(Ω)

)
.

Now we select the 2 dimensional domain

D̄2 := {(r, z) : 3
4 < r <

5
4 , z ∈ [−π

λ
,
π

λ
]}.

If we choose Ω = D̄2 and by scaling in the z direction only, we have

CD̄2
≤ Cλ1/2 (4.22)

where C is independent of D̄2 and λ. i.e. If f ∈ H2(D̄2), then there exists an absolute 
constant C, such that

‖f‖L∞(D̄2) ≤ Cλ1/2‖f‖H1(D̄2) ln1/2 (e +
‖Δf‖L2(D̄2)

‖f‖H1(D̄2)

)
. (4.23)

Notice that the inequality is worse than the corresponding one in the full space case by 
a factor of λ1/2.

Using (4.21) and (4.23), we deduce

‖wθ‖L∞(D̄2)

� λ1/2‖wθ‖H1(D̄2) ln1/2 (e +
‖Δwθ‖L2(D̄2)

‖wθ‖H1(D̄2)

)
� λ1/2(1 + ‖wθ‖H1(D̄2)

)
ln1/2 (e + ‖Δwθ‖L2(D̄2)

)
� λ1/2

(
1 + (1 + ‖(ur, uθ, uz)‖1/2

L∞(D1))‖w
r, wθ‖L2(D1)

)
× ln1/2 (e + ‖Δwθ‖L2(D1)

)
;

(4.24)

and using (4.20) and (4.23), we find:
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‖(wr, wz)‖L∞(D̄2)

� λ1/2‖(wr, wz)‖H1(D̄2) ln1/2 (e +
‖(Δwr,Δwz)‖L2(D̄2)

‖(wr, wz)‖H1(D̄2)

)
� λ1/2(1 + ‖(wr, wz)‖H1(D̄2)

)
ln1/2 (e + ‖(Δwr,Δwz)‖L2(D̄2)

)
� λ1/2

(
1 + (1 + ‖(ur, uz)‖L∞(D1))‖(wr, wz)‖L2(D1)

)
× ln1/2 (e + ‖(Δwr,Δwz)‖L2(D1)

)
.

(4.25)

Now scaling back to the domains

D1,λ = {(r, θ, z) : λ2 < r <
3λ
2 , 0 ≤ θ ≤ 2π, z ∈ [−π, π]},

and

D2,λ = {(r, θ, z) : 3λ
4 < r <

5λ
4 , 0 ≤ θ ≤ 2π, z ∈ [−π, π]},

we deduce

λ2‖wθ‖L∞(D2,λ)

� λ1/2
(
1 +

(
1 + λ1/2‖(ur, uθ, uz)‖1/2

L∞(D1,λ)
)
λ1/2‖(wr, wθ)‖L2(D1,λ)

)
× ln1/2 (λ5/2‖Δwθ‖L2(D2,λ) + e

)
� λ

(
1 +

(
1 + λ1/2‖(ur, uθ, uz)‖1/2

L∞(D1,λ)
)
‖(wr, wθ)‖L2(D1,λ)

)
× ln1/2 (λ5/2‖Δwθ‖L2(D2,λ) + e

)
(4.26)

and

λ2‖(wr, wz)‖L∞(D2,λ)

≤ Cλ
(
1 +

(
1 + λ‖(ur, uz)‖L∞(D1,λ)

)
‖(wr, wz)‖L2(D1,λ)

)
× ln1/2 (λ5/2‖(Δwr,Δwz)‖L2(D2,λ) + e

)
.

(4.27)

Also scaling back of (4.20) and (4.21) indicate that

‖
(
∇wr,∇wz

)
‖L2(D2,λ)

� λ−1(1 + λ‖(ur, uz)‖L∞(D1,λ))‖(wr, wz)‖L2(D1,λ),
(4.28)

and

‖∇wθ‖L2(D2,λ)

� λ−1(1 + λ1/2‖(ur, uθ, uz)‖1/2
∞

)
‖(wr, wθ)‖L2(D ).

(4.29)

L (D1,λ) 1,λ
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From (4.26) and assumption (1.9), we reach the first decay estimate of wθ

|wθ(x)| ≤ C0
( ln r

r

)1/2
. (4.30)

Step 2. First decay of u and (wr, wz).
Using the Biot-Savart law, for a cutoff functions ψ = ψ(x′), which is independent of 

x3, we know, for any smooth, divergence free vector field b, that

−Δ(bψ) = ψ∇× (∇× b) − 2∇ψ · ∇b− bΔψ.

Then using Green function on R2 × S1, we have

b(x) =
∫
S1

∫
R2

G(x, y)ψ∇× (∇× b)dy

− 2
∫
S1

∫
R2

G(x, y)∇ψ · ∇bdy −
∫
S1

∫
R2

G(x, y)(Δψ)bdy.
(4.31)

If we write b = urer + uzez, then ∇ × b = wθeθ. Let x = (r cos θ, r sin θ, z), y =
(ρ cosφ, ρ sinφ, l). Then from (4.31), we have

ur(x) =
∫
S1

∫
R2

G(x, y)ψ(∇× (wθeθ)) · erdy

−2
∫
S1

∫
R2

G(x, y)(∇ψ · ∇b) · erdy −
∫
S1

∫
R2

G(x, y)(Δψ)b · erdy

=
π∫

−π

2π∫
0

∞∫
0

G(x, y)ψ∂lwφ cos(φ− θ)ρdρdφdl

−2
π∫

−π

2π∫
0

∞∫
0

G(x, y)∂ρψ∂ρuρ cos(φ− θ)ρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uρ cos(φ− θ)ρdρdφdl.

Since our solution is axisymmetric, we can set θ = 0. Also due to the fact that ψ is 
independent of l and the fact that

π∫
∂lw

θdl =
π∫
∂ρu

ρdl =
π∫
uρdl = 0,
−π −π −π
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we get

ur =
π∫

−π

2π∫
0

∞∫
0

G(x, y)ψ∂lwφ cosφρdρdφdl

− 2
π∫

−π

2π∫
0

∞∫
0

G(x, y)∂ρψ∂ρuρ cosφρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uρ cosφρdρdφdl.

= −
π∫

−π

∞∫
0

( 2π∫
0

∂lG(x, y) cosφdφ
)
ψwφρdρdl

︸ ︷︷ ︸
I1

− 2
π∫

−π

∞∫
0

( 2π∫
0

G(x, y) cosφdφ
)
∂ρψ∂ρu

ρρdρdl

︸ ︷︷ ︸
I2

−
π∫

−π

∞∫
0

( 2π∫
0

G(x, y) cosφdφ
)
(∂2

ρψ + 1
ρ
∂ρψ)uρρdρdφdl

︸ ︷︷ ︸
I3

.

(4.32)

Now we need to estimate I1, I2, I3 separately. From Lemma 4.3,

|I1| �
π∫

−π

∫
|ρ−r|≤ 1

4 r

1
ρ

1
|ρ− r| + |z − l|e

−c0|ρ−r||ψ||wφ|ρdρdl

� sup
(ρ,l)∈[ 34 r,

5
4 r]×[−π,π]

|wφ(ρ, l)|
π∫

−π

∫
|ρ−r|≤ 1

4 r

1
|ρ− r| + |z − l|e

−c0|ρ−r|dρdl

�
( ln r

r

)1/2 ∫
|ρ−r|≤ 1

4 r

ln
(
1 + π

|ρ− r|
)
e−c0|ρ−r|dρ.

︸ ︷︷ ︸
J

When r is large, it is easy to see that J � 1. So, we can get

|I1| � r−1/2(ln r)1/2. (4.33)
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For I2, using Lemma 4.3, we have

|I2| �
π∫

−π

∫
1
8 r≤|ρ−r|≤ 1

4 r

e−c0|ρ−r||∂ρψ||∂ρuρ|ρdρdl

� sup |∂ρuρ|
∫

1
8 r≤|ρ−r|≤ 1

4 r

e−c0|ρ−r|dρ

� re−
c0
8 r � e−

c0
16 r.

(4.34)

We can also prove that

|I3| � e−
c0
16 r. (4.35)

At last, from (4.33), (4.34) and (4.35), we can get for large r

|ur| � r−1/2(ln r)1/2. (4.36)

Using (4.31) in cylindrical coordinates, setting x = (r cos θ, ρ sin θ, z), y = (ρ cosφ,
ρ sinφ, l) and using integration by parts, we can get

uz =
π∫

−π

2π∫
0

∞∫
0

G(x, y)ψ∂ρ(ρwφ)dρdφdl

−2
π∫

−π

2π∫
0

∞∫
0

G(x, y)∂ρψ∂ρuzρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uzρdρdφdl

Since wθ = ∂zu
r − ∂ru

z and our assumption that the integral of uz with respect to z
on [−π, π], we can get

π∫
−π

wθdz = 0. (4.37)

Due to (4.37) and axisymmetry of u, we can set θ = 0. Then using integration by parts, 
we obtain
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uz =
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
ψ∂ρ(ρwφ)dρdl

− 2
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
∂ρψ∂ρu

zρdρdl

−
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
(∂2

ρψ + 1
ρ
∂ρψ)uzρdρdl.

= −
π∫

−π

∞∫
0

( 2π∫
0

∂ρG(x, y)dφ
)
ψwφρdρdl

︸ ︷︷ ︸
J1

−
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
∂ρψw

φρdρdl

︸ ︷︷ ︸
J2

−2
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
∂ρψ∂ρu

zρdρdl

︸ ︷︷ ︸
J3

−
π∫

−π

∞∫
0

( 2π∫
0

G(x, y)dφ
)
(∂2

ρψ + 1
ρ
∂ρψ)uzρdρdl

︸ ︷︷ ︸
J4

.

(4.38)

Then the estimates of J1 will essentially be the same as I1 and estimates of J2, J3, J4, 
will essentially be the same as I2, I3, I4. At last, we can get

|uz| � 1
r1/2 (ln r)1/2. (4.39)

Using the decay of ur and uz so far, i.e. substituting (4.36) and (4.39) into the right 
hand side of (4.27) gives the first decay of (wr, wz):

|(wr, wz)| � ln r

r1/2 . (4.40)

Since 
∫ π

−π
uθdz = 0 by assumption, there exists, for any r, a z0 such that uθ(r, z0) = 0

where z0 may be different for different r. Then, using ∂zuθ = −wr, we find
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|uθ(r, z)| = |
z∫

z0

∂zu
θdz| � |∂zuθ|L∞2π � 1

r1/2 ln r. (4.41)

Step 3. Almost first order decay of u and w by iteration.
Now we can iterate and improve the decay of u by using (4.26), (4.27), (4.32), (4.38)

and (4.41) with the following order:

applying first decay of wθ on (4.32), (4.38) ⇒ decay of ur, uz;
applying decay of ur, uz on (4.27) ⇒ decay of wr, wz;
applying decay of wr, wz on (4.41) ⇒ decay of uθ;
applying decay of ur, uz, uθ on (4.26) ⇒ second decay of wθ, and so on.

The detail is as follows. Define the set

Sn :=
{
(ρ, z)

∣∣{|ρ− r| ≤ r

2n+2 } × [−π, π]
}
.

From (4.32) and (4.38), we have

‖(ur, uz)‖L∞(Sn+1) ≤ Cn‖wθ‖L∞(Sn) + Cne
− c0

16 r.

From (4.27), we have

‖(wr, wz)‖L∞(Sn+2) ≤ Cn+1‖(ur, uz)‖L∞(Sn+1)(ln r)1/2.

From (4.41), we have

‖uθ‖L∞(Sn+2) ≤ 2π‖wr‖L∞(Sn+2).

From (4.26), we have

‖wθ‖L∞(Sn+3) ≤ Cn+2‖(ur, uθ, uz)‖1/2
L∞(Sn+2)r

−1/2(ln r)1/2,

where lim
n→+∞

Cn = +∞.

Recall from step 1 that ‖wθ‖L∞(S0) ≤ C0r
−1/2(ln r)1/2. After iteration n times, we 

can get

‖wθ‖L∞(S3n) ≤ Anr
−1+ 1

2n+1 (ln r)
3
2− 1

2n−1

+ Anr
−1/2(ln r)3/4e−

c0
32 r

≤ 2Anr
−1+ 1

2n+1 (ln r)
3
2− 1

2n−1 .

(4.42)

And also we have
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‖(ur, uz)‖L∞(S3n+1) ≤ C3n‖wθ‖L∞(S3n) + C3ne
− c0

16 r,

� Bnr
−1+ 1

2n+1 (ln r)
3
2− 1

2n−1 ,
(4.43)

‖(wr, wz)‖L∞(S3n+2) ≤ C3n+1‖(ur, uz)‖L∞(S3n+1)(ln r)1/2,

≤ Dnr
−1+ 1

2n+1 (ln r)2−
1

2n−1 ,
(4.44)

‖uθ‖L∞(S3n+2) ≤ 2π‖wr‖L∞(S3n+2),

≤ 2πDnr
−1+ 1

2n+1 (ln r)2−
1

2n−1 ,
(4.45)

where the constants An, Bn, Dn satisfy

lim
n→+∞

An = lim
n→+∞

Bn = lim
n→+∞

Dn = +∞.

Consider the domain

Ωδ :=
{
(ρ, z)

∣∣{|ρ− r| ≤ δ3

4 r} × [−π, π]
}
.

Then for large r, we can get

‖(ur, uθ, uz)‖L∞(Ωδ) ≤ Cδr
−1+δ, ‖(wr, wθ, wz)‖L∞(Ωδ) ≤ Cδr

−1+δ, (4.46)

where δ is suitably small and lim
δ→0

Cδ = +∞.

4.3. Fast decay and vanishing of u

Step 1. Almost first order decay of |∇w|.
Now we fix the number δ = 0.1. From (4.28) and (4.29), we can get

‖
(
∇wr,∇wz

)
‖L2(Ωδ/2) ≤ Cδr

−1+δ, (4.47)

and

‖∇wθ‖L2(Ωδ/2) ≤ Cδr
−1+δ. (4.48)

Here it is more convenient to write the vorticity and velocity in the Euclidean coor-
dinates, which means

w = w1(1, 0, 0) + w2(0, 1, 0) + w3(0, 0, 1) = wrer + wθeθ + wzez

for the vorticity and similar expression for the velocity. From (4.47) and (4.48) we can 
obtain

‖∇w‖L2(Ωδ/2) � r−1+δ. (4.49)
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Now we fix any point x = (r cos θ, r sin θ, z) where r is large. Denote

BR = {y ∈ R3||x− y| ≤ R}.

Next we introduce the following axially symmetric circling technique. We can find r/2
(round up to nearest integer) many balls, which are disjoint and generated by rotating 
B1 around z axis, such that their union is contained in the torus around the curve

{
y|
√

y2
1 + y2

2 = r, y3 = x3
}
.

Since u and w is axially symmetric and the integrals of |∇w|2 or |∇u|2 on each ball is 
the same.

Then we can get

∫
B1

|∇w|2dx � 1
r

∫
Ωδ/2

|∇w|2dx � r−3+2δ,

∫
B1

|∇u|2dx � 1
r

∫
Ωδ/2

|∇u|2dx � r−1.

(4.50)

In Euclid coordinates, the vorticity w satisfy

−Δw = u · ∇w − (∇u)T · w, (4.51)

where ∇u is the matrix ⎡
⎣∂1u

1 ∂2u
1 ∂3u

1

∂1u
2 ∂2u

2 ∂3u
2

∂1u
3 ∂2u

3 ∂3u
3

⎤
⎦

and (∇u)T is the transpose of ∇u.
Let ∂w be the derivative on w, which may represent ∂1w, ∂2w or ∂3w. From (4.51), 

we have

−Δ∂w = ∂u · ∇w + u · ∇∂w − (∇∂u)T · w − (∇u)T · ∂w. (4.52)

Now define a cut-off function φ(x) which is supported in B1 and equal to 1 in B1/2. 
We can get

−Δ(∂wφ) = φ(−Δ∂w) − 2∇∂w · ∇φ− ∂wΔφ.

Then using the Green function G(x0, x) = 1 1
0 in three dimensions, we can get
4π |x−x |
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∂w(x) =
∫
B1

Gφ(−Δ∂w)dx− 2
∫
B1

G∇∂w · ∇φdx−
∫
B1

G∂wΔφdx

=
∫
B1

Gφ∂u · ∇wdx

︸ ︷︷ ︸
I1

+
∫
B1

Gφu · ∇∂wdx

︸ ︷︷ ︸
I2

−
∫
B1

Gφ(∇∂u)T · wdx

︸ ︷︷ ︸
I3

−
∫
B1

Gφ(∇u)T · ∂wdx

︸ ︷︷ ︸
I4

−2
∫
B1

G∇∂w · ∇φdx

︸ ︷︷ ︸
I5

−
∫
B1

G∂wΔφdx

︸ ︷︷ ︸
I6

(4.53)

Now we estimate Ii(1 ≤ i ≤ 6) term by term. From (4.50),

|I1| � ‖∇w‖L2(B1)‖∂u‖L∞(B1)‖G‖L2(B1) ≤ Cδr
−3/2+δ.

|I4| � ‖∇u‖L∞(B1)‖∂w‖L2(B1)‖G‖L2(B1) ≤ Cδr
−3/2+δ.

|I6| � ‖Δφ‖L∞(B1)‖∂w‖L2(B1)‖G‖L2(B1) ≤ Cδr
−3/2+δ.

Using integration by parts, we have

|I2| �
∣∣∣ ∫
B1

∂w · (Gφ∇u + uφ∇G + uG∇φ)dx
∣∣∣

≤ C(‖u‖L∞(B1) + ‖∇u‖L∞(B1))‖∂w‖L2(B1)‖G‖L2(B1)

+
∫
B1

∂w(uφ∇G)dx

≤ Cδr
−3/2+δ + ‖∂w‖L∞(B1)‖u‖L∞(B1)

∫
B1

|∇G|φdx

≤ Cδr
−3/2+δ + Cδr

−1+δ

≤ Cδr
−1+δ.

(4.54)

Here we just used the usual boundedness of |∂w| and the decay of u in (4.46).

|I3| �
∣∣∣ ∫
B1

(∂u)T · (wφ∇G + G∇φw + Gφ∇w)dx
∣∣∣

≤ C‖∇w‖L2(B1)‖G‖L2(B1)

+ C(‖∂u‖L∞(B1)‖w‖L∞(B1))(‖∇G‖L1(B1) + ‖G‖L1(B1))

≤ Cδr
−3/2+δ + ‖∂u‖L∞(B1)‖w‖L∞(B1)

≤ Cδr
−3/2+δ + Cδr

−1+δ

−1+δ

(4.55)
≤ Cδr .
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Here we just used the usual boundedness of |∂u| and the decay of w in (4.46). Furthermore

|I5| �
∣∣∣ ∫
B1

(∂w)T · (∇G · ∇φ + GΔφ)dx
∣∣∣

≤ C‖∇w‖L2(B1)(‖∇G‖L2(B1/B1/2) + ‖G‖L2(B1/B1/2))

≤ Cδr
−3/2+δ.

At last, we can get, for large r

|∇w(r, z)| ≤ Cδr
−1+δ. (4.56)

Step 2. Almost 3/2 order decay of |∇w|.

First we need to obtain bounds on |∇u|. Recall from (4.32) that

ur(x) =
π∫

−π

2π∫
0

∞∫
0

G(x, y)ψ∂lwφ cosφρdρdφdl

− 2
π∫

−π

2π∫
0

∞∫
0

G(x, y)∂ρψ∂ρuρ cosφρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uρ cosφρdρdφdl.

Here we take ψ as a standard cut-off function supported in the unit ball B(x, 1) such 
that ψ(x) = 1. Differentiating this we obtain

∇ur(x) =
π∫

−π

2π∫
0

∞∫
0

∇G(x, y)ψ∂lwφ cosφρdρdφdl

− 2
π∫

−π

2π∫
0

∞∫
0

∇G(x, y)∂ρψ∂ρuρ cosφρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

∇G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uρ cosφρdρdφdl.

On the first term of the righthand side, we use (4.56) and the bounds on |∇G| in 
Lemma 4.2; on the second term, we use integration by parts to move the derivative 
on uρ to other terms and then use the decay of uρ in (4.46). Note this works since the 
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singularity of the Green’s function is cut off. The third term can be handled by the decay 
of uρ and the bound on the gradient of the Green’s function. Then we deduce that

|∂rur(x)| + |∂zur(x)| ≤ Cδr
−1+δ. (4.57)

From this bound on |∇ur|, the divergence free condition

∂ru
r + ur

r
+ ∂zu

z = 0,

and the relation

wθ = ∂zu
r − ∂ru

z

we find that

|∂ruz| + |∂zuz| ≤ Cδr
−1+δ. (4.58)

Here we have used the decay of wθ in (4.46).
Using the identities wr = −∂zu

θ and wz = ∂ru
θ + 1

ru
θ, together with (4.46), we 

deduce

|∇uθ| ≤ Cδr
−1+δ. (4.59)

Combining (4.57), (4.58) and (4.59), we arrive at

|∇u| ≤ Cδr
−1+δ. (4.60)

Alternatively, one can also apply the mean value inequality in Theorem 1.7 [21] to derive 
this decay of |∇u| from the decay of u.

Now we are ready to prove the almost 3/2 order decay of |∇w|. In (4.53), the formula 
for ∂w, only the term I2 and I3 need further analysis since all other terms decay at 
almost 3/2 order already.

Inserting (4.56) into the third line of (4.54), we see that

|I2| ≤ Cδr
−3/2+δ.

Likewise, inserting (4.60) into the third line of (4.55) yields

|I3| ≤ Cδr
−3/2+δ.

Therefore,

|∂w| ≤ Cδr
−3/2+δ. (4.61)
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Step 3. Almost 3/2 order decay of |u| and vanishing.

Now we come back to the formula of ur in (4.32):

ur(x) =
π∫

−π

2π∫
0

∞∫
0

G(x, y)ψ∂lwφ cosφρdρdφdl

− 2
π∫

−π

2π∫
0

∞∫
0

G(x, y)∂ρψ∂ρuρ cosφρdρdφdl

−
π∫

−π

2π∫
0

∞∫
0

G(x, y)(∂2
ρψ + 1

ρ
∂ρψ)uρ cosφρdρdφdl.

This time we choose ψ to be a standard cut-off function supported in B(x, r/2) such 
that ψ = 1 in B(x, r/4). From the estimate following (4.32), the last two terms of the 
above identity already decays exponentially in r. Substituting (4.61) to the first term on 
the righthand side of the above identity and using the estimate of G, we see that

|ur| + |∇ur| ≤ Cδr
−3/2+δ. (4.62)

Here the gradient bound is obtained from differentiating the equation for ur and doing a 
similar estimate to that of ur. Note that we are not claiming the decay of |∇ur| is better 
than that of ur. So the proof is straightforward.

The bound (4.62) and the divergence free condition

∂ru
r + ur

r
+ ∂zu

z = 0

imply that

|∂zuz| ≤ Cδr
−3/2+δ.

Moreover, (4.61) and the relation wr = −∂zv
θ shows

|∂zuθ| ≤ Cδr
−3/2+δ.

By our assumption 
∫ π

−π
uθdz =

∫ π

−π
uzdz = 0, there exist, for any r, a z0, z1 such that 

uθ(r, z0) = uθ(r, z1) = 0 where z0, z1 may be different for different r. Then

|uθ(r, z)| = |
z∫

z0

∂zu
θdz| � |∂zuθ(r, ·)|L∞2π ≤ Cδr

−3/2+δ, (4.63)

and
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|uz(r, z)| = |
z∫

z1

∂zu
zdz| � |∂zuz(r, ·)|L∞2π ≤ Cδr

−3/2+δ. (4.64)

So, all the above estimates imply that for large r

|u(x)| ≤ Cδr
−3/2+δ. (4.65)

Recall that δ = 0.1; thus the decay rate of u is faster than order 1. According to [5] or 
[11], we have proven that u = 0, finishing the proof of Theorem 1.2. �

Finally we prove Corollary 1.1. Let u be a D-solution given in the Corollary. Then u, 
treated as functions of r, z, satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)ur − (uθ)2

r
+ ∂rp = (∂2

r + 1
r
∂r + ∂2

z − 1
r2 )ur,

(ur∂r + uz∂z)uθ + uruθ

r
= (∂2

r + 1
r
∂r + ∂2

z − 1
r2 )uθ,

(ur∂r + uz∂z)uz + ∂zp = (∂2
r + 1

r
∂r + ∂2

z )uz,

∂ru
r + ur

r
+ ∂zu

z = 0,

uθ|z=0,π = 0, uz|z=0,π = 0, ∂zu
r|z=0,π = 0,

(4.66)

where x = (x′, x3) = (r cos θ, r sin θ, z) ∈ R2 × [0, π]. Now we extend the solution of 
(4.66) from R2 × [0, π] to R2 × [−π, π] by the following transformation. Define ũ =
ũrer + ũθeθ + ũzez in R2 × [−π, π] as follows

ũr(r, z) =
{
ur(r, z) (r, z) ∈ [0,∞] × [0, π],

ur(r,−z) (r, z) ∈ [0,∞] × [−π, 0],

ũθ(r, z) =
{
uθ(r, z) (r, z) ∈ [0,∞] × [0, π],

− uθ(r,−z) (r, z) ∈ [0,∞] × [−π, 0],

ũz(r, z) =
{
uz(r, z) (r, z) ∈ [0,∞] × [0, π],

− uz(r,−z) (r, z) ∈ [0,∞] × [−π, 0],

p̃z(r, z) =
{
pz(r, z) (r, z) ∈ [0,∞] × [0, π],

pz(r,−z) (r, z) ∈ [0,∞] × [−π, 0],

which mean that ur, p make even extension, while uθ, uz make odd extension with respect 
to variable z. After such extension, it is easy to see that (ũr, ̃uθ, ̃uz) satisfy (4.66) for 
(r, z) in the domain [0, +∞) × [−π, π] with p replaced by p̃. Since ũθ and ũz are odd 
with respect to z, we have
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π∫
−π

ũθ(r, z)dz =
π∫

−π

ũz(r, z)dz = 0. (4.67)

Note that ũ can be regarded as a z − periodic solution on R2 × S1 with property 
(4.67). Theorem 1.2 infers that ũ = 0, hence u = 0. �
Remark 4.1. By going through the proof of Theorem 1.2, one can see that the condition 
that uz, uθ has 0 mean in the z direction can be relaxed to the following: for each r > 0, 
there exists z = z(r) such that |uz(r, z(r))|, |uθ(r, z(r))| ≤ C

r . Also, in case u is in L2

space, then the boundedness of the pressure P will imply vanishing of u. We wish to thank 
Zhao Na for pointing out this fact to us. In the 2 dimensional case, boundedness of P is 
proven in [9]. In three dimensional exterior domains, Galdi ([8] Chapter X, Theorem 5.1), 
applies the decay properties of the Stokes kernel to prove rapid decays of the velocity, its 
gradient and second order derivative which implies the decay of |∇P | from the equation. 
This in turn implies that P converges to a constant at infinity. In general, using this 
method, it is not easy to prove that P is bounded in the periodic case, due a lack of 
estimate of the Stokes kernel. Our decay estimates for u, w and ∇w actually imply that 
P can be chosen as a bounded function.
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