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Abstract

An old problem since Leray (J Math Pure Appl (French) 9:1–82, 1933) asks
whether homogeneous D-solutions of the 3 dimensional Navier–Stokes equation
in R

3 or some noncompact domains are 0. In this paper, we give a positive solution
to the problem in two cases: (1) the full 3 dimensional slab case R

2 × [0, 1] with
Dirichlet boundary condition (Theorem 1.1); (2) when the solution is axially sym-
metric and periodic in the vertical variable (Theorem 1.3). Also, for the slab case,
we prove that even if the Dirichlet integral has some growth, axially symmetric
solutions with Dirichlet boundary condition must be swirl free, namely uθ = 0,
thus reducing the problem to essentially a “2 dimensional” problem. In addition, a
general D-solution (without the axial symmetry assumption) vanishes in R

3 if, in
spherical coordinates, the positive radial component of the velocity decays at order
-1 of the distance. The paper is self contained comparing with (Carrillo et al. in
Funct Anal, 2020. https://doi.org/10.1016/j.jfa.2020.108504) although the general
idea is related.

1. Introduction

The purpose of this paper is to study decay and vanishing properties of the so
called D-solutions to the steady Navier–Stokes equations{

(u · ∇)u + ∇ p − �u = f, in D ⊂ R
3

∇ · u = 0,
(1.1)

with finite Dirichlet integral ∫
D

|∇u(x)|2dx < +∞ (1.2)
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and various boundary conditions, with the additional requirement that u vanishes
at infinity; here D ⊂ R

3 is a noncompact or compact, connected domain. The two
most basic noncompact domains are the whole space R

3 or a slab R
2 × [a, b]; f

is a divergence free forcing term. The existence of these kind of solutions were
studied in the pioneer work of Leray [14] (p24) by variational method and are often
referred as D-solutions. If f = 0 and u = 0 on ∂ D, then the solution is called a
homogeneous D-solution. Given a noncompact domain, the following uniqueness
problem has been open since then:

Is a homogeneous D-solution equal to 0 ?
This is also part of the very difficult uniqueness problem for the steady Navier–

Stokes equation. In the 2 dimensional case, the problem in the full space case is
solved by Gilbarg andWeinberger [10]. However, for the 3 dimensional problem, it
is not even known if a general D-solution has any definite decay rate comparingwith
the distance function near infinity, even when the domain is R

3. What follows is a
list of vanishing results with extra integral or decay assumptions for the solution u.
Galdi [9] TheoremX.9.5 proved that if u is a homogeneousD-solution in the domain
D = R

3 and u ∈ L9/2(R3), then u = 0. This result was improved by a log factor
in Chae and Wolf [7]. In [4], Chae proved that homogeneous D-solutions in R

3 are
0 if also �u ∈ L6/5(R3). This condition scales the same way as ‖∇u‖L2 . Seregin
[20] proved that homogeneous D-solutions in R

3 is 0 if u ∈ L6(R3) ∩ B M O−1.
In a recent paper [13], Kozono etc. showed that homogeneous D-solutions in R

3

are 0 if either the vorticity w = w(x) decays faster than c/|x |5/3 at infinity, or
the velocity u decays like c/|x |2/3 with c being a small number. Under certain
smallness assumption, vanishing result for homogeneous 3 dimensional solutions
in a slab was also obtained in the book [9], Chapter XII.

The first result of the paper is a solution of the above problem if D is a slab in
R
3.

Theorem 1.1. Let u be a smooth, bounded solution to the problem⎧⎪⎨
⎪⎩

(u · ∇)u + ∇ p − �u = 0, in R
2 × [0, 1],

∇ · u = 0,

u(x)|x3=0 = u(x)|x3=1 = 0,

(1.3)

such that the Dirichlet integral satisfies the condition∫ 1

0

∫
R2

|∇u(x)|2dx < ∞. (1.4)

Then, u ≡ 0.

Remark 1.1. Comparing with the full space case, one can show by Poincaré in-
equality that the velocity u is in L2. Thus the decay rate of u = u(x) is like 1/|x |
in the integral sense. However one does not have a good knowledge of the pressure
p. The Dirichlet boundary condition is known to induce complications on the vor-
ticity and pressure. Our main job is to deal with the pressure term. In addition, if
the Dirichlet integral is infinite, then 0 may not be the only solution. An example
is u = (x3(1 − x3), 0, 0), p = −2x1.
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The authors of the papers [18,19] studied the asymptotic decay of solutions
of the Navier–Stokes equation in a slab. They prove, under certain weighted inte-
gral assumption on the velocity u = u(x) and 3rd order derivatives, u = u(x)

decays like 1/|x | or 1/|x |3 (see Theorem 3.1 in [19]). Then the vanishing of
u in the homogeneous case follows easily. However, these authors required that
(1 + |x |)2+β |u3(x)| + (1 + |x |)3+β |∂x1u3(x)| with β ∈ (−2,−1) is in L2 in
addition to further integral decay conditions of the first, second and third order
derivatives of u, and consequently restriction on the pressure. None of these con-
ditions are available to us. In the periodic case, which will be dealt later, it is not
even known that u is L2.

Now if the domain is the whole R
3, we will show that if the positive part of

the radial component of D-solutions decays at order −1 of the distance in spherical
coordinates, then the D-solution vanishes.

Theorem 1.2. Let uρ = uρ(x) be the radial component of 3 dimensional D-
solutions in spherical coordinates. If

uρ(x) � C

|x | , x ∈ R
3 (1.5)

for some positive constant C, then u ≡ 0.

Remark 1.2. We should compare with the result in [13] where the authors prove, if
the weak L9/2 norm of u is small, then u vanishes. This includes the case |u(x)| �
c|x |−2/3 for certain small constant c. In contrast, our assumption here is worse on
the order of the distance function. However we only impose the condition on the
positive part of the radial component of the solution and there is no restriction on
the other two components.

Nextwe concentrate on axially symmetric homogeneousD-solutions, forwhich
the vanishing problem is also wide open. Let us briefly describe the set up. It is
convenient to work with cylindrical coordinates x = (x1, x2, z), θ = tan−1 x2/x1

and r =
√

x21 + x22 . er = (x1/r, x2/r, 0), eθ = (−x2/r, x1/r, 0) and ez = (0, 0, 1).

We often write x ′ = (x1, x2) and x3 = z. A smooth vector field u(x) = ur (r, z)er +
uθ (r, z)eθ +uz(r, z)ez is an axially symmetric solution of (1.1) if ur , uθ , uz satisfy
the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)u
r − (uθ )2

r
+ ∂r p = (∂2r + 1

r
∂r + ∂2z − 1

r2
)ur ,

(ur∂r + uz∂z)u
θ + ur uθ

r
= (∂2r + 1

r
∂r + ∂2z − 1

r2
)uθ ,

(ur∂r + uz∂z)u
z + ∂z p = (∂2r + 1

r
∂r + ∂2z )uz,

∂r ur + ur

r
+ ∂zuz = 0.

(1.6)

Here and later we often refer to this equation as ASNS, i.e. axially symmetric
Navier–Stokes equation.
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The vorticity w is defined as w(x) = ∇ × u(x) = wr (r, z)er + wθ(r, z)eθ +
wz(r, z)ez , where

wr = −∂zuθ , wθ = ∂zur − ∂r uz, wz = 1

r
∂r (ruθ ). (1.7)

The equations for wr , wθ ,wz are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)w
r − (wr∂r + wz∂z)u

r =
(

∂2r + 1

r
∂r + ∂2z − 1

r2

)
wr ,

(ur∂r + uz∂z)w
θ − ur

r
wθ − 1

r
∂z(u

θ )2 =
(

∂2r + 1

r
∂r + ∂2z − 1

r2

)
wθ,

(ur∂r + uz∂z)w
z − (wr∂r + wz∂z)u

z =
(

∂2r + 1

r
∂r + ∂2z

)
wz .

(1.8)

As mentioned earlier, although the components of solution u is independent
of the angle θ in the cylindrical system, the vanishing problem is also wide open.
However certain decay estimates can be proven for the homogeneous D-solution u
and vorticity w. For example, the combined result of Chae-Jin [5] and Weng [21]
state that, for x ∈ R

3,

|u(x)| � C (log r/r)1/2 , |wθ(x)| � Cr−(19/16)− , |wr (x)| + |wz(x)| � Cr−(67/64)− . (1.9)

Here C is a positive constant and for a positive number a, we write a− as a number
which is smaller than but close to a. Their proof is based on line integral techniques
from Gilbarg and Weinberger [10]. In our previous work [6], the decay estimate on
w is improved. In that paper, we also proved a vanishing result whenD-solutions are
periodic in the third variable under the additional assumption that uθ and uz have
zeromean in the z direction. In a recent paper [16], for solutionswith infinite energy,
Liouville property for bounded, axially symmetric solutions of the Navier–Stokes
equation were studied under the natural assumption ruθ is bounded. Assuming in
addition that ruθ is bounded and u is periodic in z variable, then it was shown that
u ≡ 0. We mention that periodic solutions are also studied intensely in connection
to the Kolmogorov flow. Earlier, the authors of the papers [8,12] proved Liouville
theorems for ASNS under the assumption that |u(x)| � C/r ; see also an extension
to B M O−1 space in [15].

The next result of this paper is an improvement of our main result in [6] in the
case that the Dirichlet integral is finite. We will prove vanishing result when D-
solutions are periodic in the third variable without any other assumption. Then we
turn to axially symmetric solutions in a slab with Dirichlet boundary condition even
if the Dirichlet integral has some growth. We will show that actually the angular
component of the solution vanishes.

In the next theorem the flow is periodic in the z direction with period 2π , a
number chosen for convenience. Any other positive period also works. We will
always take the forcing term f = 0 throughout the paper.
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Theorem 1.3. Let u be a smooth axially symmetric solution to the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u · ∇)u + ∇ p − �u = 0, in R
2 × S1 = R

2 × [−π, π ],
∇ · u = 0,

u(x1, x2, z) = u(x1, x2, z + 2π),

lim|x |→∞ u = 0,

(1.10)

with finite Dirichlet integral

∫ π

−π

∫
R2

|∇u(x)|2dx < +∞.

Then we have that u = 0.

Remark 1.3. Assuming finiteness of the Dirichlet integral, Theorem1.3 is an im-
provement of our previous result Theorem 1.2 in [6] by removing the extra assump-
tion that uθ , uz have zero mean in the z direction there. However, the method in [6]
is much different from the current one. Besides, the proof there can be applied to
the case where the local Dirichlet integral has some growth, which means we can
prove the vanishing result under the assumption

∫ π

−π

∫
|x ′|�r |∇u(x)|2dx < (1+r)α

for some suitable and positive α. This method potentially allows for application for
flows with infinite Dirichlet energy such as Kolmogorov flows.

The next theorem treats the case with Dirichlet boundary condition in a slab,
even allowing the Dirichlet integral to be log divergent.

Theorem 1.4. Let u be a smooth, axially symmetric solution to the problem

⎧⎪⎪⎨
⎪⎪⎩

(u · ∇)u + ∇ p − �u = 0, in R
2 × [0, 1],

∇ · u = 0,

lim
|x ′|→∞

u = 0, u(x)|x3=0 = u(x)|x3=1 = 0,
(1.11)

such that the Dirichlet integral satisfies the condition: for a constant C, and all
R � 1, ∫ 1

0

∫
R�|x ′|�2R

|∇u(x)|2dx < C < ∞. (1.12)

Then uθ = 0. Moreover, there exists a positive constant C0, depending only on the
constant C in (1.12) such that

|ur (x)| + |uz(x)| � C0

(
ln r

r

)1/2

. (1.13)
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Remark 1.4. Since uθ = 0, i.e. the flow is swirl free, the Navier–Stokes system
reduces to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)u
r + ∂r p =

(
� − 1

r2

)
ur ,

(ur∂r + uz∂z)u
z + ∂z p = �uz,

∂r ur + ur

r
+ ∂zuz = 0,

lim
r→∞(ur , uz) = 0, (ur , uz)(r, z)|z=0,1 = 0.

(1.14)

Thus our vanishing problem now is much like a two dimensional problem. But
unfortunately, we do not know any vanishing result for swirl free case in a slab with
Dirichlet boundary condition and (1.12).

Remark 1.5. Clearly, if the Dirichlet integral is finite, i.e. ‖∇u‖L2(R2×[0,1]) < ∞,
then condition (1.12) is satisfied. If one works a little harder, then one can reach
the same conclusion as the theorem assuming the integral in (1.12) grows at certain
power of R. As mentioned earlier, solutions with infinite Dirichlet energy is also
of interest. The decay estimate still holds if there is an inhomogeneous term of
sufficiently fast decay.

Now we outline the proof of the above results briefly. We start with the ob-
servation that in z−periodic case such that D = R

2 × S1, the horizontal radial
component of the solution ur satisfies

∫ π

−π
ur dz = 0. Poincaré inequality and

the finite Dirichlet integral condition indicate that ur ∈ L2(D). Then due to the
speciality of z-periodic solution, we can actually prove that the oscillation of the
pressure p is bounded in a dyadic annulus. At last by testing the vector equation
(1.10) with uφ2(|x ′|), where φ(x ′) is supported in {x ′||x ′| < 2R} and equal to 1 in
{x ′||x ′| < R}, and making R approach ∞, we can prove that u ≡ 0.

In the case that D = R
2×[0, 1] and u with the homogeneousDirichlet boundary

condition, we will show that the decay rate of uθ is r−( 32 )− for large r . At the same
time, the quantity 
 := ruθ satisfies

(ur∂r + uz∂z)
 −
(

� − 2

r

)

 = 0. (1.15)


 enjoys maximum principle, which means

sup
x∈�

|
| � sup
x∈∂�

|
|. (1.16)

By using the above maximum principle, we can have uθ ≡ 0.
Several steps are needed to get the decay of uθ . In step one the Green’s function

G onR
2×[0, 1]with homogeneousDirichlet boundary conditionwill be introduced

and a series of properties of G will be displayed. The key point is that G and its
horizontal gradient have onemore order decay on |x ′−y′|when |x ′−y′| > 1. In step
two we obtain decay of wr , wz by using a refined Brezis − Gallouet inequali t y,
energy methods and scaling techniques to show that

|(wr , wz)| � r−1 ln r
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for large r . Furthermore, by the same procedure, we can show that

|(∂zw
r , ∂rw

z)| � r−3/2(ln r)3/2. (1.17)

In step three, we use Biot − Savart law to get the representation of uθ by G and
(∂zw

r , ∂rw
z) which implies that uθ decay in the same rate as ∂zw

r and ∂rw
z . Then

we can apply the maximum principle on the function 
 = ruθ to conclude uθ = 0.
We conclude the introduction with a list of frequently used notations. For

(x, t) ∈ R
3 × R and r > 0, we use Qr (x, t) to denote the standard parabolic

cube {(y, s) | |x − y| < r, 0 < t − s < r2}; B(x, r) is the ball of radius r
centered at x . The symbol . . . � . . . stands for . . . � C . . . for a positive constant
C . C with or without an index denotes a positive constant whose value may change
from line to line. For x = (x1, x2, x3) ∈ R

3, we write x = (x ′, x3) or x = (x ′, z),
and for y = (y1, y2, y3) ∈ R

3, we write y = (y′, y3). Theorem 1.1, 1.2, 1.3 and
1.4 will be proven in Sects. 2, 3, 4 and 5, respectively.

2. Proof of Theorem 1.1

First, we will show two basic estimates for the L2 norm of the velocity u and
the pressure p.

2.1. L2 Estimates of u and p

Define the domain �R = {
x ′ ∈ R

2
∣∣|x ′| � R

} × [0, 1], where R � 1. We
consider the following problem:
Given

f ∈ L2(�R) with
∫

�R

f = 0, (2.1)

find a vector field V : �R → R
3 such that

∇ · V = f, V ∈ W 1,2
0 (�R), ‖∇V ‖L2 � c0‖ f ‖L2 , (2.2)

with c0 = c0(�R). For our purpose, we need an explicit estimate of the c0 constant
depending on the horizontal radius R.

The first solution of this problem is given in Bogovskiĭ [2,3]; see also Lemma
III.3.1 of [9].

Lemma 2.1. Let � = {
x̄ ′ ∈ R

2
∣∣|x̄ ′| � 1

} × [0, 1]. Then for any f̄ ∈ L2(�),
satisfying

f̄ ∈ L2(�) with
∫

�

f̄ = 0,

there exists a constant C and a vector valued function V̄ : � → R
3 such that

∇ · V̄ = f̄ , V̄ ∈ W 1,2
0 (�), ‖∇ V̄ ‖L2 � C‖ f̄ ‖L2 , (2.3)

where C is an absolute constant.
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Here we only stated a special case of Lemma III.3.1 of [9] which works for
general domains and the constant C depends on the ratio of the diameter and inner
radius of the domain. For the above � the diameter and inner radius are fixed, so
we have an absolute constant. Note that the Bogovskii function may not be unique.
For our purpose, we will choose and fix one for the relevant domain.

Next, we use the above lemma and a scaling argument to deduce the following
proposition. We mention that the constant on the righthand side is C R which im-
proves the one in Lemma III.3.1 of [9], which is C R4. This is crucial for the proof
of the vanishing result.

Proposition 2.1. Let �R be as above. Then for any f ∈ L2(�R), satisfying (2.1).
Problem (2.2) has at least one solution V . Moreover, for the constant c0 in (2.2),
we have the following estimate:

‖∇V ‖L2(�R) � C R‖ f ‖L2(�R), (2.4)

where C is independent of �R.

Proof. The existence of V is already known as explained above. So we just need
to prove (2.4).

For x̄ = (x̄1, x̄2, x3) ∈ �, define

f̄ (x̄1, x̄2, x3) := f (Rx̄1, Rx̄2, x3) = f (x1, x2, x3).

Note x1 = Rx̄1, x2 = Rx̄2 but x3 does not change.
It is easy to see that f̄ satisfies the assumption in Lemma 2.1. So by Lemma

2.1, there exists a vector function V̄ : � → R
3 satisfying (2.3). Then for x ∈ �R ,

define

V (x1, x2, x3) = (V 1(x1, x2, x3), V 2(x1, x2, x3), V 3(x1, x2, x3))

=
(

RV̄ 1
( x1

R
,

x2
R

, x3
)

, RV̄ 2
( x1

R
,

x2
R

, x3
)

, V̄ 3
( x1

R
,

x1
R

, x3
))

.

(2.5)

By a direct computation, we have

∇ · V = f, V ∈ W 1,2
0 (�R), in x variables

∇ · V̄ = f̄ , V̄ ∈ W 1,2
0 (�1), in x̄ variables,

where V̄ = (V̄ 1(x̄), V̄ 2(x̄), V̄ 3(x̄)). Now we estimate the L2 norm of ∇V . We use
α, β to take values only on 1, 2 and i, j to take values on 1, 2, 3, so we have

‖∇V ‖2L2(�R)
=

3∑
i, j=1

∫ 1

0

∫
|x ′|�R

|∂V j

∂xi
|2dx ′dx3

=
∫ 1

0

∫
|x ′|�R

⎛
⎝ 2∑

α,β=1

|∂V β

∂xα

|2 +
2∑

β=1

|∂V β

∂x3
|2
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+
2∑

α=1

|∂V 3

∂xα

|2dx ′dx3 + |∂V 3

∂x3
|2
)

dx ′dx3

=
∫ 1

0

∫
|x ′|�R

⎛
⎝ 2∑

α,β=1

|∂ V̄ β

∂ x̄α

|2( x ′

R
, x3) + R2

2∑
β=1

|∂ V̄ β

∂x3
|2( x ′

R
, x3)

+ 1

R2

2∑
α=1

|∂ V̄ 3

∂ x̄α
|2( x ′

R
, x3) + |∂ V̄ 3

∂x3
|2( x ′

R
, x3)

)
dx ′dx3

= R2
∫ 1

0

∫
|x̄ ′|�1

⎛
⎝ 2∑

α,β=1

|∂ V̄ β

∂ x̄α
|2(x̄ ′, x3) + R2

2∑
β=1

|∂ V̄ β

∂x3
|2(x̄ ′, x3)

+ 1

R2

2∑
α=1

|∂ V̄ 3

∂ x̄α
|2(x̄ ′, x3) + |∂ V̄ 3

∂x3
|2(x̄ ′, x3)

)
dx̄ ′dx3

� C R4‖∇ V̄ ‖2L2(�1)
. (2.6)

Also it is easy to see that

‖ f ‖2L2(�R)
= R2‖ f̄ ‖2L2(�1)

. (2.7)

Combining (2.6), (2.7) and (2.3), we have

‖∇V ‖2L2(�R)
� C R4‖∇ V̄ ‖2L2(�)

≤ C R4‖ f̄ ‖2L2(�)
= C R2‖ f ‖2L2(�R)

.

This finishes the proof of Proposition 2.1.

Next we give some L2 estimate of the velocity u and the pressure p, using the
preceding proposition.

Lemma 2.2. Let u, p be the solution of (1.3), then we have∫
R2×[0,1]

|u|2dx < ∞, (2.8)

‖p − pR‖L2(�R) � C0R, (2.9)

where C0 = C(‖u‖L∞ , ‖u‖L2 , ‖∇u‖L2) and pR := 1
|�R |

∫
�R

pdx is the average
of p on �R.

Proof. Since we have zero boundary on x3 = 0, 1, the one dimensional Poincaré
inequality indicates that∫

R2×[0,1]
|u|2dx =

∫
R2

∫ 1

0
|u|2dx3dx ′

�
∫
R2

∫ 1

0
|∂zu|2dx3dx ′

�
∫
R2×[0,1]

|∇u|2dx < ∞ (2.10)
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by the definition of D-solutions. This proves (2.8).
From Proposition 2.1, there exists a V satisfying (2.2) and (2.4) with f =

p − pR . Now multiplying (1.11)1 with V and integration on �R , we get∫
�R

∇(p − pR) · V dx =
∫

�R

(�u − u · ∇u) · V dx . (2.11)

Integration by parts indicate that∫
�R

(p − pR)2dx =
∫

�R

(p − pR)∇ · V dx

=
∫

�R

3∑
i, j=1

∂i u
j ∂i V j + ∇ · (u ⊗ u) · V dx

=
∫

�R

3∑
i, j=1

(∂i u
j − ui u j )∂i V j dx

≤ ‖∇V ‖L2(�R )

(‖∇u‖L2(�R ) + ‖u‖L∞(�R )‖u‖L2(�R )

)
≤ ε

R2 ‖∇V ‖2L2(�R )
+ Cε R2(‖∇u‖L2(�R ) + ‖u‖L∞(�R )‖u‖L2(�R )

)2
≤ Cε‖p − pR‖2L2(�R )

+ Cε R2(‖∇u‖L2(�R ) + ‖u‖L∞(�R )‖u‖L2(�R )

)2
.

Here to reach the last line, we used (2.4). By choosing ε small enough, we can
obtain (2.9).

2.2. Vanishing of u

Now we are in a position to complete the proof of Theorem 1.1. Let φ(s) be a
smooth cut-off function satisfying

φ(s) =
{
1 s ∈ [0, 1/2],
0 s � 1,

(2.12)

with the usual property that φ, φ′ and φ′′ are bounded. Set φR(y′) = φ(
|y′|
R ) where

R is a large positive number. For convenience of notation, we denote I = [0, 1].
Now testing the Navier–Stokes equation

u · ∇u + ∇ p = �u

with uφR , we obtain∫
R2×I

−�u(uφR)dx =
∫
R2×I

−(u · ∇u + ∇(p − pR)(uφR)dx .

Integration by parts indicates that∫
R2×I

|∇u|2φRdx − 1

2

∫
R2×I

|u|2�φRdx

= −1

2

∫
R2×I

u · ∇|u|2φRdx +
∫
R2×I

(p − pR)u · ∇φRdx

= 1

2

∫
R2×I

|u|2u · ∇φRdx +
∫
R2×I

(p − pR)u · ∇φRdx .
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Denote B̄R/ 1
2 R := {x ′|1/2R ≤ |x ′| � R} i.e. the dyadic annulus. Then we have,

since φR depends only on r , that∫
R2×I

|∇u|2φRdx

� 1

R2

∫ 1

0

∫
B̄

R/ 12 R

|u|2dx + 1

R

∫ 1

0

∫
B̄

R/ 12 R

|ur | |u|2dx

+ 1

R

∫ 1

0

∫
B̄

R/ 12 R

|p − pR ||ur |dx

� 1

R2

∫ 1

0

∫
B̄

R/ 12 R

|u|2dx + ‖ur‖∞
R

∫ 1

0

∫
B̄

R/ 12 R

|u|2dx

+ 1

R

⎛
⎝∫ 1

0

∫
B̄

R/ 12 R

(ur )2dx

⎞
⎠

1/2 ⎛
⎝∫ 1

0

∫
B̄

R/ 12 R

|p − pR |2dx

⎞
⎠

1/2

.

By the estimate of pressure (2.9), we deduce that∫
R2×I

|∇u|2φRdx �
(‖u‖2

L∞(B̄
R/ 12 R

×I )
+ C0

)‖u‖L2(B̄
R/ 12 R

×I ).

Now let R → +∞, using u ∈ L2(R2 × I ) (Lemma 2.2), we arrive at∫
R2×I

|∇u|2dx = 0,

which shows that u ≡ c. Besides, recall u = 0 at the boundary, then at last we
deduce

u ≡ 0. (2.13)

This completes the proof of Theorem 1.1. 
�

3. Proof of Theorem 1.2

In this section, we prove Theorem1.2. Recall the following result proved by
Galdi (see Theorem X.5.1 of [9] for a more general version).

Proposition 3.1. Let u(x) be a generalized solution of (NS) satisfying (1.1) and
p(x) be the associated pressure, then there exists p1 ∈ R such that

lim|x |→∞ |Dαu(x)| + lim|x |→∞ |Dα(p(x) − p1)| = 0 (3.1)

uniformly for all multi-index α = (α1, α2, α3) ∈ [N ∪ {0}]3.
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Here the notion of generalized solution is the one given in Definition X.1.1 [9]
p653.

Define the head pressure Q := 1
2 |u|2 + p − p1, which satisfies

−�Q + u · ∇Q = −|curl u|2. (3.2)

From the preceding Proposition, we have lim|x |→∞ Q = 0. (3.2) indicates that Q

satisfies the maximum principle. Thus we have that

Q � 0. (3.3)

Set φR(x) = φ(
|x |
R ), where φ is defined in (2.12). Now testing the Navier–Stokes

equation u · ∇u + ∇ p = �u with uφR , we can get∫
R3

−�u(uφR)dx =
∫
R3

−(u · ∇u + ∇ p)(uφR)dx .

Integration by parts indicates that∫
R3

|∇u|2φRdx − 1

2

∫
R3

|u|2�φRdx

= −1

2

∫
R3

u · ∇|u|2φRdx +
∫
R3

(p − p1)u · ∇φRdx

= 1

2

∫
R3

|u|2u · ∇φRdx +
∫
R3

(p − p1)u · ∇φRdx

=
∫
R3

Qu · ∇φRdx =
∫
R3

Quρ∂ρφRdx .

Then we get∫
R3

|∇u|2φRdx

� 1

R2

∫
B

R/ 12 R

|u|2dx −
∫
R3

Qu−
ρ ∂ρφRdx +

∫
R3

Qu+
ρ ∂ρφRdx,

(3.4)

where u−
ρ =: −min{0, uρ} and u+

ρ =: max{0, uρ}. Also BR/ 1
2 R ≡ BR − B 1

2 R here
and later in the proof.

Since u ∈ L6(R3), p − p1 ∈ L3(R3), we have Q ∈ L3(R3). Besides, it is
obvious that we can choose ∂ρφR � 0. So by using (3.3) and from (3.4), we get∫

R3
|∇u|2φRdx

� 1

R2

( ∫
B

R/ 12 R

|u|6dx
)1/3( ∫

B
R/ 12 R

dx
)2/3 −

∫
R3

Qu−
ρ ∂ρφRdx

+ 1

R
sup

B
R/ 12 R

u+
ρ

( ∫
B

R/ 12 R

|Q|3dx
)1/3( ∫

B
R/ 12 R

dx
)2/3

�
( ∫

B
R/ 12 R

|u|6dx
)1/3 +

( ∫
B

R/ 12 R

|Q|3dx
)1/3

.

(3.5)
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Now let R → +∞, so we have that∫
R3

|∇u|2dx = 0,

which implies that u ≡ c. Since lim
|x ′|→∞

u = 0, then at last we deduce

u ≡ 0. (3.6)


�

4. Proof of Theorem 1.3

This section is divided into 2 parts. First, by integrating the first and third
equation of (1.6), we can prove that actually the oscillation of the pressure p is
bounded in dyadic annulus in the axially symmetric z−periodic case. Second by
testing the Navier Stokes equations by a standard test function, we can prove the
vanishing result.

Let us remark that boundedness of u, ∇u and ∇2u are known, as given in the
interior regularity theorem of [9] (Theorem XI.1.2, p755). Alternatively one can
apply a result for local solutions in [23]. The point is that no additional information
is needed for the pressure p.

4.1. Boundedness of the Oscillation of p in Dyadic Annulus

In this subsection we prove that the oscillation of the pressure p is bounded
in dyadic annulus B(0, 2R) − B(0, R). In fact, if one uses the a priori decay of
solutions in Corollary 2.1 of [6], one can show that the oscillation of p in the whole
domain is bounded. However in order to keep the proof independent and short, we
will not prove that here.

From the third equation of (1.6) and using the boundedness of u,∇u and ∇2u
mentioned above, we have

|∂z p| � 1. (4.1)

Next we will show that for any R > 1, R < r < 2R, we have∣∣∣ ∫ π

−π

(p(r, z) − p(R, z))dz
∣∣∣ � 1. (4.2)

Integrating the first equation of (1.6) on z from −π to π , we can get

∂r

∫ π

−π

pdz =
∫ π

−π

[
−(ur∂r + uz∂z)u

r + (uθ )2

r
+ (∂2r + 1

r
∂r + ∂2z − 1

r2
)ur

]
dz

= −
∫ π

−π

1

2
∂r (u

r )2dz −
∫ π

−π

uz∂zur dz +
∫ π

−π

(uθ )2

r
dz

+ ∂2r

∫ π

−π

ur dz + 1

r
∂r

∫ π

−π

ur dz − 1

r2

∫ π

−π

ur dz.

(4.3)
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Picking any r0 ∈ [R, 2R], integrating (4.3) on r from R to r0, we find

∣∣ ∫ π

−π

p(r0, z)dz −
∫ π

−π

p(R, z)dz
∣∣

�
∣∣ ∫ r0

R

∫ π

−π

∂r (u
r )2dzdr

∣∣
︸ ︷︷ ︸

I1

+ ∣∣ ∫ r0

R

∫ π

−π

uz∂zur dzdr
∣∣

︸ ︷︷ ︸
I2

+ ∣∣ ∫ r0

R

∫ π

−π

(uθ )2

r
dzdr

∣∣
︸ ︷︷ ︸

I3

+ ∣∣ ∫ r0

R
∂2r

∫ π

−π

ur dzdr
∣∣

︸ ︷︷ ︸
I4

+ ∣∣ ∫ r0

R

1

r
∂r

∫ π

−π

ur dzdr
∣∣

︸ ︷︷ ︸
I5

+ ∣∣ ∫ r0

R

1

r2

∫ π

−π

ur dzdr
∣∣

︸ ︷︷ ︸
I6

.

(4.4)

Next we show that all the terms on the right hand of (4.4) are bounded.
Changing the integration order of r and z, we have

I1 = ∣∣ ∫ π

−π

[
(ur )2(r0, z) − (ur )2(R, z)

]
dz

∣∣ � 1. (4.5)

Using integration by parts and the incompressible condition, we can obtain

I2 = ∣∣ ∫ r0

R

∫ π

−π

ur∂zuzdzdr
∣∣

= ∣∣ ∫ r0

R

∫ π

−π

ur
(

ur

r
+ ∂r ur

)
dzdr

∣∣
�

∣∣ ∫ r0

R

∫ π

−π

(ur )2

r
dzdr

∣∣ + ∣∣ ∫ r0

R

∫ π

−π

∂r (u
r )2dzdr

∣∣
�

∣∣ ∫ 2R

R

∫ π

−π

r−1dzdr
∣∣ + ∣∣ ∫ π

−π

[
(ur )2(r0, z) − (ur )2(R, z)

]
dz

∣∣
� 1.

(4.6)

Using the boundedness of u, we deduce

I3 �
∣∣ ∫ 2R

R

∫ π

−π

r−1dzdr
∣∣ � 1. (4.7)

Using the boundedness of ∇u, we have

I4 = ∣∣ ∫ π

−π

[∂r ur (r0, z) − ∂r ur (R, z)]dz
∣∣ � 1. (4.8)

Integration by parts implies that

I5 = ∣∣ ∫ π

−π

(
ur

r

∣∣∣∣
r0

R
+

∫ r0

R

ur

r2
dr

)
dz

∣∣ � 1. (4.9)
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Also the boundedness of u indicate that

I6 �
∣∣ ∫ π

−π

∫ r0

1
r−2drdz

∣∣ � 1. (4.10)

Combining the above, we obtain the boundedness of the right hand of (4.4),
which shows, for any R > 1, R < r < 2R, that

∣∣∣ ∫ π

−π

(p(r, z) − p(R, z))dz
∣∣∣ � 1. (4.11)

Then, according to the mean value theorem, fixing R > 1, for any R < r < 2R,
there exists z(r), such that∣∣p(r, z(r)) − p(R, z(r))

∣∣ � 1. (4.12)

Combination of (4.12) and uniform boundedness of ∂z p, we can get for R > 1,
any R < r < 2R, and z ∈ [−π, π ], the following bound on oscillation of p:

|p(r, z) − p(R, 0)|
= |(p(r, z) − p(r, z(r))) + (p(r, z(r)) − p(R, z(r)))

+ (p(R, z(r)) − p(R, 0))|
� (|∂z p(r, z1)| + |∂z p(R, z2)|)(|z − z(r)| + |z(r)|) + |p(r, z(r)) − p(R, z(r))|
� 1,

(4.13)
where z1, z2 ∈ [−π, π ] and we have used the mean value theorem.

4.2. Vanishing of u

First we use the one dimensional Poincaré inequality and the boundedness of
the Dirichlet integral to prove that∫ π

−π

∫
R2

|ur |2dx � 1. (4.14)

To start, we claim that∫ π

−π

ur (r, z)dz = 0, ∀r � 0.

This can be seen from integrating the divergence free condition in the z direction:

∂r ur + ur

r
+ ∂zuz = 0,

giving us, since uz is periodic in z,

r∂r

∫ π

−π

ur dz +
∫ π

−π

ur dz = 0.
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Therefore (
r
∫ π

−π

ur (r, z)dz

)′
= 0,

i.e.

r
∫ π

−π

ur (r, z)dz = 0 ×
∫ π

−π

ur (0, z)dz = 0.

This proves the claim. Alternately we can use
∫ π

−π
ur dz = − ∫ π

−π
∂z Lθdz = 0,

where Lθ is the angular stream function. But this requires to construct a global
stream function through the equation

�Lθ − 1

r2
Lθ = −wθ,

which may take longer.
Hence we have ∫ π

−π

∫
R2

|ur |2dx

=
∫
R2

∫ π

−π

(
ur −

∫ π

−π

ur dz

)2

dx ′dz

�
∫
R2

∫ π

−π

∣∣∂zur |2dzdx ′

�
∫ π

−π

∫
R2

∣∣∇u|2dx � 1.

Let φ(s) be a smooth cut-off function satisfying

φ(s) =
{
1 s ∈ [0, 1],
0 s � 2,

(4.15)

with the usual property that φ, φ′ and φ′′ are bounded. Set φR(y′) = φ(
|y′|
R ) where

R is a large positive number. For convenience of notation, we denote I = [−π, π ].
Now testing the Navier–Stokes equation

u · ∇u + ∇ p = �u

with uφR , we obtain∫
R2×I

−�u(uφR)dx =
∫
R2×I

−(u · ∇u + ∇(p − p(R, 0))(uφR)dx .

Integration by parts indicates that∫
R2×I

|∇u|2φRdx − 1

2

∫
R2×I

|u|2�φRdx

= −1

2

∫
R2×I

u · ∇|u|2φRdx +
∫
R2×I

(p − p(R, 0))u · ∇φRdx

= 1

2

∫
R2×I

|u|2u · ∇φRdx +
∫
R2×I

(p(r, z) − p(R, 0))u · ∇φRdx .
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Denote B̄2R/R := {x ′|R ≤ |x ′| � 2R} i.e. the dyadic annulus. Then we have, since
φR depends only on r , that∫

R2×I
|∇u|2φRdx

� 1

R2

∫ π

−π

∫
B̄2R/R

|u|2dx + 1

R

∫ π

−π

∫
B̄2R/R

|ur | |u|2dx

+ sup
R<r<2R,z∈[−π,π ]

∣∣(p(r, z) − p(R, 0))
∣∣ ∫ π

−π

∫
B̄2R/R

|ur ||∂rφR |dx

�
‖u‖2

L∞(B̄2R/R×[−π,π ])
R2

∫ π

−π

∫
B̄2R/R

dx

+
‖u‖2

L∞(B̄2R/R×[−π,π ])
R

(∫ π

−π

∫
B̄2R/R

(ur )2dx

)1/2 (∫ π

−π

∫
B̄2R/R

dx

)1/2

+ C0

R

( ∫ π

−π

∫
B̄2R/R

|ur |2dx
)1/2( ∫ π

−π

∫
B̄2R/R

dx
)1/2

(by (4.13))

� ‖u‖2
L∞(B̄2R/R×[−π,π ]) + C0

( ∫ π

−π

∫
B̄2R/R

|ur |2dx
)1/2

.

Here

C0 = C sup
R<r<2R,z∈[−π,π ]

∣∣(p(r, z) − p(R, 0))| + C‖u‖2
L∞(B̄2R/R×[−π,π ]).

Now let R → +∞, using (4.14) and the assumption that u → 0 as r → ∞, we
arrive at ∫

R2×I
|∇u|2dx = 0,

which shows that u ≡ c. Besides, we have lim
|x ′|→∞

u = 0, then at last we deduce

u ≡ 0. (4.16)

This completes the proof of the theorem. 
�

5. Proof of Theorem 1.4

5.1. The Green Function in R
2 × [0, 1]

Lemma 5.1. Let G = G(x, y) be the distribution solution of the following equa-
tion, namely the Green’s function:{

− �G(x, y) = δ(x, y), y ∈ R
2 × [0, 1],

G(x, y)|y3=0 = G(x, y)|y3=1 = 0.
(5.1)
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Then G(x, y) has the following representation formula:

G(x, y) = 1

4π

+∞∑
n=−∞

{
1√

|x ′ − y′|2 + |x3 − y3 + 2n|2 − 1√
|x ′ − y′|2 + |x3 + y3 − 2n|2

}
.

Proof. We can use Method of Images to deduce the precise formula of G(x, y).
Readers can see Example 2.13 in [17] for a proof in R

1 ×[0, 1]. The derivation for
the case R

2 × [0, 1] is similar, we omit the details.

Lemma 5.2. Let G(x, y) be the Green function in Lemma5.1, then there exists a
c > 0 such that

|G(x, y)| � c

|x ′ − y′|(1 + |x ′ − y′|) + |x3 − y3| (5.2)

and

|∂x ′,y′ G(x, y)| � c

|x ′ − y′|2(1 + |x ′ − y′|) + |x3 − y3|2 (5.3)

with x ′ = (x1, x2) and y′ = (y1, y2).

Proof. Since the proof is a series of tedious computation, we put it in theAppendix.
Faster decay for the Green’s function is also true, but we will not need it here. 
�

Lemma 5.3. Let G(x, y) be defined as above. Denote x = (r cos θ, r sin θ, z) and
y = (ρ cosφ, ρ sin φ, l), then we have the following estimates when |ρ −r | � 1

4r:

∫ 2π

0
|G(x, y)|dφ �

⎧⎪⎪⎨
⎪⎪⎩

1

r |ρ − r | 1 ≤ |ρ − r | � r

4
,

1

r
ln(1 + r

|ρ − r | ) |ρ − r | < 1,
(5.4)

∫ 2π

0
|∂ρ,r G(x, y)|dφ �

⎧⎪⎪⎨
⎪⎪⎩

1

r |ρ − r |2 1 ≤ |ρ − r | � r

4
,

1

r(|ρ − r | + |z − l|) |ρ − r | < 1.
(5.5)

Proof. Remember that x ′ = (r cos θ, r sin θ), y′ = (ρ cosφ, ρ sin φ), then we can
get

|x ′ − y′| =
√

ρ2 + r2 − 2ρr cos(θ − φ)
θ=0����

√
(ρ − r)2 + 4ρr sin2

φ

2
.
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When |ρ − r | < 1, from Lemma 5.2, it is easy to see that

∫ 2π

0
|G(x, y)|dφ �

∫ 2π

0

1

|x ′ − y′|dφ

�
∫ π

0

dφ√
(ρ − r)2 + 4ρr sin2 φ

�
∫ π

2

0

dφ√
(ρ − r)2 + 4ρr sin2 φ

≈
1

r

∫ π
2

0

dφ√
κ2 + sin2 φ

with κ2 = |ρ − r |2
4ρr

� 1

≈
1

r

( ∫ π
4

0
+

∫ π
2

π
4

) dφ√
κ2 + sin2 φ

.

(5.6)

If φ ∈ [0, π
4 ], sin φ ≈ φ and if φ ∈ [π

4 , π
2 ], sin φ ≈ 1, then (5.6) implies that

∫ 2π

0
|G(x, y)|dφ ≈

1

r

( ∫ π
4

0

dφ√
κ2 + φ2

+
∫ π

2

π
4

dφ√
κ2 + 1

)

≈
1

r

( ∫ π
4κ

0

dφ

1 + φ
+ 1

)

� 1

r
ln

(
2 + 1

κ

)
� 1

r
ln

(
2 + r

|ρ − r |
)

(5.7)

When 1 ≤ |ρ − r | < r/4, from Lemma 5.2, it is easy to see that

∫ 2π

0
|G(x, y)|dφ

�
∫ 2π

0

1

|x ′ − y′|2 dφ

�
∫ π

0

dφ

(ρ − r)2 + 4ρr sin2 φ

�
∫ π

2

0

dφ

(ρ − r)2 + 4ρr sin2 φ

≈
1

r2

∫ π
2

0

dφ

κ2 + sin2 φ
with κ2 = |ρ − r |2

4ρr
� 1

≈
1

r2

( ∫ π
4

0
+

∫ π
2

π
4

) dφ

κ2 + sin2 φ
.

(5.8)

If φ ∈ [0, π
4 ], sin φ ≈ φ and if φ ∈ [π

4 , π
2 ], sin φ ≈ 1, then the above inequality

implies that
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∫ 2π

0
|G(x, y)|dφ ≈

1

r2

( ∫ π
4

0

dφ

κ2 + φ2 +
∫ π

2

π
4

dφ

κ2 + 1

)

≈
1

r2

( 1
κ

∫ π
4κ

0

dφ

1 + φ2 + 1
)

� 1

r2
(
1

κ
+ 1)

� 1

r |ρ − r | . (5.9)

When |ρ − r | < 1, from Lemma 5.2, it is easy to see that

∫ 2π

0
|∂ρ,r G(x, y)|dφ

�
∫ 2π

0

1

|x ′ − y′|2 + |x3 − y3|2 dφ

�
∫ π

0

dφ

(ρ − r)2 + |z − l|2 + 4ρr sin2 φ

�
∫ π/2

0

dφ

(ρ − r)2 + |z − l|2 + 4ρr sin2 φ

≈
1

r2

∫ π
2

0

dφ

κ2 + sin2 φ
with κ2 = |ρ − r |2 + |z − l|2

4ρr
� 1

≈
1

r2

( ∫ π
4

0
+

∫ π
2

π
4

) dφ

κ2 + sin2 φ
.

(5.10)

If φ ∈ [0, π
4 ], sin φ ≈ φ and if φ ∈ [π

4 , π
2 ], sin φ ≈ 1, then (5.10) implies that

∫ 2π

0
|∂ρ,r G(x, y)|dφ ≈

1

r2

( ∫ π
4

0

dφ

κ2 + φ2 +
∫ π

2

π
4

dφ

κ2 + 1

)

≈
1

r2

( 1
κ

∫ π
4κ

0

dφ

1 + φ2 + 1
)

� 1

r2
(
1

κ
+ 1)

� 1

r(|ρ − r | + |z − l|) . (5.11)
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When 1 ≤ |ρ − r | < r/4, from Lemma 5.2, it is easy to see that∫ 2π

0
|∂ρ,r G(x, y)|dφ

�
∫ 2π

0

1

|x ′ − y′|3 dφ

�
∫ π

0

dφ[
(ρ − r)2 + 4ρr sin2 φ

]3/2
�

∫ π
2

0

dφ[
(ρ − r)2 + 4ρr sin2 φ

]3/2
≈

1

r3

∫ π
2

0

dφ[
κ2 + sin2 φ

]3/2 with κ2 = |ρ − r |2
4ρr

� 1

≈
1

r3

( ∫ π
4

0
+

∫ π
2

π
4

) dφ[
κ2 + sin2 φ

]3/2 .

(5.12)

If φ ∈ [0, π
4 ], sin φ ≈ φ and if φ ∈ [π

4 , π
2 ], sin φ ≈ 1, then the preceding inequality

implies that∫ 2π

0
|∂ρ,r G(x, y)|dφ ≈

1

r3

( ∫ π
4

0

dφ[
κ2 + φ2

]3/2 +
∫ π

2

π
4

dφ[
κ2 + 1

]3/2
)

≈
1

r3

( 1
κ

∫ π
4κ

0

dφ[
1 + φ2

]3/2 + 1
)

� 1

r3
(
1

κ2 + 1)

� 1

r |ρ − r |2 . (5.13)


�

5.2. Decay of the Velocity u: |u| �
( ln r

r

)1/2
.

In this subsection, we prove the estimate

|u| �
( ln r

r

)1/2
. (5.14)

The proof is based on the following Brezis − Gallouet inequality [1] and its
refinement, together with scaling techniques:

Lemma 5.4. Let f ∈ H2(�) where � ⊂ R
2. Then there exists a constant C�,

depending only on �, such that

‖ f ‖L∞(�) � C�‖ f ‖H1(�) log
1/2 (

e + ‖� f ‖L2(�)

‖ f ‖H1(�)

)
. (5.15)
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Remark 5.1. Usually we will use the following inequality instead of (5.15):

‖ f ‖L∞(�) � C�(1 + ‖ f ‖H1(�)) log
1/2 (

e + ‖� f ‖L2(�)

)
. (5.16)

Using Lemma 5.4, we can prove the refined Brezis − Gallouet inequality
whose constant is independent of the thinness of the domain. A price to pay is that
the functions need to have zero boundary value in the z direction or mean zero in
the z direction. This property will be needed later.

Lemma 5.5. Set

D̄0 = {(r, z) : 1/2 < r < 2, z ∈ [0, 1/λ]}.
Then if f ∈ H2(D̄0) satisfies

∫ 1/λ

0
f dz = 0 or f |z=0,1/λ = 0, (5.17)

we have

‖ f ‖L∞(D̄0)
� C0(1 + ‖∇ f ‖L2(D̄0)

) log1/2(e + 1

λ
‖� f ‖L2(D̄0)

), (5.18)

where C0 is independent of λ.

Proof. Note that we can not simply make zero extension for f outside of the
domain and apply the regular Brezis-Gallouet inequality. The reason for this is that
the extended function may not be in H2.

Let f̃ (r̃ , z̃) = f (r̃/λ, z̃/λ) where (r̃ , z̃) ∈ D̄0,λ and

D̄0,λ = {(r, z) : λ/2 < r < 2λ, z ∈ [0, 1]}.
Using (5.16), we get

‖ f (r, z)‖L∞(D̄0)

= ‖ f̃ (r̃ , z̃)‖L∞(D̄0,λ)

� C0(1 + ‖ f̃ ‖H1(D̄0,λ)) log
1/2 (

e + ‖� f̃ ‖L2(D̄0,λ)

)
= C0(1 + ‖∇ f̃ ‖L2(D̄0,λ) + ‖ f̃ ‖L2(D̄0,λ)) log

1/2 (
e + ‖� f̃ ‖L2(D̄0,λ)

)
.

(5.19)

We mention that the constant C0 is independent of λ. The reason is that we can first
extend the function f̃ to be a H2 function in thewhole (r, z) space. From the proof of
the original Brezis-Gallouet inequality, we know the constant relies only on the H2

extension property of functions in a domain. The extension property only depends
on the thickness of the original rectangle, which is scaled to 1. Alternatively, one
can also just pick a point in D̄0,λ and apply the usual Brezis- Gallouet inequality
in a unit ball centered at this point.
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By the variable change and relationship between f and f̃ . we can get

‖∇ f̃ ‖L2(D̄0,λ)
= ‖∇ f ‖L2(D̄0)

, ‖ f̃ ‖L2(D̄0,λ)
= λ‖ f ‖L2(D̄0)

, ‖� f̃ ‖L2(D̄0,λ)
= 1

λ
‖� f ‖L2(D̄0)

.

(5.20)
Inserting (5.20) into (5.19), we get

‖ f (r, z)‖L∞(D̄0)

� C0(1 + ‖∇ f ‖L2(D̄0)
+ λ‖ f ‖L2(D̄0)

) log1/2
(
e + 1

λ
‖� f ‖L2(D̄0)

)
.

(5.21)

Now if f satisfies (5.17), by using Poincaré inequality, we have

λ‖ f ‖L2(D̄0)
� C‖∇ f ‖L2(D̄0)

,

whereC is independent of λ. At last, combination of the above inequality and (5.21)
indicates (5.18). 
�

Now we can prove (5.14), the decay of u.
Fixing x0 ∈ R

2 × [0, 1] such that |x ′
0| = r0 is large. Without loss of generality,

we can assume, in the cylindrical coordinates, that x0 = (r0, 0, 0), i.e. z0 = 0,
θ0 = 0. Consider the scaled solution

ũ(x̃) = r0u(r0 x̃),

which is also axially symmetric. Hence ũ can be regarded as a two variable function
of the scaled variables r̃ , z̃. Consider the two dimensional domain

D̃ = {(r̃ , z̃) |, 1/2 � r̃ � 2, |z̃| � 1/r0}.
Then for ũ = ũ(r̃ , z̃), we have ũ(1, 0) = r0u(x0).

Recall that u satisfies the Dirichlet boundary condition. Applying the refined
Brezis-Gallouet inequality (Lemma 5.5) on D̃, after a simple adjustment on con-
stants, we can find an absolute constant C such that

|ũ(1, 0)| � C

[(∫
D̃

|∇̃ũ|2dr̃dz̃

)1/2

+ 1

]

× log1/2
[(∫

D̃
|�̃ũ|2dr̃dz̃

)1/2

+
(∫

D̃
|ũ|2dr̃dz̃

)1/2

+ e

]
,

where ∇̃ = (∂r̃ , ∂z̃) and �̃ = ∂2r̃ + ∂2z̃ . By the assumption that 1/2 � r̃ � 2, we
see that

|ũ(1, 0)| � C

[(∫
D̃

|∇̃ũ|2r̃dr̃d z̃

)1/2

+ 1

]

× log1/2
[(∫

D̃
|�̃ũ|2r̃dr̃d z̃

)1/2

+
(∫

D̃
|ũ|2r̃dr̃d z̃

)1/2

+ e

]
.
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Now we can scale this inequality back to the original solution u and variables
r = r0r̃ and z = r0 z̃ to get

r0|u(x0)| � C

[
√

r0

(∫
D0

|∇u|2rdrdz

)1/2

+ 1

]

× log1/2
[

r3/20

(∫
D0

(|∂2r u|2 + |∂2z u|2)rdrdz

)1/2

+r−1/2
0

(∫
D0

|u|2rdrdz

)1/2

+ e

]
,

where

D0 = {(r, z) |r0/2 � r � 2r0, 0 � z � 1}.
By condition (1.12), this proves the claimed decay of velocity. Note that by our
assumption in the theorem, the solution u is globally bounded and then it’s not hard
to prove that the first and second derivatives of u are also bounded.

5.3. Decay of wr, wz : |(wr,wz)| � r−1 ln r .

First we investigate the boundary conditions for wr , wz . We will show that

∂zw
r
∣∣
z=0,1 = 0, wz

∣∣
z=0,1 = 0. (5.22)

These 0 boundary values allow us to work on the vorticity equation with ease.
From (1.6) and (1.7), we see that

∂zw
r = −∂2z uθ = −(ur∂r + uz∂z)u

θ − ur uθ

r
+ (∂2r + 1

r
∂r − 1

r2
)uθ .

The Dirichlet boundary condition on ur , uθ , uz indicates that

∂zw
r
∣∣
z=0,1 = −(ur∂r + uz∂z)u

θ − ur uθ

r
+

(
∂2r + 1

r
∂r − 1

r2

)
uθ

∣∣
z=0,1 = 0.

Also from (1.7), we have that

wz
∣∣
z=0,1 = 1

r
∂r

(
ruθ

) ∣∣
z=0,1 = 0.

Thus we can do integration by parts for the first and third equation of (1.8)
without any boundary terms coming out. In addition, we have∫ 1

0
wr dz =

∫ 1

0
−∂zuθ dz = −uθ (r, 1) + uθ (r, 0) = 0. (5.23)

We pick a point x0 ∈ R
3 such that |x ′

0| ≡ λ is large and carry out the scaling
for the velocity and vorticity:

ũ(x̃) = λu(λx̃) = λu(x)
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w̃(x̃) = λ2w(λx̃) = λ2w(x),

where x̃ = x
λ
.

For simplification of notation, we temporarily drop the “ ∼ " symbol when
computations take place under the scaled sense. Define the domains

D1 = {(r, θ, z) : 1
2

< r <
3

2
, 0 � θ � 2π, z ∈ [0, 1/λ]}

and

D2 = {(r, θ, z) : 3
4

< r <
5

4
, 0 � θ � 2π, z ∈ [0, 1/λ]}.

Letψ = ψ(y′) be a cut-off function satisfying supp ψ(y′) ⊂ D1 andψ(y′) = 1
for y ∈ D2 such that the gradient of ψ is bounded. Note that ψ is independent of
the z variable. Now testing the first and third one of the vorticity equations (1.8)
with wrψ2 and wzψ2 respectively, we have

−
∫
D1

wrψ2(� − 1

r2
)wr dy

= −
∫
D1

[
(ur∂r + uz∂z)w

r · wrψ2 − (wr∂r + wz∂z)u
r · wrψ2

]
dy.

−
∫
D1

wzψ2�wzdy

= −
∫
D1

[
(ur∂r + uz∂z)w

z · wzψ2 − (wr∂r + wz∂z)u
z · wzψ2

]
dy.

Then we have

∫
D1

(
|∇(wr ψ)|2 + (wr )2ψ2

r2

)
dy

=
∫
D1

(
(wr )2|∇ψ |2 − 1

2
ψ2(ur ∂r + uz∂z)(w

r )2

+ (wr )2ψ2∂r ur + wr wzψ2∂zur
)

dy

=
∫
D1

(
(wr )2|∇ψ |2 + 1

2
(wr )2(ur ∂r + uz∂z)ψ

2

− 2ur wr ψ∂r (wr ψ) − (wr ψ)2
ur

r
− ur ∂z(w

r ψwzψ)
)

dy

� C(1 + ‖(ur , uz)‖L∞(D1))‖wr ‖2L2(D1)
+ 1

4

(‖∇(wr ψ)‖2L2(D1)
+ ‖∇(wzψ)‖2L2(D1)

)
+ C‖ur ‖2L∞(D1)

(‖wr ‖2L2(D1)
+ ‖wz‖2L2(D1)

)
� C(1 + ‖(ur , uz)‖2L∞(D1)

)‖(wr , wz)‖2L2(D1)
+ 1

4
‖(∇(wr ψ),∇(wzψ)

)‖2L2(D1)
,

(5.24)
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and∫
D1

|∇(wzψ)|2dy

=
∫
D1

(
(wz)2|∇ψ |2 − 1

2
ψ2(ur ∂r + uz∂z)(w

z)2

+ wr wzψ2∂r uz + (wzψ)2∂zuz
)

dy

=
∫
D1

(
(wz)2|∇ψ |2 + 1

2
(wz)2(ur ∂r + uz∂z)ψ

2

− 2uzwzψ∂z(w
zψ) − uz∂r (wr ψwzψ) − wzwr ψ2 uz

r

)
dy

� C(1 + ‖(ur , uz)‖L∞(D1))‖wz‖2L2(D1)
+ 1

4

(‖∇(wr ψ)‖2L2(D1)
+ ‖∇(wzψ)‖2L2(D1)

)
+ C‖(ur , uz)‖2L∞(D1)

(‖wr ‖2L2(D1)
+ ‖wz‖2L2(D1)

)
� C(1 + ‖(ur , uz)‖2L∞(D1)

)‖(wr , wz)‖2L2(D1)
+ 1

4
‖(∇(wr ψ),∇(wzψ)

)‖2L2(D1)
.

(5.25)
From (5.24) and (5.25) we obtain

‖(∇wr ,∇wz)‖2L2(D2)

� C(1 + ‖(ur , uz)‖L∞(D1))
2‖(wr , wz)‖2L2(D1)

.
(5.26)

Since our scaled wr , wz satisfies (5.17), we apply (5.18) to get

‖(wr , wz)‖L∞(D̄0)

� C0(1 + ‖∇(wr , wz)‖L2(D̄0)
) log1/2(e + 1

λ
‖�(wr , wz)‖L2(D̄0)

).

(5.27)

Now inserting (5.26) into (5.27) implies that

‖(wr , wz)‖L∞(D̄0)

� C0

(
1 + (1 + ‖(ur , uz)‖L∞(D1))‖(wr , wz)‖L2(D1)

)
× log1/2(e + 1

λ
‖�(wr , wz)‖L2(D̄0)

). (5.28)

Now scaling back, to the domains

D0,λ = {(r, θ, z) : λ − 1 < r < λ + 1, 0 � θ � 2π, z ∈ [0, 1]},
D1,λ = {(r, θ, z) : λ

2
< r <

3λ

2
, 0 � θ � 2π, z ∈ [0, 1]},

we can get

λ2‖(wr , wz)‖L∞(D0,λ)

� C0

(
1 + (1 + λ‖(ur , uz)‖L∞(D1,λ))λ

1/2‖(wr , wz)‖L2(D1,λ)

)
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× log1/2(e + λ3/2‖�(wr , wz)‖L2(D̄0,λ)). (5.29)

From (5.14) we have |(ur , uz)(x)| � (ln r)1/2

r1/2
with |x ′| = r , therefore (5.29)

implies that
|(wr , wz)(x0)| � λ−1 ln λ, (5.30)

with λ = |x ′
0|.

5.4. Decay of ∂zw
r and ∂rw

z: |(∂zwr, ∂rw
z)| � r−3/2(ln r)3/2.

Nowwe use the scaling technique and refined Brezis −Gallouet inequality to
prove the decay of J := ∂zw

r and � = ∂rw
z . First we observe that the boundary

conditions of J,� are 0:
J |z=0,1 = �|z=0,1 = 0. (5.31)

These follow from the relation that wr = −∂zuθ , and wz = ∂r uθ + uθ /r and the
equation for uθ . From (1.8), we see that (J,�) satisfy⎧⎪⎨

⎪⎩
(� − 1

r2
)J = ∂z

[
(ur∂r + uz∂z)w

r ] − ∂z
[
(wr∂r + wz∂z)u

r ],
(� − 1

r2
)� = ∂r

[
(ur∂r + uz∂z)w

z] − ∂r
[
(wr∂r + wz∂z)u

z]. (5.32)

Here we are still working on scaled functions and domains without using the tilde
notation, unless stated otherwise.

Set

D3 = {(r, θ, z) : 7
8

< r <
9

8
, 0 � θ � 2π, z ∈ [0, 1/λ]}.

Let ψ(y′) be a cut-off function satisfying supp ψ(y′) ⊂ D2 and ψ(y′) = 1 for
y ∈ D3 such that the gradient of ψ is bounded. Now testing (5.31) with Jψ2 and
�ψ2 respectively, we have

−
∫
D2

Jψ2(� − 1

r2
)Jdy

=
∫
D2

(
− ∂z

[
(ur∂r + uz∂z)w

r ] + ∂z
[
(wr∂r + wz∂z)u

r ])Jψ2dy.

−
∫
D2

�ψ2(� − 1

r2
)�dy

=
∫
D2

(
− ∂r

[
(ur∂r + uz∂z)w

z] + ∂r
[
(wr∂r + wz∂z)u

z])�ψ2dy.

Then we have∫
D2

(
|∇(Jψ)|2 + J 2ψ2

r2

)
dy

=
∫
D2

(
J 2|∇ψ |2 + (ur∂r + uz∂z)w

r∂z(Jψ2) − (wr∂r + wz∂z)u
r∂z(Jψ2)

)
dy

� ‖J‖2L2(D2)
+ ‖(ur , uz)‖2L∞(D2)

‖∇wr‖2L2(D2)

+ ‖(wr , wz)‖2L∞(D2)
‖∇ur‖2L2(D2)

+ 1

2
‖∇(Jψ)‖2L2(D2)

,
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and∫
D2

(
|∇(�ψ)|2 + �2ψ2

r2

)
dy

=
∫
D2

(
�2|∇ψ |2+(ur∂r+uz∂z)w

z∂r (�ψ2) − (wr∂r + wz∂z)u
z∂r (�ψ2)

)
dy

=
∫
D2

(
�2|∇ψ |2 + (ur∂r + uz∂z)w

z(∂r (�ψ)ψ + �ψ∂rψ)

− (wr∂r + wz∂z)u
z(∂r (�ψ)ψ + �ψ∂rψ

))
dy

� ‖�‖2L2(D2)
+ ‖(ur , uz)‖2L∞(D2)

‖∇wz‖2L2(D2)

+ ‖(wr , wz)‖2L∞(D2)
‖∇uz‖2L2(D2)

+ 1

2
‖∇(�ψ)‖2L2(D2)

.

The above two inequalities indicate that

‖(∇ J,∇�
)‖2L2(D3)

� (1 + ‖(ur , uz)‖2L∞(D2)
)‖(∇wr ,∇wz)‖2L2(D2)

+ ‖(wr , wz)‖2L∞(D2)
‖∇(ur , uz)‖2L2(D2)

.

(5.33)

Inserting (5.26) into (5.33) implies

‖(∇ J,∇�
)‖2L2(D3)

� (1 + ‖(ur , uz)‖L∞(D1))
4‖(wr , wz)‖2L2(D1)

+ ‖(wr , wz)‖2L∞(D1)
‖∇(ur , uz)‖2L2(D1)

.

(5.34)

We apply (5.18) to get

‖(J,�)‖L∞(D̄0)

� C0(1 + ‖∇(J,�)‖L2(D̄0)
) log1/2(e + 1

λ
‖�(J,�)‖L2(D̄0)

),

� C0

[
1 + (1 + ‖(ur , uz)‖L∞(D1))

2‖(wr , wz)‖L2(D1)

+‖(wr , wz)‖L∞(D1)‖∇(ur , uz)‖L2(D1)

]
log1/2(e + 1

λ
‖�(J,�)‖L2(D̄0)

).

(5.35)

Now scaling back to the original functions and domains D0,λ, D1,λ, we deduce

λ3‖(J,�)‖L∞(D0,λ)

� C0

[
1 + (1 + λ‖(ur , uz)‖L∞(D1,λ))

2λ1/2‖(wr , wz)‖L2(D1,λ)

+λ2‖(wr , wz)‖L∞(D1,λ)λ
1/2‖∇(ur , uz)‖L2(D1,λ)

]
log1/2(e + λ5/2‖�(J,�)‖L2(D0,λ)).

The above inequality implies that

‖(J,�)(x0)‖L∞(D0,λ) � λ−3/2(ln λ)3/2, |x ′
0| = λ. (5.36)

This is the claimed decay for ∂zw
r and ∂rw

z .
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5.5. Decay of uθ : |uθ | � r−3/2(ln r)5/2 and Vanishing.

In this subsection we prove that uθ decays faster than first order and then use
the maximum principle to conclude that uθ = 0.

Using the Biot − Savart law, for a cut off functions ψ = ψ(x ′), which is
independent of x3, we know, for any smooth, divergence free vector field v, that

−�(vψ) = ψ∇ × (∇ × v) − 2∇ψ · ∇v − v�ψ.

Then using the Green’s function on R
2 × [0, 1] with Dirichlet boundary, we

have

ψv(x) =
∫ 1

0

∫
R2

G(x, y)ψ∇ × (∇ × v)dy

− 2
∫ 1

0

∫
R2

G(x, y)∇ψ · ∇vdy −
∫ 1

0

∫
R2

G(x, y)(�ψ)vdy.

(5.37)

If we write v = uθ eθ , then ∇ × v = wr er + wzez . Let x = (r cos θ, r sin θ, z),
y = (ρ cosφ, ρ sin φ, l). Then from (5.37), we have

ψuθ (x) =
∫ 1

0

∫
R2

G(x, y)ψ(∇ × (wρeρ + wl el )) · eθ dy

−2
∫ 1

0

∫
R2

G(x, y)(∇ψ · ∇v) · eθ dy −
∫ 1

0

∫
R2

G(x, y)(�ψ)v · eθ dy

=
∫ 1

0

∫ 2π

0

∫ ∞
0

G(x, y)ψ(∂lw
ρ − ∂ρwl ) cos(φ − θ)ρdρdφdl

−2
∫ 1

0

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρuφ cos(φ − θ)ρdρdφdl

−
∫ 1

0

∫ 2π

0

∫ ∞
0

G(x, y)(∂2ρψ + 1

ρ
∂ρψ)uφ cos(φ − θ)ρdρdφdl.

By setting θ = 0 and integration by part for the second line of the above equality,
we have

ψuθ (x) =
∫ 1

0

∫ ∞

0

( ∫ 2π

0
G(x, y) cosφdφ

)
(∂lw

ρ − ∂ρwl)ψρdρdl︸ ︷︷ ︸
I1

+ 2
∫ 1

0

∫ ∞

0

( ∫ 2π

0
∂ρG(x, y) cosφdφ

)
∂ρψuφρdρdl︸ ︷︷ ︸

I2

+
∫ 1

0

∫ ∞

0

( ∫ 2π

0
G(x, y) cosφdφ

)
(∂2ρψ + 1

ρ
∂ρψ)uφρdρdφdl︸ ︷︷ ︸

I3

.

(5.38)
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Select the cut-off function ψ such that its support is contained in the annulus
B(0, 5r/4) − B(0, 3r/4) with r = |x ′|. Then,

|I1| �
∫ 1

0

( ∫
|ρ−r |<1

+
∫
1�|ρ−r |� 1

4 r

) ∫ 2π

0
|G(x, y)|dφ(|∂ρwl | + |∂lw

ρ |)ρdρdl

� sup
(ρ,l)∈suppψ

(|∂ρwl | + |∂lw
ρ |)

{∫ 1

0

∫
|ρ−r |�1

ln

(
1 + r

|ρ − r |
)

dρdl

+
∫ 1

0

∫
1<|ρ−r |� r

4

1

|ρ − r |dρdl

}

� r−3/2(ln r)3/2
( ∫ 1

0
ln(1 + r

s
)ds +

∫ r
4

1

1

s
ds

)
︸ ︷︷ ︸

J

.

Since
J � ln r,

we have

I1 � r−3/2(ln r)5/2. (5.39)

Then

|I2| �
∫ 1

0

( ∫
|ρ−r |<1

+
∫
1�|ρ−r |� 1

4 r

) ∫ 2π

0
|∂ρG(x, y)|dφ|∂ρψ ||uφ |ρdρdl

� sup
(ρ,l)∈supp∂ρψ

|uφ |
{∫ 1

0

∫
|ρ−r |�1

1

r(|ρ − r | + |z − l|)dρdl

+
∫ 1

0

∫
1<|ρ−r |� r

4

1

r |ρ − r |2 dρdl

}

� r−1/2(ln r)1/2
(1

r

∫ 1

0

∫ 1

0

1

s + t
dsdt + 1

r

∫ r
4

1

1

s2
ds

)
� r−3/2(ln r)1/2, (5.40)

and

|I3| �
∫ 1

0

( ∫
|ρ−r |<1

+
∫
1�|ρ−r |� 1

4 r

) ∫ 2π

0
|G(x, y)|dφ(|∂2ρψ | + |∂ρψ |

ρ
)|uφ |ρdρdl

� 1

r
sup

(ρ,l)∈supp∂ρψ

|uφ |
{∫ 1

0

∫
|ρ−r |�1

1

r
ln(1 + r

|ρ − r | )dρdl

+
∫ 1

0

∫
1<|ρ−r |� r

4

1

r |ρ − r |dρdl

}

� r−3/2(ln r)1/2
(1

r

∫ 1

0
ln(1 + r

s
)ds + 1

r

∫ r
4

1

1

s
ds

)
� r−5/2(ln r)3/2. (5.41)
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With a combination of (5.38)−(5.41), we can get

|uθ | � r−3/2(ln r)5/2, (5.42)

which induces the vanishing of uθ . Indeed, the function
 = ruθ is known to satisfy
the equation

�
 − 2

r
∂r
 − (ur∂r + uz∂z)
 = 0.

We can regard this equation as a 2 dimensional one for the variables (r, z). i.e.

(∂2r + ∂2z )
 − 1

r
∂r
 − (ur∂r + uz∂z)
 = 0.

From (5.42), we see that

lim
r→∞ 
(r, z) = 0

uniformly for all z. Also 
 = 0 on the boundary of the 2 dimensional domain:

{(r, z) | r � 0, z ∈ [0, 1]}.
Hence, 
 is identically 0 and thus uθ ≡ 0. Otherwise there must be an interior
maximum or minimum, violating the strong maximum principle which applies in
the interior, since the coefficients of the equation are regular there. The theorem is
proven. 
�
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Appendix

In this Appendix, we are devoted to proving the Lemma 5.2 which is equivalent to
the following estimates:

|G(x, y)| �
{

1
|x ′−y′|+|x3−y3| |x ′ − y′| < 1,

1
|x ′−y′|2 |x ′ − y′| > 1,

(A.14)

and

|∂x ′,y′ G(x, y)| �
{

1
|x ′−y′|2+|x3−y3|2 |x ′ − y′| < 1,

1
|x ′−y′|3 |x ′ − y′| > 1.

(A.15)
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The proof is by direct computation. Alternatively, one can also first consider the
heat kernel with Dirichlet boundary condition on R

2 ×[0, 1], which has fast decay
in time. Then one can integrate out the time variable to obtain the Green’s function
estimate. This was the route taken in [6]. We only show the proof of (A.14), and
the proof of (A.15) will be essentially the same and we omit the details.
For simplification of notation and without cause of confusion, we denote

kn,−,+ =
√

|x ′ − y′|2 + |x3 − y3 + 2n|2, kn,+,−=
√

|x ′ − y′|2+|x3 + y3−2n|2,
kn,−,− =

√
|x ′ − y′|2 + |x3 − y3 − 2n|2, kn,+,+=

√
|x ′ − y′|2+|x3 + y3+2n|2.

Case 1: |x′ − y′| < 1

G(x, y) = 1

4π

+∞∑
n=−∞

{
1

kn,−,+
− 1

kn,+,−

}

= 1

4π

{
1

k0,−,+
− 1

k0,+,−

}
︸ ︷︷ ︸

I1

+ 1

4π

{
1

k1,−,+
− 1

k1,+,−

}
︸ ︷︷ ︸

I2

+ 1

4π

n �=0,1∑
n∈Z

{
1

kn,−,+
− 1

kn,+,−

}
︸ ︷︷ ︸

I3,n

.

It is easy to see that

|I1| + |I2| � 1√|x ′ − y′|2 + |x3 − y3|2
. (A.16)

We compute I3 as follows:

|I3,n| � |kn,+,− − kn,−,+|
kn,−,+kn,+,−

= |k2n,+,− − k2n,−,+|
kn,−,+kn,+,−(kn,−,+ + kn,+,−)

= |4x3(y3 − 2n)|
kn,−,+kn,+,−(kn,−,+ + kn,+,−)

. (A.17)

When n ∈ Z, n �= 0, 1, we have

|x3 + y3 − 2n| � |n|, |x3 − y3 + 2n| � |x3 − y3| + |n|,

which indicates that

kn,−,+ � |x ′ − y′| + |x3 − y3| + |n|, kn,+,− � |n|.
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Inserting the above inequality into (A.17), we have

|I3,n| � 1

|n|√|x ′ − y′|2 + |x3 − y3|2 + n2
,

so

n �=0,1∑
n∈Z

|I3,n| �
n �=0,1∑
n∈Z

1

|n|√|x ′ − y′|2 + |x3 − y3|2 + n2

�
∫ ∞

1

1

s
√|x ′ − y′|2 + |x3 − y3|2 + s2

ds

� 1√|x ′ − y′|2 + |x3 − y3|2
. (A.18)

Then (A.16) and (A.18) together indicates the first part of (A.14).
Case 2: |x′ − y′| > 1
Since in this situation, we need to get one more order decay with respect to |x ′− y′|,
we need to compute the sum more carefully:

G(x, y) = 1

4π

+∞∑
n=−∞

{
1

kn,−,+
− 1

kn,+,−

}

= 1

4π

{
1

k0,−,+
− 1

k0,+,−
+ 1

k1,−,+
− 1

k1,+,−
+ 1

k−1,−,+
− 1

k−1,+,−

}
︸ ︷︷ ︸

J1

+ 1

4π

∑
n�2

{
1

kn,−,+
− 1

kn,+,−
+ 1

kn,−,−
− 1

kn,+,+

}
︸ ︷︷ ︸

J2,n

.

Now we will compute J s term by term. For J1,

∣∣∣ 1

k0,−,+
− 1

k0,+,−

∣∣∣ = |k20,−,+ − k20,+,−|
k0,−,+k0,+,−(k0,−,+ + k0,+,−)

= |4x3y3|
k0,−,+k0,+,−(k0,−,+ + k0,+,−)

� 1

|x ′ − y′|3 . (A.19)

By the same techniques, we can prove that

∣∣∣ 1

k1,−,+
− 1

k1,+,−

∣∣∣ +
∣∣∣ 1

k−1,−,+
− 1

k−1,+,−

∣∣∣ � 1

|x ′ − y′|3 . (A.20)
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We see that when |x ′ − y′| > 1 and n � 2,

kn,α,β ≈ |x ′ − y′| + n. α, β ∈ {+,−}. (A.21)

Then

J2,n = k2n,+,− − k2n,−,+
kn,−,+kn,+,−(kn,−,+ + kn,+,−)

+ k2n,+,+ − k2n,−,−
kn,−,−kn,+,+(kn,−,− + kn,+,+)

= 4x3(y3 − 2n)

kn,−,+kn,+,−(kn,−,+ + kn,+,−)
+ 4x3(y3 + 2n)

kn,−,−kn,+,+(kn,−,− + kn,+,+)

= 4x3y3

[
1

kn,−,+kn,+,−(kn,−,+ + kn,+,−)
+ 1

kn,−,−kn,+,+(kn,−,− + kn,+,+)

]
︸ ︷︷ ︸

Kn,1

−8x3n

[
1

kn,−,+kn,+,−(kn,−,+ + kn,+,−)
− 1

kn,−,−kn,+,+(kn,−,− + kn,+,+)

]
︸ ︷︷ ︸

Kn,2

.

Thus, we have

|J2,n| � |Kn,1| + n|Kn,2|.

Next we will show that

∞∑
n=2

|J2,n| �
∞∑

n=2

|Kn,1| +
∞∑

n=2

n|Kn,2|

� 1

|x ′ − y′|2 . (A.22)

Then (A.19), (A.20) and (A.22) together indicate the second part of (A.14).
Using (A.21),

∞∑
n=2

|Kn,1| �
∞∑

n=2

1

(|x ′ − y′| + n)3

�
∫ ∞

0

1

(|x ′ − y′| + s)3
ds � 1

|x ′ − y′|2 .

The hardest part is to estimate Kn,2 since the sum has one more increasing term n
before Kn,2. When we estimate Kn,2, we need one more 1

n coming out compared
with Kn,1.
Denote

Kn,2,1 ≡ kn,−,+ · kn,+,− · (kn,−,+ + kn,+,−) ≈ (|x ′ − y′| + n)3,

Kn,2,2 ≡ kn,−,− · kn,+,+ · (kn,−,− + kn,+,+) ≈ (|x ′ − y′| + n)3.
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Therefore,

|Kn,2| =
∣∣∣ 1

Kn,2,1
− 1

Kn,2,2

∣∣∣
= |K 2

n,2,2 − K 2
n,2,1|

Kn,2,1Kn,2,2(Kn,2,1 + Kn,2,2)

≈ |K 2
n,2,2 − K 2

n,2,1|
(|x ′ − y′| + n)9

. (A.23)

By a direct computation, we can see that

|K 2
n,2,2 − K 2

n,2,1| � |x ′ − y′|4n + |x ′ − y′|2n3 + n5. (A.24)

Inserting (A.24) into (A.23), we can get

∞∑
n=2

n|Kn,2| �
∞∑

n=2

|x ′ − y′|4n2 + |x ′ − y′|2n4 + n6

(|x ′ − y′| + n)9

�
∫ ∞

0

|x ′ − y′|4s2 + |x ′ − y′|2s4 + s6

(|x ′ − y′| + s)9
ds

� 1

|x ′ − y′|2 . (A.25)

Combining the above, we have proved the estimate in (A.14) for G(x, y). The
estimate of ∂x ′,y′ G(x, y) will be essentially the same as G(x, y), since one 1

|x−y|
will come out when we differentiate G(x, y) on x ′, y′, so we omit the details.
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