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Abstract. In this paper, the quasineutral limit of the compressible Navier—-Stokes—Poisson system in the critical LP-type
Besov space is considered. More precisely, we will show that the solution of compressible Navier—Stokes—Poisson equations
will converge to that of incompressible Navier—Stokes equations in the LP framework when the Debye length is proportional
to the Mach number and tends to zero. Moreover, the convergence rate will be obtained.
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1. Introduction

In this paper, we investigate the quasineutral limit for the following compressible Navier—Stokes—Poisson
equations

Op + div(pu) =0,

O (pu) + div(pu @ u) — fAu — (i + 7)Vdivu + VP = pV P, (1.1)

)‘2A(I) =p—- ﬁv
where (p, u, @) represent the electron density, the electron velocity and the electrostatic potential, respec-
tively. The pressure P is a smooth function of p with P’(p) > 0 for p > 0, and the viscosity coefficients
i1, U are constants and satisfy o > 0 and no+ 2 > 0. Such a condition ensures ellipticity for the operator
AA + (i + 7)Vdiv and is satisfied in the physical cases. p > 0 describes the background doping profile,
and in this paper, for simplicity, we set p = 1 and suppose that P’(1) = 1. The parameter \ is the
so-called Debye length (up to a constant factor). The Navier-Stokes—Poisson system is a simplified model
to describe the dynamics of a plasma where the compressible electron fluid interacts with its own electric
field against a constant charged ion background. See [1] for more details.

For simplicity, we will use the abbreviation of “NSP” for “Navier—Stokes—Poisson” later on throughout
the paper.

The quasineutral limit of the NSP has already been studied by many authors. Wang [2] studied the
quasineutral limit for the smooth solution with well-prepared initial data. Jiang and Wang [3] studied
the combined quasineutral and inviscid limit of the compressible Navier—Stokes—Poisson system for weak
solution. Gasser and Marcati [4] studied the NSP system in the context of a combined quasineutral and
relaxation time limit. Donatelli and Marcati [5] investigated the quasineutral limit of the NSP system by
means of dispersive estimates of Strichartz’s type under the assumption that the Mach number is related
to the Debye length. See also [6-12] and references therein for more details on this topic.

We shall prove rigorously that, as the Debye length A\ — 0, the solution of the compressible Navier—
Stokes Poisson system converges strongly to the strong solution of the incompressible Navier—Stokes
equations. In the present paper, we shall consider the general ill-prepared initial data system (1.1), so
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the fast oscillating singular term will be produced by the non-divergence-free part of initial momentum
and has to be described carefully in order to pass into the quasineutral limit.

Formally, if we set A = 0, then we obtain p = 1, which is the so-called quasineutrality regime in plasma
physics, and the behaviour of the fluid can be described by the incompressible Navier—Stokes system

Ow~+v-Vo—pAv+ Vi =0,
{ (1.2)

V-v=0.

The present limit analysis has a very strong analogy with the theory of incompressible limits widely
investigated on mathematical fluid dynamics. In particular, low Mach number limits have been studied
by several authors, among which we recall [13-17]. The quasineutral limit yields to the introduction of a
time scaling because of the incompressible limit regime; in addition, there is an electric potential scaling
which is responsible for a very singular term which requires a more careful analysis of the acoustic waves.
Recall that the Mach number for the compressible flow (1.1) is defined as

|ul
P'(p)

Then letting M — 0, we hope that p keeps a size of 1 and w is of size €, where ¢ is a small parameter.
The incompressible limit scaling is given by

M =

p(t,x) = p°(et,x), wu(t.x)=-eu(ect,z), Ot x)=0%(ct,x),
and the viscosity coefficients are given as
L=¢eW, UV=C¢cr.
with u, v being positive and 2 + nv > 0. Then the system for (p°, u®, ®°) satisfies
Op® + div(p®u®) =0,

vPE  _VeE

¢ (pfuf) + div(p®u® ® u®) — pAu® — (u + v)Vdivu® + = =

NADE = p° — 1,

: (1.3)

where P¢ £ P(p®). Our analysis is performed under the assumption that the previous small parameter e
is related to the Debye length A as in [5] by

A=c¢. (1.4)

The heuristics of quasineutral limit of the compressible NSP system has already been justified rigor-
ously in different contexts as motioned above. However, we remark that all the above results were carried
out in the framework of Sobolev spaces. We strive to study the quasineutral limit for critical regularity
assumption of system (1.1) consistent with those of the well-posedness for system (1.2) in Besov spaces.
For the compressible NSP system, strictly speaking, it does not have any scaling invariance. However, if
we neglect the pressure and the electrostatic potential (the lower-order terms), then it is clear that if (p, u)
solves system (1.1), so does the couple (a°(t,z),u(t,z)) with (a®,u¢) = (a(c*t,cx), cu(c?t, z)), for any
¢ > 0. This motivates us to introduce the critical space, whose norm is invariant under the transformation
(a,u) — (a®uc) (up to a constant independent of c).

In this paper, we focus on the case of ill-prepared data of the form (p§ = 1+ €a§, uf) so that acoustic
waves have to be considered, where (af, u§) are bounded in L? critical Besov spaces. Set p° = 1 + €a°®,
then (a®,u®, ®°) satisfies
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divu®
Opa® + S —div(a®u®),
€

owu® +uf - Vu® — Au® + Va
< (1.5)

g @6
var I(ea®)Au® + VET’

= —K(ea%)

a€

b

€

where I(ga®) = %, K(ea®) = % — 1, and Au® = pAuf + (v + p)Vdivu©.
In order to be more specific, let us pause for a while and introduce the notation and function spaces
that will be used throughout the paper. We will denote a generic constant by C' which may be different
from line to line and denote A < CB by A < B. The notation A = B means A < CB and B < CA.
Littlewood—Paley theory and Besov spaces First, we introduce the Littlewood—Paley decomposition.
There exist two radial smooth functions (), x(z) supported in the annulus ¢ = {{ € R" : 3/4 < |§| <

8/3} and the ball B = {& € R™ : |§| < 4/3}, respectively, such that
X +D p277) =1 VEeR™
>0

> (277 =1 VEeR™{0}.

JEL

AT =

The homogeneous dyadic blocks A ; and the homogenous low-frequency cut-off operators S ; are defined
for all j € Z by

Ajf=¢@7D)f, Sif= > Aif=x(27D)f.
k<j—1
With our choice of ¢, it is easy to see that
AAf=0 if|j—k >2,
o A =0 “7, > (1.6)
Aj(Sk—1fArf)=0 if [j —k[>5.

The next Bernstein-type inequality will be repeatedly used through the paper.

Lemma 1.1 (Lemma2.1 of [18]). Let C be an annulus and B a ball. A constant C exists such that for any
non-negative integer k, any couple (p,q) in [1,00]> with ¢ > p > 1, and any function u of LP, we have

Supplt, C AB = sup ||0%||rs < C’kH)\k"’"(%_%)HuHL;},
|a|=k

Suppis C A\C = C7F I\ |lul|L» < sup [|0%ul|ze < CFFINF||u| 1o
la|=k

Denote Z'(R™) by the dual space of
Z(R™) 2 {f e S(R"): 0°f(0) = 0,Ya € (NUO)"}.
Then the definition of the homogeneous Besov space is the following.

Definition 1.1. Let s be a real number and (p,r) be in [1, o0]?. The homogeneous Besov space B;T consists
of those distributions v € Z/(R™) such that

=

lullg, 2 (32 1Aulz)" < oc.

JEL

3
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Since we work with time-dependent functions valued in Besov spaces, we introduce the norms
el gy = s, )
Also, when performing the parabolic estimate, it is natural to use the following quantity

lullzg i, 2 (D2 A5y 1)

JEL

B lLago,T)"

7

The index T will be omitted if 7" = +o00, and we shall denote by C},(BE’T) the subset of functions

L (B;J) which are continuous from Ry to B;T.
An important estimate for the heat equation in Besov spaces is expressed in the following.

Lemma 1.2. Let p,q,r € [1,00], s € R. Assume that ug € B;;.l, fe fj%pB;jl Let u be a solution of the
equation

Opu — pAu = f,  ult—o = up. (1.7)
Then for t € [0,T], there holds

[l g a1+2ra < C (Jluo

Byt T ||f||£1TB;;1)' (1.8)

Moreover, u € C((0,T7; Bf,;l) if r < oo. Readers can see [18] and [19] for its proof.
Restricting to the case of small-data global solutions, the corresponding well-posedness result for (1.2)
reads as follows:

Theorem 1.1. Assume vy € (B,’.?/Tp‘l)" with V -vg = 0, p < 400, and r € [1,400]. Then there exists a
n ~n(w) such that when
ool g5+ <
then system (1.2) has a unique global solution
n_q

= 0o o .%_;,_1 n
ve (L (Ry; By )N LY (R By, )) (1.9)

which is also in Cy(R.; Bp;j,«_l) if r < 400 and satisfies

H’U||~ niy < CHUOHB;;l < 6'777

.21 .
L~B},. NLIBY,

where the constant C' depends only on p, n and p.

Remark 1.1. The above statement has been proved by J.-Y. Chemin in [19]. Data in general critical
Besov spaces, with a slightly different solution space, have been considered by Kozono and Yamazaki in
[20], and by Cannone, Meyer and Planchon in [21].

We can see that Theorem 1.1 is not related to energy arguments, but to our knowledge, all the present
results about proving the limit of (1.1) to (1.2) strongly rely on the L?-type norms estimates in order to
get rid of the dependence on e. This is due to the presence of the singular first skew symmetric terms
(which disappear when performing L? estimates) in the following linearized equations of (1.5)

ata€+dlz_u :faa
1.10)
Vo | V(-A)laf (
ot — Auf + i ( 3) a =yg°.
€ €

However, the singular terms do not affect the divergence-free part Pu® of the velocity for the divergence-
free part satisfies the heat equation (1.7). Thus, we can expect to deal with Pu® by means of a LP-type
approach the same as that in Theorem 1.1. At the same time, for low frequencies, the singular terms
dominate the evolution of a® and of the potential PLu® of the velocity, which prevent us to use a
LP(p # 2)-type approach and restrict us to handle it only in L2-type spaces as the wave equation is
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ill-posed in the LP(p # 2)-type space. For the high frequencies, we will see that a® and PLu® tend to
behave like the solution of a damped equation and of a heat equation, respectively, and are tractable in
LP-type spaces.

Now let us recall some results related to the equations of Navier—Stokes—Poisson. The global existence
of weak solutions of the compressible NSP system subject to large initial data is shown [22,23]. Hao
and Li [24] gave the global existence and uniqueness of strong solutions in the L? Besov framework,
while Chikami and Danchin [25] study the global existence and decay for the NSP system in the critical
regularity framework. See similar arguments in [26,27]. Wu and Wang [28] give the pointwise estimates
for bipolar compressible Navier—-Stokes—Poisson system in dimension three. Tan et al. in [29] give the
global solutions to the one-dimensional compressible Navier-Stokes—Poisson equations with large data.
Li et al. [30] give an optimal decay rate of the solution of the NPS system in Sobolev spaces, while Wang
[31] established the same time decay rates via a refined pure energy method. See also Bie et al. [32] in
the context of Besov spaces.

When the electrostatic potential ® is a constant, system (1.1) becomes the classical barotropic Navier—
Stokes equations; Danchin [33] proved the global well-posedness of isentropic Navier—Stokes equations in
the critical Besov spaces near equilibrium. Later, this result was extended to more general Besov spaces
in [34-36]. In [13,14], the zero Mach number limit of the isentropic Navier-Stokes equation was studied
in the whole space or torus in the L? critical Besov Space. Recently, Danchin and He [16] extended the
result to the full Navier—Stokes—Fourier system in the LP critical Besov space.

Our paper is arranged as follows. In Sect. 2, we give the main result. In Sect. 3, the global existence
of solutions to system (1.5) is established, while Sect. 4 is devoted to proving the quasineutral limit of
system (1.1) to system (1.2). Some useful estimates in Besov spaces are given in Appendix A.

2. Main results

First, we introduce some notations. For z € §'(R"), the low-frequency and high-frequency parts of z with
respect to a parameter € are defined as

E Ajz and 2= E Ajz,
2ie<Rg 2ie>Rg

where Ry is a sufficiently large constant depending on n, v and p. The corresponding semi-norms are

1

1 1
o= (00 PIAI) T and el = (YD 1Azl
p,r p,r

2ie< Ry 2ie>Ry

Iz

We consider a family of initial data (aO, ug, ®F) so that

.( )ZEEB"/Q 2 (IPJ_ )ZEEB"/2

° ( )h,e c B;L/lp, (fPL )hs e B”/P 17

o Puf € B"/p "

with ®F = — _1( A)~Las.

Our assumptions on the data induce us to look for a solution (a®,u®, ®°) of (1.5) in the following
space XE

o () € Gu(Ras B N IR BYD), (PLus)t* € GolRes BE) 1 L Rys B,
o( )}LEECZ,(R_’_7 n/P)ﬂLl(R+7 n/P), (rpl )hsecb(R+,Bn/p 1)ﬂL1(R Bn/erl)7

o Pu’ ecb(R+7 n/p 1)mL1(R+, ’n/p-'rl)7
)

o (@) € Cy(Rust B "/2> NLY Ry BYY*'2), (@) € Cy(Rys By P2 0 LY Ry BY/PY?),
which is endowed with the norm

)
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1@, u®, @)l xe

_ Y4 h h
= 1” EHL;B"/z szlB"/z + €Ha€||Lo€oB”/p +e 1||aEHL1€Bn/p
4, 1 h,
+ || L;Bn/2 1 Lan/2+1 + ||P €||L:cBn/p 1 Lan/p+1

+ ||,Pu8 Hl:mB;L’/lp71leBn‘/lp+l

+119°]13°

h
PRy i + 7 (2.1)

h
n/2+2 + 52H(I>E|| . LlB”/T’“

LB
We state our main result as follows.

Theorem 2.1. Let n > 2 and p satisfy 2 < p < min (4, 2n/(n — 2)) and p # 4 if n = 2. Assume that the
initial data (af, uf, P5) are as above. Then there there exist two positive constants, n and M, depending
only on n, v, u and the function K, such that if

Co =e 71”@0” Bp/e-2 +5||ao|| By
Pl o+ Pug s e s+ Pl gy <
then system (1.5) has a unique global solution (a®,u®, ®) in X; such that
[[(a%, u®, @%)||x; < MCj. (2.2)

In addition, (a®, P+u®) converges to 0 when e goes to zero and Pu® converges to the solution of system
(1.2) in the following function spaces if Pu§ — vo in the corresponding spaces.

Casen > 3:
a|| a1y < MCget, |[Ptuf L < MCger v
0 0
L2pp, *? 2
p,1 p
1_1
[Pt —vllin%ﬂ_%nLle+% < (||7>u0 ~vll w1y +Cfet” 7). (2.3)
p,1 p,l
Case n =2
las|| w1 < MCge?, |Pruf||  ws_s < MCEGTr
Bpp1 2 B {) 2
) p,
1Pus = vl s gy s g S M(|Pug ol sy +C5EETY) (24)
Le=B,? * nL'B,} °* B, 7 2
where the constant § satisfies 0 < § < % and 6 < 81:%2”
3. Global existence for fixed ¢ in system (1.5)
Making change of unknowns
(a,u,®)(t,z) = (ca®, eu, ®°)(e*t, ex) (3.1)
and the change of data
(a0, uo)(x) := (eag, cug)(ex), (32)

then we note that (a®,u®) solves (1.5) if and only if (a, u, ®) solves the following system
Oa+V-u=-V-(au),
Ou+u-Vu— Au+ Va
= —K(a)Va—I(a)Au+ Vo,
Ad = q,

(3.3)
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where I(CL) = -2 and K( ) — P’(l—‘—a) —1.

1+4+a 1+a
For simplicity, we denote
Ai=201 and I = zh’l,
1 1
2, = (D 2 IAz0) " and el = (Y0 1A=L)
P 27 <Ro P 27> Rg

Up to a harmless constant, we have
71”0’0” n/2 2 + ||PLU’ || n/2 1 +€||a0|| n/p + ||Plu || n/p 1 + H’Pu8||B;/1P717
‘ ‘
~ ol s+ P 0l + ol + [P 0 + [Pl g
= (a0, uo) |l x,,(0)

and
[(a,u, ®)[|x, := [[(a,u, ®)[|x1 = [|(a®, u®, ®°)| x¢.

3.1. A priori estimates to the solution of system (3.3)

Step 1: the incompressible part of the welocity. Applying P to the momentum equation (3.3),, we can
have

{at’Pu—uAPu:P(—u-Vu—I(a).Au).

Using estimate (1.8) in Lemma 1.2 for the heat equation, we have

[Pull, wBF Bt S [[Puoll 3
+H7)(—U-Vu— Au)HL Bg 1- (3.4)
Now we come to estimate the right-hand side of (3.4). Using (A.9) and (4.10), we have
2 2
@2l 5+ S IT@I, 5 120l
S (e a7 el ||u|\LlB;+l,
P
luVal | 2 Sl 55 el g5+
BP L1B?F
By Bernstein inequality,
loll, g3 Slall s +la"l,
Py L=BPr, LeBP
R2 ¢ h n
ollell wpiret lla™]l . 53,
So, we can get
n/2+1 2
1Pull g3t gz S IPuoll 2o+ (1w, ®)) ™ e w, @)1, (3.5)

Step 2: the low-frequency part of (a,Pru). Now we come to estimate the low frequencies of (a, Ptu)

which satisfies
dra + divPru = —div(au),

OPru— (v +2u)APru+ Va+ V(-A)"ta (3.6)
= _pl (u -Vu+ K(a)Va + I(a)Au).
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Without loss of generahty, we set v+ 2u = 1.
Denote a; = A ja and u; = A iu for simplicity. By applying A to (3.6), taking L? inner product of
(3.6), with A™2q; and aj;, (3.6), Wlth PLu;, we arrive at

00 (1P 32 + lasl3e = A" 0032 ) + IVPu; 3
= (A_ldivAj(au)|A_1aj) - (diVAj(au)|aj)
- (Aj (P (u- Vu+ K(a)Va + I(a)Au)) |7>Luj). (3.7)

By applying VAj to (3.6), and Aj to (3.6),, and then taking L? inner product of the resulting equations
with PLuj and Va;, respectively, we arrive at

Oy (Vaj|73luj) — || divPtu, 2, — (VaﬂAPLuj)
+HIVa;liZs + llasl7
= (diVAj(au)|diV79luj)
- (Aj (P (u- Vu+ K(a)Va + I(a) Au)) |Vaj). (3.8)

Multiplying (3.8) by a small constant v(~ Rp) and adding the resulting equation to (3.7), and then by
using Cauchy—Schwarz inequality, we can arrive at

(HPLuJHLz + 27 a2 ) + 29 [P o2 + 2 g e

dt
S A (au)| 22 + HA] (P*(u- Vu+ K(a)Va+I(a)Au)) HL2 (3.9)
The standard energy estimates for the barotropic linearized equations (see [18] or [33]) indicate
la ”eLsz *AL1B2, + HPLUH@O@BZ ‘npip2t
S oy + 1P woll g+ @I, g
+ ||7>l(u : Vu)||2132%1,1 + [P (K (a)Va)||‘LlB§1,1 + [P+ (I(a)Au) ||le3§1,1. (3.10)

Let us bound the right-hand side of the above inequality term by term. By using f = u,g = a,r3 =
00,1y = 1,7=0,71 =719 =2 in (A.7) and interpolations, we have
¢
”(au>||L1Bn/2 1~ HUHL2B"/P Ha||L2B"/P 1+ ||u||LooB"/P 1 ||a||LlB"/P
5 H(a7u7¢))||Xp' (311)
Now let us bound u - Vu in LI(B;L’/lz_l). Using f = u,g = Vu,r3 = 00,74 = 1,7y =0,y =ry =2 in
(A.7) and interpolations, we have
[ (w - VU)HLan/z v Sl poe grim— IV Ull g grre Nl o s IV ull g2 o1

< [l(au, @)% (3.12)

In order to bound K(a)Va, we apply f = K(a),g = Va,r1 =19 =2,7=0,r3 =00,74 =1,y=—11in
(A.6) and interpolations, and then we get
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15(@) - Vals, s S IK @] a1 900 oo

+[| K (a )IILan/pIIVaHLQBn/z 1+ Rol K(a)l g g
(3.13)

n/2+1
) H(a’uv )”Xp'

n/p 1 HVGHLan/p 1

5 RO(1 + ||a’||LooB;‘,/lp
00,7 =14 = 1,7y =—11in (A.7)

To handle the term I(a)Au, we apply f = I(a),g = V?u,r1 = r3

and interpolations. Then we get
1@ Al grses S (RollI@ g oo + 1@ ) V20l g

n/2+1
< Ro(U lall o o)™ (e, @) . (3.14)
Estimates (3.10) to (3.14) indicate that
¢ N
la HL°°B2 *npipd, + P || B3 B3
D)%, - (3.15)

n/2+1
S llaoll, 5 -2 + |\Plu0||2%,1 + (1 + [l(a, u, @) x,) I(a,
21

Step 3: Effective velocity. We follow the approach in [36] to estimate the high frequencies of P+

Introduce the following “effective velocity

w =P u+ (=A)"'Va + (-A)Va.

Then from (3.6), we get
o0 — A = —(1d + (~8)7 )P (an) — (1d + (-2) )P

— (Id+ (=A) "'+ (~A) ") V(-A)la
_pl (u -Vu+ K(a)Va + I(a).Au).

Applying the high-frequency estimate (1.8) of the heat equation to the above w equation, we obtain
[Jw ||LmBn/p BRIV AR ||w0|| g/t + 1+ Ry )||1UHLIB,L/,J 1
+(1+ Ry )IlallLan/p :+(1+ Ry )II(GU)IILan/p 1 (3.16)

(- Vo, K (@) Va, @A) |2,

where we have used the 0-order homogeneity of operator P+, and when 27/ > Ry, we have
2 4
) fHL1Bn/:D 1 NRO ||f||L1B"/P 1-

A) 7l grsor S Bl gopes amd I

(=
n/p-1 Can be absorbed by the left-hand side of (3.16). The

If Ry is sufficiently large, the term ||w||LlB

other terms satisfy the quadratic estimates. We proceed as follows.
To bound H(au)”Lan/p 1, applying f =a,g =u,r1 =r2 = 2,7 =1 in (A.8), we obtain

||au||Lan/p ' S Ry 1||a||]323;‘/1p||U||1323;/1p

< Ry l(a,u, @)%, - (3.17)

For the term ||(u - Vu)||Lan/p 1, applying f = Vu,g =u,y=0,r1 = 1,79 = o0 in (A.8), we get

IIWuHLan/p 1 S ull e grip-2 IVl g
(3.18)

S Il(a, u, @)%, -
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For the term ||(K(a)Va)|

‘LIB’L/;D 1, applying f = K(a),g = Va,y = 0,71 =12 =2 in (A.8), we get

1K (a )VallLan/p 1 S @) 2 grp [Vall g2 e

/241

Ju, @)%, - (3.19)

For the term [|(I(a )Au)HLan/p ., applying f = I(a),g = V2a,v = 0,7,

= 00,73 = 1 in (A.8), we get
7@ A, s S 1@ gy V00 1 g

/241
< Bo(1+ e )

@)% (3.20)
Combining the estimates from (3.16) to (3.20), we conclude that

H ||LOQB;L’/1P—1QL1BZ)/1P+1 S ||w0||%gv/lp—l + R62||a“}£1B"/p

+ Ro(1+ Roll(a,u, @) x,)" " |(a

(3.21)
Ju, ®)I%, -
Step 4: The high frequency of the density. We find that a satisfies

dra+u-Va+a=—adivu — divw — (—A)a.
To bound the high frequency of a, for 2/ > Ry,

dAja+u-VAja+ Aja=—Aj(adivu 4 (—A)
where R; := [u -V, Aj]a.

a+ divw) + R;,
Multiplying (3.22) by Aja|Aja\p_2, and then integrating on R"

(3.22)

x [0, ], we can get

t
1Aza(t) e + / 1Aall zods < 1A jaollze + / Idival| = [|Aja ods
0

t
+/||Aj(adivu+(—A)_1a+divw)||Lpds+/||R-||Lpds
0

(3.23)
Using (A.9), we have

||ad1vu||Bn/p < Ha||Bn/pHdlquBn/p
Commutator estimates in [18] give that

> IRjlle S IV ull gnre lall oo
JEZ ’

Now multiplying (3.23) by 29"/, using the above two estimates and summing over 2/ > Ry, then we get

t
lall e oo + / el s S laoly

/ IVl gpellal e + s o

Therefore, we get

la HLoan/pﬂLan/p < ||ao|\hn/p + Rol|(a,u, ?)II%, + HwIILan/pH (3.24)
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Stepd: Close of the a priori estimate. For a suitable small §, multiply (3.24) by ¢ and then add it to
(3.21). By choosing Ry sufficiently large, we can get

lal? + wl}

LooB”/PleB""/P Loan/p 1ﬂL1B”/p+1

)n/2+1||(

h h
S llwoll g1 + llaol e + Ro(1 + Roll(a, u, ®)]x, Ju, D)%,
P, P,

Since Pruf = w" — (—=A)~1Va", the above estimate still holds for a* and P+u". So we have

lall? + [P ul?

LWB"/pﬁLlB”/” Loan/p lleBn/p+1

n/2+1
S 1P ol + ol + Ro(1+ Foll(@,u, ®)x,)" (@ w, ), (325
Finally, combining estimates (3.5), (3.15) and (3.25) and the relation ® = —(—A)~1a, we have
P < e Lol oo ho Lol
I, @), S ol s + 1P w0l a1+ ol + 1P ol

n/24+1
P (@, @) (3.26)

+ ||’PUO||B;/1P*1 + Ry (1 + ROH(a’ U, CD)“Xp)

3.2. Global existence of the solution to system (3.3)

Now we come to give the global existence of the solution to system (3.3). Define
Xo(T) = {(a,u,®) : a* € L=(0,T; By}* %) N LY(0,T; By 1Y)

a" € L®(0,T; By\?) N LY(0,T; By,Y);
we L=(0,T; By ™) N LY(0,T; By

o' € L=(0,T; By)?) N LY0,T; By, *™); (3.27)
o' e L0, T; B> %) n LH0,T; By > )}, (3.28)
with norm
(@, u, ®)]|x,
= HaH%an/z—z vepe ||a||Loan/2 LB
+ ||u||LOCBn/2 HRVAY: + H(I)||Loo3n/2leBn/2+2 + ||(I)||Lm3n/2+2leBn/2+2
Set

14 h
a0, 40) a0y = ol ra-a + ol + ol g

Duplicating the proof of the a priori estimate (3.26), we can prove that
(@, u, ®)|[x, < (a0, o)l x (o)
n/2+1
+R0(1+R0||(a7u7(1))”Xp) ||(a,u, (I))”XPH(GWMJ (I))HXz' (3'29)

Now by using the a priori estimates (3.26) and (3.29), we sketch the proof of the global existence of
system (3.3). The simplest way is to smooth out the initial data (ag,ug) into a sequence of initial data

(@o,k, U0,k ) ken With

aokGle,uokEBn/z !

and
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||a’0,k - aOHZB;L’/lZ—z + H'PLUO,}c - PLuOHKB;AZ—l + ||a0,k: - a()ll%:’/lp

+[|PLugp — Pruol

hsoor + | Puok — Pugll grps — 0 as k — oo (3.30)
p,1 p,1

Estimate (3.30) implies that there exists a constant Cy such that

[ @0,k wo.k) || x,0) < Cll(ao, o)l x,0) < Con- (3.31)

Now it is not hard to use a Fridrich’s method as in [18] to get that there exists a maximal existence
time T}, > 0 such that system (3.3) have a local unique-in-time solution (ay, ug, Pr) € Xo(T})) with initial
data (ao,k,uo,k). Using the definition of Besov space, it is easy to see that (ax,ux, ®r) € Xp(Tk). The a
priori estimates (3.26) and (3.31) imply that there exists a M such that

| (ar; wr, @)l x, (1) < Mn. (3.32)
Actually, by choosing 7 small and using the a priori estimates (3.29) and (3.32), we can get
[ (ar, uk, Pi)llxy(r) S M@k, wk, Pr)ll x. 00

which implies that T} = oo.
At last, we get that
[ (ar, uk, Pl x,(00) S (@0, uo)llx,0) < Mn. (3.33)

Next, compactness arguments similar to those of [18] allow us to conclude (ag, ug, ®x) weakly converges
(up to extraction) to some function (a,u,®) which is a solution of (3.3) with the desired regularity
properties and satisfies (2.2) with & = 1. Scaling back to the original unknowns (a®, u, ®¢) completes the
proof of the global existence part of Theorem 2.1.

4. The incompressible limit: Strong convergence of the solution

In this section, we combine Strichartz estimates for the following linear system of acoustics:
otb+Av=F

D —(A+A =G (4.1)
(b,v)lt=0 = (bo,vo),

and the uniform estimates in (2.2) for the global solution (a®,u®, ) so as to establish the strong con-
vergence for (a®, P+uf) to zero and for Puc to the solution v of system (1.3) in proper function spaces.

4.1. Convergence to zero of the compressible part

First, we give an estimate for the solution of the linear system (4.1) whose proof can be founded in
Proposition 10.30 of [18].

Proposition 4.1. Let (b,v) be a solution of (4.1). Then, for any s € R and positive T (possibly infinite),
the following estimate holds:

0, yeonciod SN0y, +NED 1o (12)
with -
0222 <min{lo(@} (nan) £ (2,00,3)
1222 <min{ly@), (7.m) # (2,00,3),

where v(q) == (n —1)(3 — %), %—&—% =1, and 1 + L =1

g 77
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Proof. Although there is an extra term A~'b in (4.1), comparing with the equations W, in Proposition
10.30 of [18], however, by going through the proof there, we can still get the same result (4.2) with no
much difference. So, we omit the details for convenience.

Remark 4.1. Actually, the above inequality (4.2) still holds for the low frequency, which means that

1D aogyer SN0l +IEG Ly s (43)
LpBga L% Bﬁ,’1 P
In order to prove the convergence to 0 for the (a®, P1uf), we use the fact that
Opa + e LdivPtus = F*,
N . L (4.4)
OPruf + e Va® +e73V(-A)taf = G,
where
Fe := —div(a®u®)
¢ 1
Ge =Pt ( —uf-Vu© — K(aae)va + Aus).
1+ ea®
Doing the same scaling as in (3.1), we can get
da+ divPru=F
| ) (4.5)
P u+Va+V(-A) a=G,

with
F := —div(au)
1
G := PL(—qu—K(a)VcH— 7Au).
1+a
Obviously, estimate (4.3) stated in Proposition 4.1 also holds for system (4.5) since a and A~'divP+u

satisfy (4.1) with source terms F, A~'divG and A~!div is a homogeneous multiplier of degree 0.
Hence, by taking § = 2,7 = co,s =n/2 — 1 and

—1=1-1 forq€[2 =D if p > 3,
—1=6501- ) for ¢ € [2,00] if n = 2, where § € [0, 3] will be determined later on, we have
Case n > 3:
1@, Pra)l® oy wosy S ll(a0, Pruo)lly 2+ G) HLan/z
La—zB,{ °*
Casen = 2:
@, Pl oy ams yis S ||(a0,7?Luo)H5n/2 L+ [I(F, G)”Lanm
Lé(q z)B q

Duplicating the estimate of (3.10), we can get for n > 2,

II(F, G)IILle S (L l(au, @) x, )™ (0, u, @)1, < Co.

Then we have the following estimates
||(a7,PJ_u)HZ_A on—1_1 S C&, for n > 3,
La-2

cht (4.6)
H(G,PLU)H;S 20 B:fé 14g S < Cf for n = 2.
We also have the estimate
||aHLle/2 + ||7Dlu||Lan/2+1 S C(%a for n > 2. (4.7)
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Recall the complex interpolation inequality
1Fzrosgg, S U150 10150 (48)

Withi:ﬁ+i i:ﬂ+i,59:(179)50+851,and0<9<1 S0 < 81,P0 < p1,70 < T1.

To r1’ pe
When n > 3, set ¢ = 2p — 2 , which satisfies the condition ¢ € [2, 2(" 1)] if p € min{4, -2%} and when

n=2 setqg= 2@(32)2%, which satisfies ¢ > 2if 2 < p < 4.

Using interpolation (4.8) between (4.6) and (4.7) with ¢ chosen as above, we can get

lall’ ooy + 1P Ul oy SChfornz3,

L2B’p’f1 L2prf (4 9)
lalle oy + 1Pl sy S CEforn =2,

LZBPPJ LZBp,f

Back to the original variables in (4.4), we can have for any € > 0,

1_1
o2 5oy SERCE IPLI sy SETICE for m2
L2 B L2B p
lasl oy SERC5 P s, SELETHCE, for n=2.0€ 0,172,
2B}, LB,

Now combining the high-frequency cut-off in (2.2), we obtain

Case n > 3:
ol 54 < la“ ) +llas)™ L,
L p,1 2Bp;:1 2 Bppl ?
S el Ly +er|(af, Prud) | .
Fenp 2 I2BP
p,1 p,1
< e3CE.
l, h,
IPRuf) ey SIS, + PR L
L*B, 7 E?BPYP 2 L2B P 2
SIPHuf| oy , +e277 P f||’” .
2B, 7 2 By

<erTiCE.
Case n = 2: for § € [0, 1],

The estimate of ||a|| is the same as the case n > 3 | while

on_ 1
2B}, *?
‘, h,
[P *u 6” it I _E.m s + [Pt nts g
B, Y i2B,7 2B,
le m 5 +e (% %)H'PL e”ha
ZZB Bpp,l

< 5(%*%)00

This completes the strong convergence of (a®, P+ uf) to 0 with an explicit rate in suitable Besov spaces.
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4.2. Convergence of the incompressible part

Let us now give the convergence of Pu* to the solution v of (1.2). Set v® = Pu® —v. Applying P to (1.5),,
(1.2), and subtracting the latter from the former yield the following equations

Ov® — pAv® = J°,
€ e (4.10)
v%|i—0 = Pug — vo,
with
“i= —P(u - Vo + Pru - Vo +0° - Vo +uf - VPHu® + I(ea®) Auf).
In what follows, we aim at estimating v° in the space
~oo Lontl 3 1 n+1 _‘_% n
(L=(B,0 *)nL'(B,7 7)) (n=3),
and s G
=/ 1 ”p | . %,,+1 n
(L (Bm : ) ﬁL1<Bp71 : )) (n=2).
Set
Yo =07 ntl_s n1,1 ifn >3,
' LeB,? 2nL'B,7 ?
and
Ypm = ||’U€|| n+d s ntd 5 lf n=2.
LBt Z leB P2
We claim that for any p, satisfying the assumptlon stated in Theorem 2.1, we have
11 c .
Yon Se? nC’O+||Puofvo||BnT+1_% ifn > 3. (4.11)
And
1 1
Yon <G08 4 |[Pug — vl s g, fn=2, (4.12)
D, 1
with § € [0,1/2]
Actually, by virtue of inequality (1.8), we have
Yo SIPu = voll wes_y + [ J|  ans_y ifn>3, (4.13)
pl ! Pﬂf
and
Yo S I1Pus —voll sy, + 15| ass s, in=2. (4.14)
Byt Pl

Next, we deal with J¢ term by term by using product and composition estimates in the spirit of the
previous sections.

Case n > 3:
It is easy to see tha % nd o % + % > 0, we will repeatedly use Proposition A.2.

2
P
€ . € < € ' €
L BT e A e

SnYa n,ps

_ n+1

t n+1 S

S Gollvfll
L'B, %

||7)Lu5 . Vvllng%’% S ||'Piu€||~ B% 1 ||V’U||

p,1 p;1

TR

-1

2B 1

S “@\:

11 1
Ser GGl 5 SmPer
pv
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o= Vol | merog ST, e g IVl 2
g,y 2 2B, 7 By,
<an||v|| % S Y,
P
€, 1, < € 1, e
[ - VPZuf|| s St a [[VPTUS] . nia g
LB, 7 ? LQB” 2B, 7 *
S S0t
€ € " < € N 2, € n
IHea) A, g SHEN,n g IV, g
n/2+1
S (@ o)™ el msa g Bl e

Besides, we have

HEGEHL R < |lea® He‘E ntl_1 + [lea® Hh)s nt1l 1
- )

[N

.l L°°B v LOOB v
<e N eV eat| M,
* L=B},
Sel/2mrgs.
Then we get
IFE) - ass s S Yy +22 o0 (4.15)

LB, 7

Plugging estimate (4.15) into (4.13) and remembering that n is sufficiently small, then we obtain

(4.11).
Case n = 2:
In order to use Proposition A.2, we need 2%5 — g
lu Vol nss gy SRl f—lH N mes g
Lt p,f 1 p,f 2

S COH'UEH ,m—g-u SnYn,pa
LlB p

[P Vo .m_g_lﬁllpLus\L nis g [[Vol o
B 7 B 1

p,1

,PL 6H i $1
B,

e . 1,¢€ N < €
HU, VP-u ||LIB¢5_%_1 ~ || ||LQB A

< 66(5—5 (06)2 < 85(5—5)7]2’

I(ea®) Au® " I N V2us n_

[ (ea®)Au ”ngﬁ sy SH(ea” )H ;,,T&’%H u ”ng,}fll
n/2+1

S (Ut 0l g )™l g7l
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Besides, we have

leal wss g Sleal® sy +llea ™ s,
L>B, 7 L=B,? 7 L=B,?
5 56(1/2—1/1))”&5 {75 2 +€5(1/2—1/p)”€aa||ij,e L
LOOB;L1 LochP’l
< 55(1/2—1/1))08_
Then we get
”JEH nts 5 _ <77an+56(%_%)772~ (416)
ey 2 T
p,1
Plugging estimate (4.16) into (4.14) and remembering that n is sufficiently small, then we obtain
(4.12). 0
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Appendix

A Some estimates in Besov spaces

In what follows, we denote the characteristic function defined in Z by x{-} and by {c(j)} ez a sequence
on /! with the norm |[{c(j)}||; = 1.

Lemma A.1. Let s,t, 0,7 € R, 2<p<4dand 1l <r,ri,re,r3,ry < oo with % = % + % = % + i Then
we have the following:
1. For 22 < Ry, if s <n/p and o < 2n/p —n/2, then

||Aj(Tf9)||L;L2
< Ce(j)2//p=s=1)]| f|

4
i;lB;J”g”i;zgé’l

FOX @it PO s e (A1)
orif o <2n/p—n/2, then
HAJ‘(TfQ)”UTL?
< Ce()2 220D fllpn o Nollzre sy - (A.2)

2. For 27 > Ry, if o < n/p, then
14;(Tyg)l
< Ce(DNZP=T D fllzn gy Nollzre sy - (A-3)

Ly Lp
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Proof. First, we decompose Tyg into nge + ngh. Thanks to (1.6), we have
Aj(Trg"y = Y Aj(Sk-1fArg")

[k—j|<4

Z Z Aj(Ak/fAkgé).

|k—jl<4 k' <k—2

Denote J := {(k, k") : |k — j| < 4,k" <k — 2}, and then for 2/ < Ry,
1A (Trg")ll Ly < Z 1A (Aw fFARG) || Ly 22
J

S 22 NAw Fllg o2 I A 227
J

S C(j)Qj(n/pisit)”fHZ,Tle ‘gHLth .
And
HAJ‘(ngh)HL;L? < Z ||Aj(Ak'fAkgh)||LgL2
J
S 2 2Bl 2 O 2T A 127
2k ~2i ~ Ry

S CDX2imry 2 PO fl gy Nl -

The above two estimates for A;(Tjg") and A-(ngh) indicate (A.1). While the proof of (A.2) is
essentially the same with the estimate of A;(Tyg"), we omit the detail. Now we come to prove (A.3). For
27> Ry and 0 < n/p

1A (Trg)llgr <D NA;(Aw fARG)| Ly
J

S Z HAk’fHL:lLoo ||Alc9||L:2Lv
J

< D2 A g2 PO Al g 27
J

< ()2 )

g M9l 7 -

O

Lemma A.2. Let o,7 € R, 2<p<4dand 1 <r,ry,ro < oo with % =L 4 % Assume that o + 7 > 0.
Then we have

1A;R(f, )l s 2
< Ce(f)2Cr/pmn/2=o= T)HfHL”B” 91l 222 57 .5 (A4)
and
IA;R(f, 9)ll s Lo
< Ce(j)2/pmo=) Iz se Nallzgz 7 - (A.5)

Proof. Thanks to (1.6), we have
AjR(f.9)= Y Y. Aj(ArfArg).

k>j—3 |k—k'|<1
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Denote J := {(k,k’) : k> j—3,|k — k'| <1}. Then when o +7 > 0 and 2 < p < 4, we have

1A R, )l pre S 27CMP 20 N || Ak fAwgl g oo
(k,k"ed

< 2Cpmn N T Ak fll s o | Awegll gz o
(k,k")eJ

< 9i@n/p=n/2) Z 2k || Ay f
(k,k" e

< e(j)2ICn/rn 2= |

o2 725 Apg|

—k'T
L;'2 Lp 2

1pe 9z s
and

IA;R(f,9)]

Lo S22 | Acf Al
(k,k")ed

< 27m/r Z ||Akf||L:1LP||Ak/9||L:2Lv
(k,k")eJ

S 27m/P Z 2M”AkaL;‘l LPZikUQkTHAk/9||L:2Lp27k/T
(k,k")eJ

< )2 |

inpe l9lizp; -

This finishes the proof of Lemma A.2.

2

29

0

Proposition A.1. Let 2 < p < min{4, an"} andp £ 4ifn=2.1<rry,ro,ry,ry < oo with % = %—i—% =

Ti + L. Then we have
3 T4 .
For 2l < Ry, vy€R

> 204, (1)

29 <R

rrre SIS

iyt l9l e e

+||f||£:1 B:’/IP ”gH%:z B;l,/ffl + RO_’YHfo‘:SB;’;Y/lpfl ”thf/:‘*B;l’/l”“’; (A6)

ory <0,

S° PO DA ) lgre S U1z oo N9l e s

2i <Ry
JFR(;VHin:sB;’/lp—l||9||i:43;vr1/1p+w- (A.7)
For2l >Ry, 0<~v <1
> 2VIA(Fo)lrr, S Bo S g gl e i (A8)
23>Ro

Proof. Using Bony decomposition fg = Tyg+T,f+R(f, g). For the low frequency, we choose s = n/p,t =
n/2—1,0=n/p—1,7=n/p+~y(y € R) in (A1) for Tfg; 0 =n/p—1,7 =n/p in (A.2) for T, f and

o=n/p,7=n/p—1in (A.4) for R(f,g). Then summing over j for 2/ < Ry indicates (A.6).

Also we can choose 0 =n/p—1,7 =n/p+~y(y <0)in (A.2) for Tyg; c =n/p—1,7 =n/pin (A.2)

for Tyf and 0 = n/p, 7 =n/p—1in (A.4) for R(f,g). Summing over j indicates (A.7).

For the high frequency. Applying ¢ = n/p,7 = n/p — 1+ v in (A.3) for Ttg and in (A.5) R(f,g);

applying o =n/p—1—~,7 =n/p in (A.3) for T, f and summing over j for 2/ > Ry indicates (A.8).
All these finish the proof of the proposition.

O
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Proposition A.2 ([37]). Let 1 < p,r,r1,re < 00 with % = % + %, and s1,82 € R satisfying s1,82 <
Ta51+ 82 > nmaX(O,% —-1).Iffe E?(B;ll) and g € I~,TT2(B;,21), then we have

19l 2y gorror—rroy S WSl o 9l 22 2, - (A.9)

Proposition A.3 ([35]). Assume that F' € Wl[jiH’OO with F(0) = 0. Then for any s > 0,p,r € [1,0], there
holds

1Dz, < COA gzl 5
< O+ 1l o) 1 2 5 - (4.10)
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