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Abstract. In this paper, we study the stationary magnetohydrodynamics system in R
2×T. We prove trivialness of D-solutions

(the velocity field u and the magnetic field h) when they are swirl-free. Meanwhile, this Liouville type theorem also holds
provided u is swirl-free and h is axially symmetric, or both u and h are axially symmetric. Our method is also valid for
certain related boundary value problems in the slab R

2 × [−π, π].
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1. Introduction

In this paper, we consider the stationary magnetohydrodynamics system
⎧
⎨

⎩

u · ∇u + ∇p − h · ∇h − Δu = 0,
u · ∇h − h · ∇u − Δh = 0,
∇ · u = ∇ · h = 0,

(1.1)

in R
2 × T or in the slab R

2 × [−π, π], where u(x), h(x) ∈ R
3, p(x) ∈ R represent the velocity vector,

the magnetic field and the scalar pressure respectively. The MHD equations, which describe the state of
the fluid flows of plasma, are fundamental partial differential equations in nature. For the background of
the MHD system, we refer readers to [10] for more details. We note that if h ≡ 0, the MHD system is
reduced to the Navier–Stokes system.

In the following, we will carry out our proof in the cylindrical coordinates (r, θ, z). That is, for
x = (x1, x2, x3) ∈ R

3

⎧
⎨

⎩

r =
√

x2
1 + x2

2,
θ = arctan x2

x1
,

z = x3.

(1.2)

And the solution of the incompressible stationary magnetohydrodynamics system is given as

u = ur(r, θ, z)er + uθ(r, θ, z)eθ + uz(r, θ, z)ez,

h = hr(r, θ, z)er + hθ(r, θ, z)eθ + hz(r, θ, z)ez,

where the basis vectors er, eθ, ez are

er =
(x1

r
,
x2

r
, 0

)
, eθ =

(
−x2

r
,
x1

r
, 0

)
, ez = (0, 0, 1).
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The components ur, uθ, uz, hr, hθ, hz satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ur∂r + 1

r uθ∂θ + uz∂z

)
ur − (uθ)2

r + 2
r2

∂θuθ + ∂rp =
(
hr∂r + 1

r hθ∂θ + hz∂z

)
hr − (hθ)2

r +
(
Δ − 1

r2

)
ur,

(
ur∂r + 1

r uθ∂θ + uz∂z

)
uθ + uθur

r − 2
r2

∂θur + 1
r ∂θp =

(
hr∂r + 1

r hθ∂θ + hz∂z

)
hθ + hrhθ

r +
(
Δ − 1

r2

)
uθ,

(
ur∂r + 1

r uθ∂θ + uz∂z

)
uz + ∂zp =

(
hr∂r + 1

r hθ∂θ + hz∂z

)
hz + Δuz,

(
ur∂r + 1

r uθ∂θ + uz∂z

)
hr −

(
hr∂r + 1

r hθ∂θ + hz∂z

)
ur + 2

r2
∂θhθ =

(
Δ − 1

r2

)
hr,

(
ur∂r + 1

r uθ∂θ + uz∂z

)
hθ −

(
hr∂r + 1

r hθ∂θ + hz∂z

)
uθ + uθhr

r − hθur

r − 2
r2

∂θhr =
(
Δ − 1

r2

)
hθ,

(
ur∂r + 1

r uθ∂θ + uz∂z

)
hz −

(
hr∂r + 1

r hθ∂θ + hz∂z

)
uz = Δhz,

∇ · u = ∂rur + ur

r + 1
r ∂θuθ + ∂zuz = 0, ∇ · h = ∂rhr + hr

r + 1
r ∂θhθ + ∂zhz = 0.

(1.3)

Here

Δ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2
(1.4)

is the usual Laplacian operator.
The main aim of our paper is to study the Liouville type theorem of D-solutions of the stationary

MHD system (1.3). The study is partly motivated by the related Liouville problem of the stationary
Navier–Stokes equations, which has attracted much attention in recent years and is still far from being
fully understood. See for example [1–5,7–9,15,16] and the reference therein. First, in full 3D case, the
Liouville-type theorem holds provided the vanishing of uθ and hθ. That is:

Theorem 1.1. Let (u, h) be a smooth solution to the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u · ∇u + ∇p − h · ∇h − Δu = 0, in R
2 × T,

u · ∇h − h · ∇u − Δh = 0, in R
2 × T,

∇ · u = ∇ · h = 0, in R
2 × T,

u(x′, z) = u(x′, z + 2π); h(x′, z) = h(x′, z + 2π),
lim|x|→∞ |u(x)| = 0; lim|x|→∞ |h(x)| = 0,

(1.5)

with finite Dirichlet integral
∫

T

∫

R2
|∇u(x)|2dx +

∫

T

∫

R2
|∇h(x)|2dx < ∞. (1.6)

Then (u, h) ≡ 0 provided uθ = hθ ≡ 0. �

Remark 1.1. We emphasize here that our assumption of the smoothness of the solution (u, h) is reasonable
since one can derive the smoothness of any weak solution to (1.5) satisfying the D-condition (1.6) by
following the method developed in [5]. �

In the cylinder coordinate, we say a 3 dimensional vector field

v(x) = vr(r, θ, z)er + vθ(r, θ, z)eθ + vz(r, θ, z)ez (1.7)

is axially symmetric if and only if
∂θv

r = ∂θv
θ = ∂θv

z ≡ 0. (1.8)
Moreover, for axially symmetric magnetic field or axially symmetric velocity and magnetic fields, we
derive two further results:

Corollary 1.1. Let (u, h) be a smooth solution to the problem (1.5) with finite Dirichlet integral (1.6).
Then (u, h) ≡ 0 provided one of the following two conditions is satisfied:

(i) uθ ≡ 0 and h is axially symmetric;
(ii) Both u and h are axially symmetric.

�

Remark 1.2. Consider the special case that h ≡ 0, part (ii) of the above corollary is reduced to Theorem
1.1 in [2]. For part (i) ( also Theorem 1.1 ) with h ≡ 0, this Liouville-type theorem do not need to add
the axially symmetric condition of u. More precisely, this is a result of the swirl-free full 3-D case. �
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Instead of u and h are z-periodic, our method is valid for D-solutions of certain boundary value
problems of magnetohydrodynamics system (1.1) in the slab R

2 × [−π, π]. Here is the corollary:

Corollary 1.2. Let (u, h) be a smooth solution to the magnetohydrodynamics system
⎧
⎪⎪⎨

⎪⎪⎩

u · ∇u + ∇p − h · ∇h − Δu = 0, in R
2 × [−π, π],

u · ∇h − h · ∇u − Δh = 0, in R
2 × [−π, π],

∇ · u = ∇ · h = 0, in R
2 × [−π, π],

lim|x|→∞ |u(x)| = 0; lim|x|→∞ |h(x)| = 0,

(1.9)

with finite Dirichlet integral
∫ π

−π

∫

R2
|∇u(x)|2dx +

∫ π

−π

∫

R2
|∇h(x)|2dx < ∞ (1.10)

in the slab R
2 × [−π, π] equipped with the boundary conditions

(uz, ∂zu
r, ∂zu

θ)
∣
∣
∣
z∈{−π, π}

= 0, h
∣
∣
∣
z∈{−π, π}

= 0, (1.11)

or

(uz, ∂zu
r, ∂zu

θ)
∣
∣
∣
z∈{−π, π}

= 0, (hz, ∂zh
r, ∂zh

θ)
∣
∣
∣
z∈{−π, π}

= 0. (1.12)

Then (u, h) ≡ 0 provided one of the following three conditions is satisfied:

(i) uθ = hθ ≡ 0;
(ii) uθ ≡ 0 and h is axially symmetric;
(iii) Both u and h are axially symmetric.

�

We refer readers to the “Appendix” of our paper for some explanation to the reasonableness of the
boundary conditions in the Corollary. The proof of Corollary 1.2 is omitted in this paper.

Remark 1.3. In our paper, we do not pursue any vanishing results in a slab with u and h both satisfy-
ing homogeneous Dirichlet boundary condition. Reminded by the anonymous referee and by using the
methods in [12–14], etc. to solve the stationary Navier–Stokes problems, we think it is possible to derive
the Liouville-type theorems of the stationary magnetohydrodynamics systems with Dirichlet boundary
condition in a layer-like domain, under certain asymptotic conditions of u and h. Also, the assumption
of axial symmetry can be dropped. �

Our proof of the theorem and corollaries are based on the oscillation estimate of the pressure in [2].
Because of the partly “θ-dependent” of the pressure p and some magnetic related terms, we need a careful
treatment for getting the boundedness of u and h up to their second order derivatives and oscillation
estimate of p in a dyadic annulus. At last, we prove the Liouville type theorems by providing the vanishing
of the L2 norms of ∇u and ∇h.

This paper is organized as follows. In Sect. 2, we give the proof of Theorem 1.1. Section 3 is devoted
to proving the part (i) of Corollary 1.1, while Sect. 4 is for the part (ii). Some details of the boundary
conditions in Corollary 1.2 could be found in the “Appendix”.

Throughout the paper, we use C to denote a generic constant which may be different from line to line.
We also apply A � B to denote A ≤ CB. We denote by B(x0, r) := {x ∈ R

d : |x − x0| < r}. We simply
denote by Br := B(0, r) and B := B1. For a domain Ω and 1 ≤ p ≤ ∞, Lp(Ω) denotes the usual Lebesgue
space with norm ‖ · ‖Lp(Ω). For x = (x1, x2, x3) ∈ R

3, we write x = (x′, x3) or (x′, z) for simplicity. The
symbol ∂i stands for ∂

∂xi
, for i = 1, 2, 3, while ∂r, ∂θ and ∂z stands for ∂

∂r , ∂
∂θ and ∂

∂z respectively.
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2. Proof of Theorem 1.1

First we see, under the condition uθ = hθ ≡ 0, (1.3) turns to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)ur + ∂rp = (hr∂r + hz∂z)hr +
(
Δ − 1

r2

)
ur,

− 2
r2 ∂θu

r + 1
r ∂θp = 0,

(ur∂r + uz∂z)uz + ∂zp = (hr∂r + hz∂z)hz + Δuz,
(ur∂r + uz∂z)hr − (hr∂r + hz∂z)ur =

(
Δ − 1

r2

)
hr,

(ur∂r + uz∂z)hz − (hr∂r + hz∂z)uz = Δhz,

∇ · u = ∂ru
r + ur

r + ∂zu
z = 0, ∇ · h = ∂rh

r + hr

r + ∂zh
z = 0.

(2.1)

This section is divided into three parts. The first one is to derive the boundedness of u and h up to their
second order derivatives. We have applied a result for local solutions in [18]. Second, by integrating the
equation of ∂rp, we actually prove the boundedness of the oscillation of p in a bounded dyadic annulus.
Finally, by testing the MHD system with standard test functions, we prove the trivialness of u and h.

2.1. Boundedness of the Solution Up to Second Order Derivatives

Lemma 2.1. Under the assumptions of Theorem 1.1, we have

|∇ku| + |∇kh| ≤ Ck < ∞, 0 ≤ k ≤ 2. (2.2)

Here ∇kf denotes all the derivatives of f with order k.

Proof. Since u and h are assumed to be smooth functions and converge to 0 as r → ∞, we have that
both u and h are bounded. Now we derive the boundedness of their derivatives. By denoting

w1 := u + h; w2 := u − h, (2.3)

(1.5) leads to
⎧
⎨

⎩

w2 · ∇w1 − Δw1 + ∇p = 0,
w1 · ∇w2 − Δw2 + ∇p = 0,
∇ · w1 = ∇ · w2 = 0.

(2.4)

A direct application of Theorem 1.7 in [18] shows that, ∃ r0 ≤ 1, the gradient of w1 and w2 satisfy

|∇wi(x)| ≤ C

r3
0

∫

B(x,r0)

|∇wi(y)|dy +
C

r4
0

∫

B(x,r0)

|wi − (wi)B(x,r0)|dy, i = 1, 2. (2.5)

Here, for i = 1, 2, (wi)B(x,r0) = 1
|B(x,r0)|

∫

B(x,r0)
wi(y)dy. Applying Cauchy–Schwartz inequality and

Poincaré inequality, one find

|∇wi(x)| � 1
r3
0

(∫

B(x,r0)

|∇wi(y)|2dy

)1/2 (∫

B(x,r0)

dy

)1/2

+
1
r4
0

(∫

B(x,r0)

|wi − (wi)B(x,r0)|2dy

)1/2 (∫

B(x,r0)

dy

)1/2

� r
−3/2
0 ‖∇wi‖L2(B(x,1))

� r
−3/2
0 (‖∇u‖L2(B(x,1)) + ‖∇h‖L2(B(x,1))) � 1, for i = 1, 2. (2.6)

Taking the curl of the first two equations of (2.4), we then eliminate the terms of pressure. With the
boundedness of w1, w2, ∇w1 and ∇w2, routine elliptic estimates prove the boundedness of ∇2w1 and
∇2w2. This leads to the boundedness of u and h up to their second order derivatives. �
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2.2. Boundedness of the Oscillation of p in Dyadic Annulus

Lemma 2.2. Under the assumptions of Theorem 1.1, for fixed R > 0, it follows that

sup
r∈[R, 2R], θ∈[0, 2π], z∈[−π, π]

|p(r, θ, z) − p(R, 0, 0)| � 1. (2.7)

Proof. First we note that the second equation of (2.1) turns to

∂θp =
2
r
∂θu

r. (2.8)

Owing to the boundedness of ∇u, we have

∣
∣
∣
∣
1
r
∂θu

r

∣
∣
∣
∣ = | − sin θ · ∂x1u

r + cos θ · ∂x2u
r| ≤ |∇u|. (2.9)

This leads to

|∂θp| � 1. (2.10)

Meanwhile, due to the third equation of (2.1) and Lemma 2.1, it follows

|∂zp| � 1. (2.11)

In the following part we will show that for any fixed R > 1, the estimate

∣
∣
∣
∣

∫ π

−π

∫ 2π

0

p(r, θ, z) − p(R, θ, z)dθdz

∣
∣
∣
∣ � 1 (2.12)

holds for all r ∈ [R, 2R]. Now we integrate the first equation of (3.1) to get

∂r

∫ π

−π

∫ 2π

0

pdθdz =
∫ π

−π

∫ 2π

0

(
− (ur∂r + uz∂z)ur

+
(
∂2

r +
1
r
∂r +

1
r2

∂2
θ + ∂2

z − 1
r2

)
ur + (hr∂r + hz∂z)hr

)
dθdz

= −1
2

∫ π

−π

∫ 2π

0

∂r(ur)2dθdz −
∫ π

−π

∫ 2π

0

uz∂zu
rdθdz

+ ∂2
r

∫ π

−π

∫ 2π

0

urdθdz +
1
r
∂r

∫ π

−π

∫ 2π

0

urdθdz

− 1
r2

∫ π

−π

∫ 2π

0

urdθdz +
1
2

∫ π

−π

∫

R2
∂r(hr)2dθdz

+
∫ π

−π

∫ 2π

0

hz∂zh
rdθdz. (2.13)
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∀ r0 ∈ [R, 2R], we integrate on r from R to r0. It follows that
∣
∣
∣
∣

∫ π

−π

∫ 2π

0

p(r0, θ, z) − p(R, θ, z)dθdz

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

∂r(ur)2dθdzdr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

uz∂zu
rdθdzdr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ r0

R

∂2
r

∫ π

−π

∫ 2π

0

urdθdzdr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ r0

R

1
r
∂r

∫ π

−π

∫ 2π

0

urdθdzdr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ r0

R

1
r2

∫ π

−π

∫ 2π

0

urdθdzdr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫

R2
∂r(hr)2dθdzdr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

hz∂zh
rdθdzdr

∣
∣
∣
∣

:= I1 + I2 + I3 + I4 + I5 + I6 + I7. (2.14)

In the following, we show that I1 to I5 in (2.14) are all bounded. First, due to the boundedness of u, we
see

I1 =
∣
∣
∣
∣

∫ π

−π

∫ 2π

0

(
(ur)2(r0, θ, z) − (ur)2(R, θ, z)

)
dθdz

∣
∣
∣
∣ � 1. (2.15)

Now we consider term I2. Using integrating by parts and divergence free condition, we have

I2 =
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

ur∂zu
zdθdzdr

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

ur

(

∂ru
r +

1
r
ur

)

dθdzdr

∣
∣
∣
∣

� I1 +
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

(ur)2

r
dθdzdr

∣
∣
∣
∣

� 1 +

∣
∣
∣
∣
∣

∫ 2R

R

1
r
dr

∣
∣
∣
∣
∣
� 1. (2.16)

Here the second inequality holds because the boundedness of u. For I3, it follows

I3 =
∣
∣
∣
∣

∫ π

−π

∫ 2π

0

(∂ru
r(r0, θ, z) − ∂ru

r(R, θ, z)) dθdz

∣
∣
∣
∣ � 1. (2.17)

Meanwhile, I4 satisfies the following estimate by using integration by parts

I4 �
∣
∣
∣
∣

∫ π

−π

∫ 2π

0

ur

r

∣
∣
∣
r0

R
dθdz

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

ur

r2
dθdzdr

∣
∣
∣
∣

� 1 +
∣
∣
∣
∣

∫ ∞

R

1
r2

dr

∣
∣
∣
∣ � 1. (2.18)

Here the last two inequalities hold since ur is bounded. And the related estimate for I5 holds similarly as
the second item above after the first “�”. Meanwhile, estimates of I6 and I7 hold similarly with that of
I1 and I2 respectively. Combining those estimates above in this section, (2.12) holds for any r ∈ [R, 2R],
i.e. ∣

∣
∣
∣

∫ π

−π

∫ 2π

0

p(r, θ, z) − p(R, θ, z)dθdz

∣
∣
∣
∣ � 1, ∀r ∈ [R, 2R]. (2.19)

Applying the mean value theorem, for a fixed R > 1 and r ∈ [R, 2R], there exist θ(r) ∈ [0, 2π] and
z(r) ∈ [−π, π], such that

∣
∣p(r, θ(r), z(r)) − p(R, θ(r), z(r))

∣
∣ =

∣
∣
∣
∣

∫ π

−π

∫ 2π

0

p(r, θ, z) − p(R, θ, z)dθdz

∣
∣
∣
∣ � 1. (2.20)
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Combining this with the uniformly boundedness of ∂zp and ∂θp, it follows that, ∀θ ∈ [0, 2π], z ∈ [−π, π]

|p(r, θ, z) − p(R, 0, 0)| ≤ |p(r, θ, z) − p(r, θ, z(r))| + |p(r, θ, z(r)) − p(r, θ(r), z(r))|
+ |p(r, θ(r), z(r)) − p(R, θ(r), z(r)|
+ |p(R, θ(r), z(r)) − p(R, θ(r), 0)|
+ |p(R, θ(r), 0) − p(R, 0, 0)|

≤ |∂zp| · |z − z(r)| + |∂θp| · |θ − θ(r)| + C

+ |∂zp| · |z(r)| + |∂θp| · |θ(r)|
� 1. (2.21)

Hence we have
sup

r∈[R, 2R], θ∈[0, 2π], z∈[−π, π]

|p(r, θ, z) − p(R, 0, 0)| � 1. (2.22)

�

2.3. Trivialness of u and h

At the beginning, we claim that ur, hr ∈ L2(R2 × T). We have the following lemma

Lemma 2.3. Under the assumption of Theorem 1.1, we have

‖ur‖L2(R2×T) + ‖hr‖L2(R2×T) < +∞.

Proof. According to the divergence-free condition and uθ ≡ 0, we see that

∂r(rur(r, θ, z)) + ∂z(ruz(r, θ, z)) = 0. (2.23)

Integrating (2.23) on z from −π to π, it follows that

∂r

(

r

∫ π

−π

ur(r, θ, z)dz

)

= −
∫ π

−π

∂z(ruz(r, θ, z))dz = −ruz(r, θ, z)
∣
∣
∣
π

z=−π
= 0. (2.24)

Here the last identity follows from the periodic condition of u in z-direction. This leads to

r

∫ π

−π

ur(r, θ, z)dz = C(θ), (2.25)

where C(θ) is a function depends only on θ. Moreover, we find C(θ) ≡ 0 by choosing r = 0. Therefore
∫ π

−π

ur(r, θ, z)dz = 0. (2.26)

Hence we have, by using the Poincaré inequality and the D-solution condition
∫ π

−π

∫

R2
|ur|2dx =

∫

R2

∫ π

−π

∣
∣
∣
∣u

r(x′, z) − 1
2π

∫ π

−π

ur(x′, z′)dz′
∣
∣
∣
∣

2

dzdx′

�
∫

R2

∫ π

−π

|∂zu
r(x′, z)|2dzdx′

≤
∫

R2×T

|∇u(x)|2dx < ∞. (2.27)

At the same time, the related estimate holds for hr, that is
∫ π

−π

∫

R2
|hr|2dx < ∞, (2.28)

since h is divergence-free and hθ = 0, which means Eq. (2.23) also holds for h. The rest is similar with
that of u and the lemma is proved. �
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Now let φ = φ(ρ) be a smooth cut-off function satisfying

⎧
⎨

⎩

φ(ρ) = 1, ρ ∈ [0, 1],
φ(ρ) = 0, ρ ≥ 2,
0 ≤ φ ≤ 1, ∀ρ ∈ [0,∞),

(2.29)

with φ′ and φ′′ being bounded. And we set φR(y′) = φ
(

|y′|
R

)
with y′ ∈ R

2 and R > 0. Testing the first
equation of (1.5)

u · ∇u + ∇p − h · ∇h − Δu = 0 (2.30)

with uφR, we achieve that
∫

R2×T

uφRΔudx =
∫

R2×T

uφR (u · ∇u − h · ∇h + ∇(p − p(R, 0, 0))) dx. (2.31)

Direct integrating by parts implies
∫

R2×T

|∇u|2φRdx − 1
2

∫

R2×T

|u|2ΔφRdx

=
1
2

∫

R2×T

|u|2u · ∇φRdx +
∫

R2×T

(p(r, θ, z) − p(R, 0, 0))u · ∇φRdx

−
3∑

i,j=1

∫

R2×T

hihj∂xi
ujφRdx −

3∑

i,j=1

∫

R2×T

hihjuj∂xi
φRdx. (2.32)

Meanwhile, we test the second equation of (1.5)

u · ∇h − h · ∇u − Δh = 0 (2.33)

with hφR to get
∫

R2×T

hφRΔhdx =
∫

R2×T

hφR (u · ∇h − h · ∇u) dx. (2.34)

Integrating by parts, (2.34) is equivalent to

∫

R2×T

|∇h|2φRdx − 1
2

∫

R2×T

|h|2ΔφRdx

=
1
2

∫

R2×T

|h|2u · ∇φRdx +
3∑

i,j=1

∫

R2×T

hihj∂xi
ujφRdx. (2.35)

Therefore, the following equation is achieved by adding (2.32) and (2.35) together:

∫

R2×T

(|∇u|2 + |∇h|2) φRdx − 1
2

∫

R2×T

(|u|2 + |h|2) ΔφRdx

=
∫

R2×T

(
1
2
|u|2 +

1
2
|h|2 + (p(r, θ, z) − p(R, 0, 0))

)

u · ∇φRdx

−
∫

R2×T

(h · u)(h · ∇φR)dx. (2.36)
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We denote B̄2R/R := {x′ : R ≤ |x′| ≤ 2R} the dyadic annulus. Since φR depends only on r, it follows
that

∫

R2×T

(|∇u|2 + |∇h|2) φRdx

≤
∫ π

−π

∫

B̄2R/R

(|u|2 + |h|2) · |ΔφR|dx′dz

+
∫ π

−π

∫

B̄2R/R

|ur| · |∂rφR| · (|u|2 + |h|2)dx′dz

+ sup
r∈[R, 2R], θ∈[0, 2π], z∈[−π, π]

|p(r, θ, z) − p(R, 0, 0)|
∫ π

−π

∫

B̄2R/R

|ur| · |∂rφR|dx′dz

+
∫ π

−π

∫

B̄2R/R

|h| · |u| · |hr| · |∂rφR|dx′dz

:= I1 + I2 + I3 + I4. (2.37)

First, I1 satisfies

I1 � 1
R2

∫ π

−π

∫

B̄2R/R

(|u|2 + |h|2)dx′dz

≤ 1
R2

(
‖u‖2

L∞(B̄2R/R) + ‖h‖2
L∞(B̄2R/R)

)∫ π

−π

∫

B̄2R/R

dx′dz

� ‖u‖2
L∞(B̄2R/R) + ‖h‖2

L∞(B̄2R/R) → 0, as R → ∞. (2.38)

Here we applied the vanishing of both u and h at the far field, and the same as below for the estimates
of I2 and I4. Using the Hölder inequality, I2 follows that

I2 � 1
R

∫ π

−π

∫

B̄2R/R

|ur| · (|u|2 + |h|2) dx′dz

≤ 1
R

(
‖u‖2

L∞(B̄2R/R) + ‖h‖2
L∞(B̄2R/R)

)
(∫ π

−π

∫

B̄2R/R

|ur|2dx′dz

)1/2

· |B̄2R/R|1/2

�
(
‖u‖2

L∞(B̄2R/R) + ‖h‖2
L∞(B̄2R/R)

)
· ‖ur‖L2(R2×T) → 0, as R → ∞. (2.39)

Next, for I3 we have

I3 � sup
r∈[R, 2R], θ∈[0, 2π], z∈[−π, π]

|p(r, θ, z) − p(R, 0, 0)|

· 1
R

(∫ π

−π

∫

B̄2R/R

|ur|2dx′dz

)1/2

· |B̄2R/R|1/2

� ‖ur‖L2(B̄2R/R) → 0, as R → ∞. (2.40)

Here we have applied the Hölder inequality and the boundedness of the oscillation of p in dyadic annulus
which is achieved in Lemma 2.2. Finally, the following estimate is satisfied by I4:

I4 � 1
R

· ‖u‖L∞(B̄2R/R) · ‖h‖L∞(B̄2R/R) ·
(∫ π

−π

∫

B̄2R/R

|hr|2dx′dz

)1/2

· |B̄2R/R|1/2

� ‖u‖L∞(B̄2R/R) · ‖h‖L∞(B̄2R/R) · ‖hr‖L2(B̄2R/R) → 0, as R → ∞. (2.41)

Combining those estimates of I1, I2, I3 and I4, (2.37) implies
∫

R2×T

(|∇u|2 + |∇h|2) dx = 0, (2.42)
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by choosing R → ∞. This means u and h are both constants. Recalling u and h vanish at the far
field, we deduce the trivialness of u and h themselves. Now we have finished the proof of the part (i) of
Theorem 1.1. �

3. Proof of Corollary 1.1, Part (i)

This section is devoted to the case that uθ ≡ 0 and h is axially symmetric. First we see, in this situation,
(1.3) turns to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)ur + ∂rp = (hr∂r + hz∂z)hr − (hθ)2

r +
(
Δ − 1

r2

)
ur,

− 2
r2 ∂θu

r + 1
r ∂θp = (hr∂r + hz∂z)hθ + hrhθ

r ,

(ur∂r + uz∂z)uz + ∂zp = (hr∂r + hz∂z)hz + Δuz,

(ur∂r + uz∂z)hr − (
hr∂r + 1

r hθ∂θ + hz∂z

)
ur =

(
Δ − 1

r2

)
hr,

(ur∂r + uz∂z)hθ − urhθ

r =
(
Δ − 1

r2

)
hθ,

(ur∂r + uz∂z)hz − (
hr∂r + 1

r hθ∂θ + hz∂z

)
uz = Δhz,

∇ · u = ∂ru
r + ur

r + ∂zu
z = 0, ∇ · h = ∂rh

r + hr

r + ∂zh
z = 0.

(3.1)

We point out that, in this situation, hθ is vanishing so that the proof follows from the proof of Theorem 1.1.
Here goes the proof of the vanishing of hθ.

The Vanishing of hθ

Under the axially symmetric condition of h and the vanishing of uθ, the equation of hθ reads

(ur∂r + uz∂z)hθ − urhθ

r
=

(

Δ − 1
r2

)

hθ. (3.2)

Denoting H = hθ

r , direct calculation shows that H satisfies
(

Δ +
2
r
∂r

)

H − (ur∂r + uz∂z)H = 0. (3.3)

Since h is axially symmetric, the Laplacian operator here write

Δ =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
. (3.4)

Therefore, if we denoting

Δ5 :=
4∑

i=1

∂2

∂x2
i

+
∂2

∂z2
(3.5)

and r =
√

x2
1 + x2

2 + x2
3 + x2

4, (3.3) becomes

Δ5H − (ur∂r + uz∂z)H = 0. (3.6)

See [7] or [11] for more details about this “dimension lifting method”. From the boundedness of hθ, one
find

lim
r→∞ H = 0 (3.7)

uniformly for all z. Therefore, H ≡ 0 is achieved by the maximum princlple. This leads to the vanishing
of hθ.
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4. Proof of Corollary 1.1, Part (ii)

In this section, we consider the case that both u and h are axially symmetric. At the beginning we see
(1.3) now turns to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ur∂r + uz∂z)ur − (uθ)2

r + ∂rp = (hr∂r + hz∂z)hr − (hθ)2

r +
(
Δ − 1

r2

)
ur,

(ur∂r + uz∂z)uθ + uruθ

r = (hr∂r + hz∂z)hθ + hrhθ

r +
(
Δ − 1

r2

)
uθ,

(ur∂r + uz∂z)uz + ∂zp = (hr∂r + hz∂z)hz + Δuz,

(ur∂r + uz∂z)hr − (hr∂r + hz∂z)ur =
(
Δ − 1

r2

)
hr,

(ur∂r + uz∂z)hθ − (hr∂r + hz∂z)uθ + uθhr

r − hθur

r =
(
Δ − 1

r2

)
hθ,

(ur∂r + uz∂z)hz − (hr∂r + hz∂z)uz = Δhz,

∇ · u = ∂ru
r + ur

r + ∂zu
z = 0, ∇ · h = ∂rh

r + hr

r + ∂zh
z = 0.

(4.1)

The main idea are similar with the proof of Theorem 1.1 so that we only focus on the different portion.
First we see, by Sect. 2.1, u and h are bounded up to their second order derivatives. Combining these
with the third equation of (4.1), we have the boundedness of ∂zp. Integrating the first equation in (4.1)
like Sect. 2, we are ready to prove the boundedness of p in dyadic annulus. Pay attention that, due to
the axially symmetric condition for both u and h, p is no longer a function of θ. We only need to prove
the boundedness of

I :=
∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

(uθ)2

r
dθdzdr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ r0

R

∫ π

−π

∫ 2π

0

(hθ)2

r
dθdzdr

∣
∣
∣
∣ (4.2)

since the boundedness of the rest terms have already proven in Sect. 2. Here goes the boundedness of I:

I �
(
‖uθ‖2

L∞(B̄2R/R) + ‖hθ‖2
L∞(B̄2R/R)

)∫ 2R

R

1
r
dr

� ‖uθ‖2
L∞(B̄2R/R) + ‖hθ‖2

L∞(B̄2R/R)

� 1. (4.3)

Then the vanishing of u and h is achieved by following the method in Sect. 2.3. We omit the details here.
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6. Appendix: Some Details of the Boundary Conditions

This Appendix is devoted to some explanations of the boundary conditions in Corollary 1.2. As we
mentioned in the Corollary 1.2, instead of the periodic condition for the velocity field, our method is also
valid for a certain Navier slip boundary condition with a slight modification. That is

u · n = 0, (Du · n)τ = 0, ∀x ∈ ∂Ω. (6.1)
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Here n is the outward unit normal to Ω. D is the strain tensor

Du =
1
2

(∇u + ∇T u
)
. (6.2)

And for a vector filed v, vτ stands for its tangential part: vτ = v − (v · n)n. In our case, since Ω =
R

2 × [−π, π], we have n = (0, 0,±1). Therefore, (6.1) is reduced to

uz = 0, ∂zu1 = 0, ∂zu2 = 0, ∀z = −π or π. (6.3)

In the cylinder coordinate, (6.3) equals to
⎧
⎨

⎩

uz = 0,
∂zu

r cos θ − ∂zu
θ sin θ = 0, ∀z = −π or π.

∂ru
z sin θ + ∂zu

θ cos θ = 0,
(6.4)

That is,
∂zu

r
∣
∣
∣
z=−π, π

= ∂zu
θ
∣
∣
∣
z=−π, π

= uz
∣
∣
∣
z=−π, π

≡ 0. (6.5)

Meanwhile, for magnetic field h, our method is valid for the Dirichlet condition

h = 0, ∀z = −π or π, (6.6)

and the following two physical conditions, which are widely used in the research of the boundary value
problem or the initial-boundary value problems to the MHD system. See [6,17], etc.

[PC1]
{

h · n = 0,
∇ × h × n = 0,

[PC2]
{

h · n = 0,
∇ × h = 0,

∀x ∈ ∂Ω. (6.7)

In our cases, similarly to (6.5) before, [PC1] and [PC2] are equivalent and both of them can be simplified
to

∂zh
r
∣
∣
∣
z=−π, π

= ∂zh
θ
∣
∣
∣
z=−π, π

= hz
∣
∣
∣
z=−π, π

≡ 0. (6.8)
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