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ABSTRACT. In this paper, we are concerned with the compressible viscoelastic
flows in whole space R™ with n > 2. We aim at extending the global existence
in energy spaces (see [18] by Hu & Wang and [30] by Qian & Zhang) such
that it holds in more general LP critical spaces, which allows to the case of
large highly oscillating initial velocity. Precisely, We define “two effective ve-
locities” which are used to eliminate the coupling between the density, velocity
and deformation tensor. Consequently, the global existence in the LP criti-
cal framework is constructed by elementary energy approaches. In addition,
the optimal time-decay estimates of strong solutions are firstly shown in the
LP framework, which improve recent decay efforts for compressible viscoelastic
flows.

1. Introduction. Consider the following equations of multi-dimensional compress-
ible viscoelastic flows:

Op + div(pu) =0,
O (pu) + div(pu @ u) — div(2uD(u) + Mdivuld) + VP = adiv(pFFT),  (1.1)
8:F +u-VF = VuF,

where p € R is the density, u € R™ is the velocity and F' € R"*™ is the deformation
gradient. F'T stands for the transpose matrix of F. The pressure P depends only
upon the density and the function will be taking suitably smooth. Notations div,
® and V denote the divergence operator, Kronecker tensor product and gradient
operator, respectively. D(u) = %(Vu + Vu®) is the strain tensor. The density-
dependent viscosity coefficients p, A are assumed to be smooth and to satisfy p >
0, v = XA+ 2u > 0. For simplicity, the elastic energy W (F) in System (1.1) has
been taken to be the special form of the Hookean linear elasticity:

W@U:%Wﬁ a>0,

which does not reduce the essential difficulties in analysis. Our methods and results
may be applied to more general Hookean elasticity law.
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In this paper, we focus on the Cauchy problem of System (1.1), so the corre-
sponding initial data are supplemented by

(p, Fyu)li=0 = (po(x), Fo(x);uo(x)), =€ R™ (1.2)

It is well known that there are some fluids which do not satisfy the classical New-
tonian law. So far there have been many attempts to capture different phenomena
for non-Newtonian fluids, see for example [13, 14, 26, 28] and so on. System (1.1)
simulates the compressible viscoelastic flow of Oldroyd type exhibiting the elastic
behavior, which belongs to a class of non-Newtonian fluids. We are interested in
the well-posedness and stability of solutions to the Cauchy problem (1.1)-(1.2), at
least under the perturbation of constant equilibrium (1, 1,0).

Let us first recall mathematical efforts related to viscoelastic flows. For the in-
compressible viscoelastic flows, there has been much important progress on classical
solutions. Lin-Liu-Zhang [26], Chen-Zhang [6], Lei-Liu-Zhou[22] and Lin-Zhang [25]
established the local and global well-posedness with small data in Sobolev space H®.
Hu-Wu [21] proved the long-time behavior and weak-strong uniqueness of solutions.
Chemin-Masmoudi [4] proved the local existence of solution and a global small so-
lution in critical Besov spaces, where the Cauchy-Green strain tensor is available
in the evolution equation. Qian [29] proved the well-posedness of the incompress-
ible viscoelastic system in critical spaces. Subsequently, Zhang-Fang [33] proved
the global well-posedness in the critical LP? Besov space. On the other hand, the
global existence of weak solutions is still an open problem. Lions and Masmoudi
[27] considered the special case that the contribution of the strain rate is neglected,
and constructed the global-in-time weak solution for general initial data.

For compressible viscoelastic flows, Lei-Zhou [25] proved the global existence
of classical solutions for the two-dimensional Oldroyd model via the incompress-
ible limit. The local existence of strong solutions was obtained by Hu-Wang [19].
Shortly, Hu-Wang [18] and Qian-Zhang [30] independently proved the global ex-
istence in the critical L? Besov space, provided initial data are close to constant
equilibrium. For convenience of reader, we would like to state their results as follows.

Theorem 1.1. ([18, 30]) Assume that P'(1) > 0. Then there exists two constant
n and M such that if

yn/2—1,n 1+n2 SN/ 2— n
(b0 — 1, Fy — Liuo) € (BR5 ) (B3P

satisfying
l(po — 1, Fy — I)HB'n/Z—l,n/2 + HUOHBn/2—1 <mn,
2,2 2,1

then there exists a global unique solution (p, F;u) € E™? {0 the Cauchy problem
(1.1)—(1.2) such that

(o =1, F = L)l gnyo < M([[(po = 1, Fo = Dl gnjz=1.nr2 + ol gnj2-1),
where
n 5 Sn/2—1,n 5N n 1+n2
En? A (Cb(R+§82,/22 By A LRy By /2)) x
(éb(R+; B;ﬁz—l) n Ll(R+§ B;/f“)) :
Concerning those norm notations for hybrid Besov spaces f/ql?;:g(p > 2) and
éb(B;Z), the reader is referred to Section 2 below. In fact, those functional spaces
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to investigate (1.1) enjoy the scaling invariance. Precisely, observe that (1.1) is
scaling invariant by the transformation: for any constant x > 0,

(po(z), Fo(z); uo(x)) — (po(kx), Fo(kx); Adug(kx)),
(p(t,z), F(t,x);u(t,x)) — (p(k?t, kx), F(K*t, kx); ku(K>t, k),

up to changes of the pressure P into k2P and the constant « into x2c.. This inspires
the definition of the critical space.

Definition 1.1. A functional space is called the critical one if the associated norm
is invariant under the transformation

(p(t,x), F(t,z);u(t,z)) — (p(k*t, ka), F(k*t, ka); ku(kt, kx))

(up to a constant independent of k).

Obviously, it is easy to check that (B;/f)HnQ X (3%2_1)” is the critical func-
tional setting in the sense of Definition 1.1. It should be mentioned that Danchin
[8] first applied the basic idea to the study of compressible Navier-Stokes equa-
tions. He established the global well-posedness of strong solutions in the critical
L? spaces. Compared to [8], there is an outstanding difficulty for the compressible
viscoelastic system. How to capture the damping effect of the deformation tensor
arising from the nonlinear coupling between the density, velocity and deformation
tensor? Hu-Wang [18] and Qian-Zhang [30] independently explored some intrin-
sic properties for (1.1) and established uniform estimate for complicated linearized
hyperbolic-parabolic systems, which eventually leads to Theorem 1.1.

The goal of this paper is twofold: firstly, we aim at extending Theorem 1.1 to
the critical LP Besov space, which allows highly large oscillating initial velocity.
Secondly, we shall establish the large-time behavior of the constructed solution.

Denote

2

~ . . 1+n
P {(a,o;v)\(a,o;v)e(cb(&;z@”/?*l’"/f’)nLl(m;ng,”l’”/P))

2,p

X (Co(Rs By P N L R BT )

with its norm
1(a, O; )| gnsv
=(a, O)||EOOB‘;‘/i—1,71'/me13;/1)2+1-,n/p + ||v||E(X,B;/pz—Ln/p—1leB;zé2+1‘n/p+1.
Now, we state the first result as follows.

Theorem 1.2. Assume that P'(1) > 0. Let p satisfying 2 < p < min (4,2n/(n—2))
and, additionally, p # 4 if n = 2. If there exists two constant n and M such that if

. 1+n? . n
(PO _ 17F0 _ 17 uO) c (Bn/2—l,n/p) % (Bn/2—17n/p—1) .

2,p 2,p
and
||(p() —1,Fy — I)HBn/Q—l,n/p + HUOHB'n/Q—l,n/p—l <mn, (13)
2,p 2,p

then the Cauchy problem (1.1)-(1.2) has a global unique solution (p, F';u) such that
(p—1,F —T;u) € EV? and

1o~ 1. = Iw)llgnsn < M(ll(p0 — 1, Fy — D)

B;’fan/p + ||U0| B';L’/p271,n/p71)o
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Let us point out new ingredients in the proof of Theorem 1.2. For usual com-
pressible N-S equations (see for example [3, 5]), the major difficulty stems from the
convection term in the density equation, as it may cause a loss of one derivative
of the density. To overcome it, previous proofs heavily relied on a paralinearized
version combined with a Lagrangian change of variables. For the viscoelastic sys-
tem (1.1), the situation becomes more complicated. As shown by [30], the damping
effect of F' can be produced by some intrinsic conditions (see Proposition 3.1), how-
ever, similar to the density, it also has no smoothing effect at high frequencies. In
order to avoid cumbersome estimates and solve (1.1) globally, we follow from an
elementary energy approach in terms of effective velocity. This argument has been
developed by Haspot [15, 16] for compressible Navier-Stokes equations, which is
based on the use of Hoff’s viscous effective flux as in [17]. Precisely, we introduce
the following “two effective velocities”,

w = V(-A)"(2a — divv), QY = e+ iA(fA)flOij.
Ho

Indeed, the definition of w is almost same as that in [15, 16]. The unique difference
lies in the coefficient of a, which indicates the contribution arising from the coupling
of F. Another effective velocity with respect to Q% is totally new, which allows to
cancel the coupling between e and O at high frequencies (see Sections 4 and
5 for more details). In physical dimensions n = 2,3, the value of p enables us to
consider the case p > n for which the velocity regularity exponent n/p — 1 becomes
negative. Consequently, Theorem 1.2 can be applied to large highly oscillating
initial velocities (see [3, 5] for more explanation).

Another interesting question follows after Theorem 1.2. One may wonder how the
global strong solutions constructed above look like for the large time. Although pro-
viding an accurate long-time asymptotic description is still out of reach, a number
of results concerning the time decay rates of global solutions, sometimes referred to
as L7 — L" decay rates are available. For example, Hu-Wu [20] proved the global ex-
istence of strong solutions to (1.1) as initial data are the small perturbation (1, I;0)
in H%(R?). Furthermore, with the extra assumption of L!(IR?), it was shown that
those solutions converged to equilibrium state at the following speed

l(p—1,F = Liw)|| o < C8) 20735, (1.4)

The time decay rate in (1.4) turns out to be the same one for the heat kernel, which
is sometime referred as the optimal decay rate. Next, we state a decay result for
those solutions constructed in Theorem 1.2. Precisely, one has

Theorem 1.3. Let n > 2 and p satisfies 2 < p < min (4,2n/(n — 2)) and p # 4 if
n = 2. Let (po,uo, Fo) fulfill the assumptions of Theorem 1.2 and (p,u, F') be the
global solution of System (1.1). Then there exists a constant o = o(p,n, \, u, «, P)
such that if additionally

Gpo = ||(po — 1, Fy — J;uo)HfB;SO <o with sy=n(2/p—1/2), (1.5)
then we have fort > 0,
Go(t) 5 (Gno + (¥ po, VEG; o) /1 ). (1.6)
P,

where G,(t) is defined by
spts ¢

Go()=  sup  |(1)7F (p—1L,F = L)},
s€le—s0,2+1] t 721
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D) (Va, VEu)||* w4+ 7V (1.7)
LeBP LeBP

p,1 t p,1

with a« 2 n/p+1/2 —¢ for € >0 sufficiently small.

Here and below, | f||5 and ||f||? represent the low and high frequency part of
some norm || f||e to a tempered distribution f whose exact definition will be given
in Section 2.

Some comments are in order.

1. Due to the Sobolev imbedding properties L' < B - — By "/2, H—"/2

B2 n/2 , our low-frequency assumption is less restrictlve. Actually, the assump-
tion is also relevant in other contexts like the Boltzmann equation (see [31]),
or hyperbolic systems with dissipation (see [32]).

2. The decay result remains true in the case of large highly oscillating initial
velocities, since the case p > n occurs in physical dimensions n = 2,3, which
was not shown by recent efforts (see [20]).

3. Likewise, “two effective velocities” play a key role in establishing the nonlinear
time-weighted inequality (1.7). Furthermore, the optimal decay estimates of
LI-L" type can be derived from the definition of G,(¢) by using standard
interpolation tricks. The interested reader is referred to [7] for similar details.

The rest of this paper is arranged as follows: In Section 2, we first recall the
Littlewood-Paley theory and present the definition and properties for the hybrid-
Besov space. In Section 3, we reformulate our system into a hyperbolic-parabolic
system coupled by the density, velocity and deformation gradient. Section 4 is
devoted to the proof of Theorem 1.2. In Section 5, we prove the decay estimate in
Theorem 1.3. Some analysis properties in the hybrid Besov space will be given in
the Appendix.

2. The Littlewood-Paley theory and hybrid Besov space. Throughout
the paper, we denote by C' a generic constant which may be different from line to
line. The notation A < B means A < CB and A = B indicates A < CB and
B < CA.

1. The Littlewood-Paley decomposition. Let’s begin with the Littlewood-
Paley decomposition. There exists two radial smooth functions p(z) and x(z),
which are supported in the annulus C = {£ € R™ : 3/4 < |¢| < 8/3} and the ball
B ={¢ € R™: |£]| <4/3}, respectively, such that

O+ @27 =1 VEeR"
j=>0

and

D (277 =1 vEeR™\{0}.

JEZ

The homogeneous dyadic blocks Aj and the homegeneous low-frequency cut-off
operators S; are defined for all j € Z by

Aju=9@27D)f, Sif= Y Acf=x(27D)f.
K<j—1

The following Bernstein inequality will be repeatedly used throughout the paper.
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Lemma 2.1 ([2]). A constant C exists such that for any nonnegative integer k,
any couple (p,q) in [1,00]? with 1 < p < q < 00, and any function u of LP, we have

Supptc C AB = sup ||0%ul|re < Ck+1)\k+”(%7%)||u\|m,
|| =k

Suppic € \C = C7*I\¥|Ju|z» < sup [|0%u||r < CEFINE|u]| L.
la|=k

2.2. The hybrid Besov space. = We denote by Z’(R") the dual space of
Z(R™) 2 {f e S(R") : 0°f(0) = 0,Va € (NUO)"}.
Firstly, we give the definition of the homogeneous Besov space.

Definition 2.1. Let s be a real number and (p, ) be in [1, 00]?. The homogeneous
Besov space B ,. consists of those distributions u € Z'(R™) such that

1
lulg 2 (D2 1Azullz, ) < oo.

JEL
Secondly, we introduce the hybrid Besov space that will be used in this paper.

Definition 2.2. Let s,0 € R, 1 < p < +oo. The hybrid Besov space B;; is defined
by
By 2 {feZ'®R"):|f|

B;Z < OO},
with
11155 2N 2 Aflle + D 25 AS e,

2k <Ry 2k>Rg

Where Ry is a fixed and sufficiently large constant which may depend on A(1),
w(1),p and n.

Since we are concerned with time-dependent functions valued in Besov spaces,
the following space-time mixed norm is usually mentioned:

lull g sye == It Mgzl ao,r-

Here, we introduce another space-time mixed Besov norm, which is referred to
Chemin-Lerner’s spaces. The definition is given by in such way
A ks|| A k A
lullzg po = > 25 Apullpaorirey + Y 25l Arullzeo,riLe)-

QkSR[) 2k>R0
The index T will be omitted if T' = +oo and we shall denote by CNb(B;g ) the subset
of functions L™ (B;Z) which are continuous from R, to B;Z It is easy to check
that L1.B57 = LLB37 and LLBy7 C LLB3?7 for ¢ > 1.

2,p P
Also, for a tempered distribution f, we denote

FrEY At PR
2k <Rg

and

11

4 _ ks|| A h _ k A
G = S Al I, = 3 27 A s,

2k <Ry 2k>Ry

, ) .
1FIzg 5, = > 2 Ak fllzoo.riLe)s ||f\|}£qTB; = > 25N Ak fllLeo.rie)
' 2k<Rq ' 2k> Ro
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1115, = sup 2% Axf] e
2,00 QkSRO

for s € R.

Next, we collect the following properties in Besov spaces.
Lemma 2.2. Let s,0 € R and 1 < p < 400. Then we have

. B;zp” C B;lpg for s1 > s9 and BS 92 C Bg;l for o1 < o3.

e Interpolation: For s1,ss,01,09 € ]R and 0 € [0, 1], we have

0)
Hf||8951+<1 052,091 +(1=0)oy < ||f| 557 1£] (1b2 oo -
o Embedding: L — Bn/2 n/p
B2 Lo Bss n/24n/p SN Bs n/2+n/p fO’f'p > 9
Lemma 2.3 ([11]). Let 1 < p,q,q1,q2 < 00 wzth —|— - %. Then we have

o Ifs1,82 <n/p and s; + s3 > nmax(0,2/p— ), then
197y porrearnioy < Cl Mg 9l 22 572,
o Ifs1 <n/p, s <n/p and sy + s > nmax(0,2/p — 1), then
/910 grsea-nre < Clfllzg iollall 2o g2

Remark 2.1. Lemma 2.3 still remains true in usual homogenous Besov spaces. For
example, we have

||fg||3511+52*n/p < CHfl
P

52, 191l
Lemma 2.4 ([7]). Let 0 >0 and 1 < p,r < co. Then B;T N L*> is an algebra and
we have

1fallsg < 1A lgllsg + Nalloe Nl
Let 01,09,p1 and po fulfill

1 1
o1+02 >0, o1 <n/p1, 02 <n/pz, 01 2 02, ;+;§1.
1 D2

Then we have

111 o
Ifalligs SWFlsge I lsgz,  with - = -+ -

I

|
—
N
i
N~—

P11 P2 n
Finally, let 0 >0, 1 < p1,p2,q < 00 and
n n ., non 1 1 1 o
—+——n<o<min(—,—) and - =—+ — — —.
p1 P2 P1 P2 q p1 p2 N
We have
1follsse <15y Nollsss. (2.2)

Lemma 2.5 ([7]). There exists a universal integer No such that for any 2 < p < 4,
and o > 0, we have

16" 50 < (1F g, + ISkorno o) 19" 157, (2.3)
1 gl 0 < (I g, + 1Sk0+n0 S 1207)

; — (2 _1 1 _1_
with so—n(p 2) and =3

.pgo, (2.4)

1
e
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Lemma 2.6 ([7]). Let 1 < p,p; < oo and

n n n n
—min(—,—)<oc<1+min(—,—).
(p1 p’) <p p1)
There ezists a constant C' > 0, depending only on o such that for all j € Z, we have
||[’U -V, VAj]Z”LP < CCjQ—j(o—l)HVUHBZ/T ”VZHBg;l’ (25)

where (¢;)jez denotes a sequence such that ||(c;)|ln < 1.

3. Reformulation of System (1.1).  In this section, we present intrinsic prop-
erties of compressible viscoelastic flows, which have been explored in [30].

Proposition 3.1. The density p = p(t, ) and the deformation gradient F' = F(t,x)
of (1.1) satisfy the following relations:

V- (pFT)=0 and F*,F7 — Flig)F* =, (3.1)
for any t > 0, if the initial data (po, Fo) satisfies
V. (poFL)=0 and FFoFY — FIoFF =o. (3.2)
By Proposition 3.1, the i-th component of the vector div(pFFT) can be written
as
Qi (pF*F*) = pFIRO; P+ F™0;(pF7")
pFI*0; (3.3)

where we used the first equality in (3.1).
Setting xo = (P'(1))~*/2. We define
a(t,z) = p(xgt, xor) — 1, v(t,z) = xou(xdt, xoz), O(t,x) = F(xjt, xox) — 1.
Noticing (3.3), it is easy to check that
dia+v-Va+V-v=—-aV v,
o +v-Vo— Av+Va— BV -0 = BO*9;0% — I(a)Av — K (a)Va
1
1+a

(3.4)
+

0;0 +v-VO — Vv = V0,

div(2i(a)D(v) + X(a)divvld) )

where
P'(1+a)

I(a)é 7K(@)ém

14+a

-1, A= p(1)A + (A1) 4+ (1)) Vdiv,

« - ~
b=pay Ma) =nl+a)—pd), Aa) = Al +a) = AL).
Here, O7%9;0°* is a vector function whose components are given by (07%9;0%)n_ .
For simplicity, we set A\(1) = Ag, (1) = po. Furthermore, we normalize 8 = 1 and
v(1) ;= A(1) + 2u(1) = 1 without loss of generality.
For s € R, we denote
A f & FHIElF ),

and introduce two variables as in [30]:

d=A"'dive, €Y =A"1o;0" (3.5)
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Using the second equality in (3.1), we have
A1(9;0,0) = —AOY — A7, (0Y 5,0 — O 9,0). (3.6)
Hence, with aid of (3.6), the system (3.4) can be reformulated as follows
Oa + Ad = Gy,
Dre? — poAe’ — (o + p10)2:0;d + A19;0;a + AOY = GY
8,0" — Ae" = GY,
d=—A"20;0;e" v’ = —A"'0;e",
where G4 = —aV -v —wv - Va, ng = Opv'0% — v - VOY and
G = —A19; (U -Vl — O%9,0% 4 I(a)(Av)' + K(a)@ia)
—A719,(0Y 9,0 — 0% p,0%)
1
+A_laj ( 1+a
Additionally, we need the auxiliary equation in subsequent estimates

;0% = —9;a— G, G} =0i(a0%), (3.8)
which can be deduced from the first equality in (3.1).

(3.7)

)

div(2fi(a)D(v) + X(a)divuld))

4. Proof of Theorem 1.2. Inspired by [5], we may extend those results in [18, 30]
such that they hold true in the LP critical framework. First of all, it is convenient
to give the following interpolation inequalities

1/2

1/2
||f||i2T3;/p2»n/P S HfHE?B';’f‘l’"/”HfHLlTB;‘f“’"“”

(4.1)
1/2

1/2
10z gy r2me S UIIES grmesosos M
’ P P

The proof Theorem 1.2 is divided into several parts. The first one is to establish
two a priori estimates.

4.1. Two a priori estimates. Let T > 0. We denote by 5;/ P the functional space
EP 2 {(a,00) € (E(0,T; BY/227/7) 1 LM (0, T; By /2Hm/my)
x (Lo°(0, T3 By 2722~ 1y m LY (0, T By 2 /7)™
with the norm
(@ Os0)llgprn = 1@, Ol oo ppra—rsmp g ppraeronss (4.2)

+HU||E%OB';L,/p2—l,n/p—1mL%B’;y/pZ#»l,n/p#»l .

Proposition 4.1. Let 2 < p < min(4, -2%) and p < 2n. Assume that (a,O;v) is a

n—2

strong solution of system (3.4) on [0,T] with

M| —

llal| Lo (jo,7xRm) <
Then we have

(@ 0:0)ll s < €{ (a0, O; v0)l| s

n+3
+|\(a,0;v)||§;/p(1+H(a,O;v)Ilg;/p) } (4.3)
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where H(ao,OO;UO)HEn/p = H(ao,OO)||B‘n/2—1,n/p + ||Uo||8n,/2—1,n/p—1.
0 2,p 2,p

In addition, we introduce another functional space E;/ 2, which is defined by

~ . . n2
By 2 {(a,000) € (L0, T: By ") 0 L1 (0, T3 B0 /2%))

X (L0, T3 By N L0, T3 BRPT) " )
with the norm
Il(a, O; U)HE;/z = l(a, O)”i%"lé;/ng1’"/20L§~B§,/22+1’"/2 + ||UHL~/%°B;/12710L%“B;’/12+1 .

Proposition 4.2. Under the assumption of Proposition 4.1, we have

(@, 0:0)ll g2 < {1 (a0, O3 00)

n+3
(@, 03 0)l| /2 1@, O3 0) o (1 + 11 (@, 03 0)| )"},
(4.4)

where H<G/O7OO;’UO)||ESL/2 £ ||(a0,00)||83,/2271,n/2 + ||U0HB;/1271.

The proofs of Propositions 4.1-4.2 lie in the pure energy method in terms of
low-frequency and high-frequency decompositions.

Stepl. Low-frequency estimates (2¥ < Ry).
Denote a, = Aga,Or = ArO and dp = Agd, e, = Age for simplicity. By
applying Ay to (3.7), we have

dvar + Ady, = ALGy,

del — polel? — (X + p0)3i0jdy, + A18;0;ar + ANOY = ALGY
8,07 — Aei) = AGY

dy = —A"20;,0;¢).

(4.5)

Taking L? inner product of (4.5), with er , and then summing up the resulting
equation with respect to indices i, j, we arrive at

1
llenliz + pollAexllZz + (o + po)[Adkl 72 — (ax|Ady) + (AOklex)
= (AxGuler), (4.6)

where we have used the fact dy = —A_Qaiaje? .
Taking L? inner product of (4.5); and (4.5), with aj and Oy, respectively, and
then adding the resulting equations to (4.6) together, we obtain

1
5 (larliZ + 10k1%2 + llexll3z ) + poll Aexl[F2 + o + o) | Ad I3
= (AkG1|ak) + (AkG4‘6k) + (AkG3|Ok) (4.7)

To capture the dissipation with respect to (a, O), we next apply the operator A
to (4.5); and take the L? inner product of the resulting equation with —dj. Also,
we take the L? inner product of (4.5), with A=19;0;a). Therefore, we add those
resulting equations together and get

d y
—%(Aaddk) + [[Aal|> — [[Adi]|72 — (A?di|Aak) + (O} 10:0;ar)
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= —(AALGldy) + (AGY A1 0i0;ax). (4.8)
On the other hand, we apply A to (4.5), and then take the L? inner product of the

resulting equation with ezj . We also take the L? inner product of (4.5), with AOZj .
By summing up those resulting equations, we obtain

d
a(AOk\ek) + [|[AOk[|7> — || Aexl7>
— (Ao + ko) (AOY0:0;dy.) + po(A2ex|AOk) + (8;0;ax|O) )
= (AAkG3|€k) + (AkG4|AOk) (49)

Now, we multiply a small constant v; > 0 (to be determined) to (4.8) and
(4.9), respectively, and then add the resulting equations with (4.7) together. Con-
sequently, we are led to the following inequality

5 (laxl +10k135 + llexl 32 + 204 (AOklex) — 20 (Aady)
+(no — v1)[[Ael|72 + (o + po — v1) [ Adil|72 + vi ([ Aak |72 + [AOk|72)
v i0(A2e|AOL) — v1(Xo + p10) (AOY [0:0;dk) — vi (A2dy| Aay) + 2v1(8:05ax|O})
= (ArGilar) + (ApGaler) + (AkG3|O%) — v1 (AALG: |dy)
11 (ARGY |AT10;0;a1) + v1 (AARGsler) + v1 (ArG4|AOy). (4.10)
It follows from (3.8) that
(9:05a1|0;7)

(ak]0:0;07)
= ((-Aa, — 9;A,GY)|ax)
[Aa||72 — (ak|ajAkG6)~ (4.11)

Inserting (4.11) into (4.10), we have
d .
%féz,k + fz%k
= (AxGilag) + (ApGaler) + (ArG3|Ok)
-1 (AAkGl‘dk) + ul(AkGZJ|A_18i8jak) + 11 (AAkG3|ek)

41 (ALG4|AOL) + 2v1 (ar|0; AL GY), (4.12)
where
fie & llarllzz + 10172 + llexll7 + 201 (AOk|ex) — 201 (Aak|dy),
fie 2 (mo—v)lAerlz + Mo + po — v1)|[Ady |72 + v ]| Aagll7

+11[|AOk |72 + vipo(Aer|AOK) — vi (Ao + o) (MO} 9:0; )
—v1(A%dy|Aay,).
For any fixed Rg, we choose vy ~ v1(Ag, o, Ro) sufficiently small such that
ftk ~ larllze + llexlZz + 10k,
Few ~ 2% (lanlZ2 + llexll7z + 10k]172)-

By using Cauchy-Schwarz inequality in (4.12), we get the following equality owing
to 2k < Ro,

(4.13)

d )
G feet 2*fin S Y AGilLe, (4.14)
1=0,1,3,4
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which indicates that
H(C%O;@)HEEOOB%A + ||(G7O;€)||il pE

T 2,1 72,1
S H(ao,oo;eo)ﬂggfl + Z ||GiHl;1 31 (4.15)
21 i=0,1,3,4 TRt

Next we begin to bound those nonlinear terms arising in G;(¢ = 0, 1,3,4). Since
the quadratic terms containing a and v have already been done in [5], it suffices
to deal with different terms involving in O as well as those cubic terms due to
density-dependent viscosities. More precisely, we need to estimate the following
terms according to those definitions of G,

G} = 9;(a0), G = 9pv'O" — v . VOY,

AT19;(0%9,0™), A719L(0Y9,0%F), A=18,(0*8,0) in GY, (4.16)
and ) ]
——div(2i(a) D(v) + X(a)divmd)) in GY. (4.17)

a

We write Gé = 0;a0Y +ad;0". Regarding 0;a0%, by taking v = —1,7r; = 00,1y =
lyrg=ry=2,81 =82 =n/2—1,t; =t2 =n/2 in (A.2) and using (4.1), we arrive
at

A0 (

> 2P AL (9,607 |y 1

2k<Ro
S HOH[‘,%o3;,/:*1‘"/1771 HVGHE%B;L,/:«WPA + ||VCLH[~/%B;L,/I)271,W;;71 ||O‘|E%B;L,/pz,n/p
S ||O||Z%06';L,/13271,”/p HG/HZ%B;fJFI’n/p + ||aHz/%B';L,;2,n/p ||O|‘E%B';L’/p?,n/p
5 ||(CL,O;’U)||Z;/I,. (418)

The terms ad;0%, v- VO in G? and (4.16) may be treated along the same lines
as 0;a0", so we omit the details for brevity. In order to bound dyv*O* in ng , by
taking y = 0,711 = oo, = 1,13 =14 =2,81 =82 =n/2—1,t; =ta =n/2 in (A.2)
and using (4.1), we have

S MA@ O |y 1o

2k<Rq
5 ||O||i7398‘;22—1,n/p—1 ||VU||Z]%—‘B';LV/1)2,7L/[) + ||VU||E%—‘B‘;L,/T—’271,1L/})71 HO”i%ﬂB;’/;'”/p
S ||O||i7a5>3;)/p2flvn/v||U\|;1Tl;;/p2+1m/r'+l + HUHi%g;/p&n/:’||O||pT5;/p2vn/v
S @ O50)Z s (4.19)

Next we bound the cubic term (4.17) in G%. Denote

Ii= Jlr adiv(2ﬂ(a)D(v))
1

T 1ta
= 11 —1—12

1
- 2 ~
ala) Vv + TTa aVu(a)Vv

To bound I, we have

n/2— A L
> 2 1)||Ak(1+aﬂ(a)v2v)||L1TL2
2k<Rg
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A

S22 (JAL(T@)i(@) Tl 1 + [ Ak(i@)V0) 1 2

2k <R,
S ||I(a)||i%08;22,1,n/p,1||ﬁ(a)V2v\|£1TB;/pz,n/p71
+Hﬂ(a)vzvﬂpTB';’/pilm/pfl ||I(G)HioToB;/p2»n/v + ||ﬂ(a)V2v||£1TB;‘/I,271,H/F71
(14 1@ g gy (@) V20l s (120)

where we have chosen s; = so =n/2 — 1,t; = to =n/2,r1 =ry = 00,13 =713 =
1,7 = —1in (A.2) of Proposition A.1 to deal with the term I(a)ji(a)V?v. Now we
begin to bound [|fi(a)V?v]|;, gn/2—1.n/p—1. From (A.2) and (A.1), we have

T>2,p

> 2 PIDAL (@) V)| 1y 12
2k<Rg

A

A

(@) e 5y 22 1920 s
IV gy ot O ey o

S 1@ gy 0]y gy 0100 (4.21)

> 2KV Ay (i(a)V0) || 11 o
2k> Ry

S H[L(a) HZ;’SB;Y/I)Q’"/F' ||V21)||]:4%“B;ly/p2—1,n/p—1 . (4.22)

Inserting (4.21) and (4.22) into (4.20), with aid of Proposition A.2, we can get

; 1
k(n/2—1) ~ 2
S 2D A () Tl
2k<Rg
S A+ @) g gprzsmrm Al poe pprz—rons 0l gy pprzerinsoss.
< (1+ ||a‘|fl%62né)p,n/p)n+3||a||i3"o‘8‘;1,7/1)2—1,n,/p ||U||I~‘%B;/pz+1,n/p+1
S (1@ 030)llgprn)" Il (@, O50) | 2o (4.23)

To bound I5, we have

1
ST 2RO DA (———V(a) V) 1 12

14+a
2k<Ryg
S Y 20 (JAI@) V(@) V)l 1y 2+ [Ae(Vi(@) V) 1y 12
2k<Rg
5 ||I(a) ||I:%°B;;271’"/p71 ||Vﬂ(a)VvHilTBg’/pz,n/pfl
+HVﬂ(a)V’UHilTB;’;271,n/p71 ||I(CL) Hfz%ol?;/;’"/p + ||V[L(CL)V’U||L~/%“B;/p271,n/p71
< (1 + 1@l e 3//) IV @)Vl g sy 2t (4.24)

From (A.2) and (A.1), bounding ||Vi(a)Vv| ;. gn/2-1.n/p-1 is as follows
T>2,p

> 2KV AL(Vi(a) Vo) e
2k< Ry

5 ||VU||Z%B*;2271,7L/;;71 ||vﬂ(a/)”i%85’22,n/pfl
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JFHV,[L(CL)||£%OB‘;‘/I]2—1,”/;)—1 ||VU||L%“B;;2,W,/p
S ol gy s 1) 55 57200

+Hﬂ(a) Hi%cggéjz—l,n/p ||U||L%B‘;L7;2+l,n/p+l . (425)

> 2KV AL(Vi(a) Vo) Ly
2k>Rg
g ||V,ll(a) ||£%B';Lv/pz,n/p ||VU||£%—‘B';L.’/IJ271,7L/})71
< ol gyl @) 1 gy (4.26)

Inserting (4.25) and (4.26) into (4.24), by Proposition A.2 and (4.1), we can get

o1
S 2R 2D A (———Vji(a) V)| 1o

1+a
2F<Rq
S A+ \\I(a)||i5-gg;/pzflm/v)(||/1(a)||i%olg';/pzflm/zv\|U||]:1Tg;_/p2+1m/p+1.
ol z3 gy 2o 1@ 23 g 200
S (1@ 050)llggre)" 1l (@, O50) [ g (4.27)

bounding the cubic term ﬁdiv(;\(a)divvld) is same as I, we feel free to omit
details. Summing up all the estimates and remembering (4.15), we conclude that

”(a» O; 6) ”%%OB;LAZ*1 + H (CL, O; e)HilTB;/f“

< ||(ao,00;eo)Hfg;/lzfl+(1+H(a,O;U)Ilg;/p)”+3||(a,0;v)lli;/r (4.28)

Step 2. High-frequency estimates (2¥ > Ry).

Inspired by [15, 16], we perform basic energy approaches in terms of effec-
tive wvelocities rather than the Lagrangian change as in [3, 5]. Denote by d =
—V(—A)~tdivv the compressible part of v. It is easy to see that ||‘Z||E‘;B';~g ~

”dHEqTBS’Z' It follows from the first equality in (3.1) that
—V(=A)"'div(V - 0)
= —V(=2)"(8:5[(1 + a)(8 + 0)]) + V(~A)divdiv(al + aO)
= V(-A)"!divdiv(al + aO)
= —Va+ V(-A)"divdiv(aO). (4.29)
Note that (4.29), we get the following equation for the compressible part of v
dyd — Ad + 2Va = G, (4.30)
where
Gy = —V(—A)-ldiv( — v Vo + 0%9,0% — I(a)Av

1
+a

—K(a)Va — div(aO) + T div(2i(a)D(v) + ;\(a)divvld)) (4.31)
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Here, we consider more complicated hyperbolic-parabolic coupled system
Oia +v-Va+dive = él,
Oyd — Ad +2Va = G,
9,09 +v-VOI — NeVl = GY
de — ppAe’ + N0V = G

(4.32)

where
Gy =—aV-v, GY ='0% GV =GY + o+ p0)2i0;d — A~19;0a. (4.33)

Introduce two effective velocities as follows
~ . . 1 .
w=d+2V(-A)"ta=V(-A)"(2a — divv), QY =" + ;A(—A)_lO”.
0

Note that the definition of w is almost same as that in [15, 16]. The subtle difference
lies in the coeflicient of unknown a, which comes from the coupling of deformation
gradient F, see (4.29). The new effective velocity Q% is used to cancel the coupling
between e and O% in the high-frequency estimate.

Firstly, we present those estimates for effective velocities. It follows from (4.32)
that

Ow — Aw = Gy + 2V(—=A) 1G4 2w — 4V (—=A) " La,

- - o 1 . 1 .. 1 - 4.34
QY — g AQT =G + —ATIGY + —QY — —QA_lO”. ( )
Ho Ho Ho
Applying (A.6) to the above equations implies that
h h h h
||w‘|E%CB;L€P710L%B;L€p+1 S/ ”wO” '"/pfl + ”wHLlTB:/lp*l + ”aHLlTB;/lp*?
’ ’ " ’ (4.35)
+ HGlHLl(B"/P EN ||G2||L1(B:1/1p71)’
and
”Q””L‘”B"/P ALy Brr S HQ”th/p vt ||Q”||L1 Br/p + HO”H R
+ HG”||L1(B"/P 2, + ||G HL1(BTL/:D 1
(4.36)
Owing to the high frequency cut-off 2¥ > Ry, we have
IIwH e ST *Jlwl?, L /et ||a|| o2 S o 2||a|| Bre
Pv
and
||Q”|| B 1 S Ry 2w, LB ||0”H B NRo2||0”|| B

Choosing Ry > 0 sufficient large, the terms ||w||h LB and ||Q”|| LB on the

right-side of (4.35) and (4.36) can be absorbed by the correspondlng parts in the
left-hand side. Consequently, we conclude that

]

Loan/p 1ﬂL1 n/p+1 5 Hwo‘l}é:ﬁp71 + REQHCLthTB:’/lp

(4.37)
+IGhl

w2y T 1G]}

LB Ly(BPty
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and

127113 w5 IIQ”th/p s+ B 07, Brp

Le By /P ' nLLBY
. ” (4.38)
+||G || "/I’ 2 +HG ”Ll(B”/p 1)
Secondly, we see that (a,0%) satisfies the following damped equations in terms
of effective velocities

Bta+v~Va+2a:C~¥1—Vow,
9,0" +v - VO + io” =Gy + AQY.
Applying Ay, to the above equations, we obtain
OiAra+v-VAra+2Ara = AyGy — ALV - w + R,l€7
8, AOY +v - VA0 + iAkoij = ALGY + ALAQY + R, (4.39)

where R} := [v-V,Ai]a and R} := [v- V,A,JOY. Multiplying (4.39), by Axal
AjalP=? and (4.39), by AyO%|A,O%|P~2 and then integrating over R" x [0, ], we
can obtain

t t
Aga(®)z + / lAsallzrdr < || Agaollr + / Vol | Aall odr
0 0

t t
+/ ||Ak(G1—Aw)||LpdT+/ ||R,1€||Lpd7' (4.40)
0 0
and

t B t . .
180U ()]0 + / 180 | odr < | ALOY 1o + / V0l e A, O o dr
0 0

¢ 3 N ¢
+/ |AR(GE + AQY)|| prdT +/ | R2|| o dr. (4.41)
0 0
It follows from commutator estimates in [2] that

22N, Rl S 19l Ol
VIS

Now multiplying (4.40) and (4.41) by 285 | respectively, and then summing over the
index k satisfying 2¥ > Ry, we are led to

Jall oy o
h
S/ ”aO” 71/P + ||V’U||L1 B”/P”a”LocB"/P + ||G1||Ll Bn/p + ”wHL%(B;Y/lerl)
S Haolly + Bl sy + 160,00y + IGAIE, s (42)
and
ij
10 ||LOOBS \ALLEY
h
S HO ” "/P + ||VU||L1 "/PHO””LOOB"/P + ”G””Ll Bn/P + ”QU”L1 (Bn/erl)
h
< loglh, et ||Q”|| srmeny + 1@ 030)2, 0 + 1GE NS, e (4.43)
p,1 ) ST LTBp,l
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Multiply (4.42) and (4.43) by § > 0 respectively, and then add two resulting in-
equalities to (4.37) and (4.38) together. By choosing Ry sufficiently large, we can
get

wret S ||ao||hn/p + IIwollhn/p !

+Gal}

lall?. e n/p+||w|| B/ L
Lge Br/PALY, L Br/P'NLL BT

+1(a,030)[2nn + Gl

Ll (Bn/P Ll (Bn/P 1)

and

n/p + 11911}

1091 ooz i+ 191 sy gngoes S 108 -

+(a, 03 0)2/s + IG11;

ij
L1 (B"/P + ||G4 |‘L%“(B;,/1p71).

Keep in mind that w = d 4+ 2V(—A)"la, Q7 = i + i(fA)’lAOij, we arrive at

h
15

h
” HLOQB"/mel "/P + ||d||LocB"/P lﬂLl n/p+1 ~ ”aOH n/P + Hdo n/P 1

+l(a, O; v)HQn/p +Gully + ||G2|| oy (444)

Ll (B"/P)
and

HO”HLOOB”/Ple "/p + ”eleLooB"/P 1ﬂL1 B"/p+1 ~ ”O”th/p + He ”hn/p 1

@ 0502+ 1GH I, o +IGT I, o (445)
In addition, remembering (4.33), we have
G2, (g, S NGEN sy 0y o)+ el o (446)
Hence, together with (4.44)-(4.46), we deduce that
1 OV g, e 1ol sy s
< h n TP 5 AR
~ ||(a'07 OO)” 'n/P + HeOHB;/,/lp—l + ||((l, O; U)Hg;/p + ||(G17 G3)||L%F(B;/1p)
G2, G, oo (.47

Likely, we need to bound those different terms in G;(i = 1,3) and G;(i = 2,4)

compared to [5], for example,

GY = 'O
OVO, div(aO) in Gy and Gy,

and

T d1v(2u( )D(v) + A(a)divold) in G and Gy. (4.48)

In order to bound 9,v'OF7 from (A.1) of Proposition A.1 with ,7; = 1,7 =
00,0 =T = n/p, we have

> 2RO AL(0p0 OM) || L1

2k >Ry
,S ||VU||E%“B;;2,”/p HOHE%OB‘;/;W//P S ||’UHE;B;L’/?2+1,TL/[1+1 ||O||L%OB‘;1/172—1,W,/;)
< @, 050)[2
T
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For OVO, from (A.1) of Proposition A.1 with ry =ro =2, 0 =n/p,7=n/p—1
and by applying interpolation (4.1), we have

Z Qk(n/p—l)HAk(OVO)IILlTLP

2k>Rg
S 100y y/2ss 1900 g3 gya-s001 S 10124 g
/S ”(avO;U)”i;/p' (449)

Bounding div(aO) = aV - O + VaO may be handled with at the same away as
OVO. Next, we handle the cubic term (4.48) in Gy. Following from the the same
notation, we have

1

:1—|—a
= @)V + ——Vila)V
TNV T T VWYY

21+ L.

1

div(2f(a)D(v))

For I, we have

. 1 .
Z zk("/P_l)“Ak( N(a)v2v)||LlTLp

1+a

2k >R
S Y 2O AI@@) V0 g e + 1 Ak(E(@)T0) | 1310

2k >R
5 |‘I(a)||i$82,22,n,/p||/~L(a)v2’l)HE;B‘;‘/DQ—l,n/p—l + ||ﬁ(a)V2v\|E1TB;/I72_1,”/17_1
< . i 2 .
S (L@ g gprzerosm @)%l gy gz
< (14 1@, 050) )" (@, 0 0) [0,

T T

where the third line is followed by taking o = n/p,7 =n/p— 1,11 = 00,7 = 1 in
(A.1).
On the other hand, regarding I, we deduce that

. 1 -
S 2K/ Ay Vil(a)Vv)llps Lo

1+a

2k >R
S Y 2O (JAI@ V@)Vl 1o + A0 VO 1y 10 )

2k >R
,S HI(a)”L%‘OB';L(PQ,n/p||vl](a;)v’UHE%‘B';‘L/I?fl,n/pfl + ||Vﬂ(@)vvHE%B;ffl.n/pfl
< (1 +11(@)] s B;’/:,l,n/p) IV @)Vl 5 gy 2100
S @+, 0:0) ] gnrn) [l (@, O50) 12

T T

The computation for 1J%adiv(j\(a)divvld) totally follows from the same procedure
as I, so we omit details. By putting above estimates together, remembering (4.47),
we achieve that

h h
H (a7 O) HE%OB:/IPQL%B;/{) + He”E?B:’,/lpflﬁL}B:/l”l
5 ”(aOv OO)‘ %;L’/lp + HGOH}];;/IP*I
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+(1+ (2, 030) o)™ (@ O3 0) [ - (4.50)

Step 3. Combination of two-step analysis.
The inequality (4.3) is the consequence of (4.28) and (4.50), so the proof of
Proposition 4.1 is finished. By using (A.3) in Proposition A.1, we can infer that

I(a, Oz el eppmr (e, O; Mgy gz

L‘X’B
S ||(ao,00;eo)|£-n/2_1
+(1+ II(ayO;v)Ilgw/p)"Hll(a O;0)|gnrv [l (@, 05 0) | o (4.51)
and
”(a O)HLoan/mel "/P + ” ||LooB"/P ‘ALY B"7/1p+1
S ||(a0700)\\%n/1p + [leoll® B
P,

+(1 +1l(a, O; )ng/p)”“H(a O;0)|[gnrvll (@, O;0) [ gy (4.52)

The inequality (4.4) is followed by (4.51) and (4.52). Therefore, the proof of Propo-
sition 4.2 is complete.

4.2. Approximate solutions and uniform estimates. The construction of ap-
proximate solutions is based on the following local-in-time existence.

Theorem 4.1 ([30]). Assume (po —1,Fy —I) € (BZ/IQ)H” and ug € (B”/2 hr
with po bounded away from 0. There exists a positive time T such that system (1.1)
has a unique solution (p, F;u) with p bounded away from 0 and

. 1Jrn2
(p—=1,F-I) € (C([O,T);B%Q)) € (0([0 T); By >~ H)nL' ([0, T); B"/2+1)) :
Additionally, if (po — 1,Fy —I) € (3;1)/12—1)1+n . we have

(p—1,F — 1) € (C([0,T); By/2~ )™

In order to apply Theorem 4.1, we need a lemma, which can be shown by the
proof of Lemma 4.2 in [1].

Lemma 4.1. Let p > 2. For any

(po — 1, Fo — Lyup) € (B”/“’"/P)H"Q < (Bt

2,p P

satisfying po > co > 0, then there exists a sequence {(pok, Fok; Uo k) tken with
{(pox =1, Fo.p — I;uo i)} € ( "/2 b "/2) (B;/f*l)n such that

l(po.k — po, For — )HBn/? tne — 0, JJuok — UOHB';Léfflmr/pfl — 0 (4.53)
when k — 0. we also have po i > 5 for any k € N.

Let (po,ks Fo,k; uo,k) be the sequence for initial data stated in Lemma 4.1. Then
Theorem 4.1 indicates that there exists a maximal existence time 73 > 0 such that
System (1.1) with initial data (po k, Fo.x; o,x) admits a unique solution (py, Fk; ug)
with pp bounded away from zero satisfying

1-‘,—712
(o =1, — 1) € (C(0, Ty BRY? n BEZH)
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we € (CU0, T B H n L B

Then using the definition of Hybird Besov spaces and Bernstein inequality in Lemma
2.1, we have

. 1in 14n2
(o1 =1, — 1) € (C(0, T By ™))

u € (C(0,Te); By 777 1 L3 (0, T By )
Set
ak(t, ) = pr(xgt: xor) — 1, vk (t, ) = xour (X3t: x0x), Ok (t, 2) = Fr(xgt, xor) — 1.
From (1.3) and (4.53), we
(@0, Q0,15 v0,)| gn/v < Com,
for some constant Cy > 0. Let M be a constant (to be determined later). We define

Ty £ sup{t € [0,T%)|[|(ax, Ok; vk) grir < Mn}.

First we claim that
Tr =Ty Vk € N.
With the help of the continuity argument, it suffices to show for all £ € N,

1
(ak, Or; vi)llgnyp < 5 M. (4.54)
T

Indeed, noting that [|ak|| Lo (0, 77)xrn) < Culla¥|| o gn/2-1.70, we can choose 7 suf-
T,: 2,p

ficiently small such that

1
Mn < 20,
Then
lakl| Lo (o, 17)xRm) < %
By applying Proposition 4.1, we obtain
[ (ax, Ox; vk)llg;kgp < C{Con + (Mn)*(1 + Mn)"*3}. (4.55)

By choosing M = 3CCy and n sufficient small enough such that
1
C(Mn)(1+ Mn)""* < 2,

so (4.54) is followed by (4.55) directly.
Therefore, we obtain a sequence of approximate solutions (pg, Fi;ux) to the
system (1.1) on [0,T}) satisfying

I(ar, Ors vi)ll gnrv < M, (4.56)
k
for any k € N. From (4.4) and (4.56), we have
(@, On; o) | g2 < C{”(ao,kvOO,k;“o,k)”Eg/Q
k

n+3
(ks Ons va) | g2 (M) (1 + M),
k

which implies
[ (ak, Ox; v

E;l:z < C||(a0,k,00,k;’00,k)| BN/ (4.57)
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provided 7 is sufficiently small. Consequently, based on Proposition 4.2, the conti-
nuity argument ensures that T, = +oo for any k € N.

4.3. Passing to the limit and existence. Next, the existence of the solution
will be proved by the compact argument. We show that, up to an extraction, the
sequence (ag, Oy; vg) converges in the distributional sense to some function (a, O;v)
such that

.. ) 14n?
(a,030) € (LB /P LBy P
x (Lepplrtne=t gy ) (4.58)
Indeed, it follows from (4.56) that (ay, Oy) is uniformly bounded in L (0, oo; B;Ly/lp)

and vy, is uniformly bounded in L (0, oc; Bn/p YN LY(0, 00; B"/p+1) By interpo-

lation, we also deduce that vy is uniformly bounded in Lz (O,oo,Bn/pH*E) for

p,1
any € € [0,2]. We claim that (ag, Og;vg) is uniformly bounded in
lJrn2 —
(c}jf(&, By ) (Clo‘;‘ (Res By 9)" (4.59)
with ¢ = min{=2 — 1,1}, which is a direct consequence of
n/p—1 14n? n/ 1-¢
(Orar, 0:Ok; Opuy) € (Lloch i ) <leoc< B - ) (4.60)
Recalling (3.4), we have
6tak = —vk-Vak—V-vk—akak

and
0,0k = —v, - VO, + Vi, + Vo, Oy
By interpolation and Lemma 2.3, it follows from (4.56) that

~ . 14n?
(Grar, 0,00) € (LB ")

loc™p,1

l-ﬁ—n2
which implies that (ay, Og) is uniformly bounded in (C’ (Ry; B n/p 1)) . On
the other hand,

dyvy, = —vy, - Vo, + Avy, — Vay, + V- Oy + 01'9;03!

—I(ar)Avy, — K(ar)Vay, + 1 —|—1a div(2i(ar) D (ve) + ;\(ak)divvkld).
k

It’s easy to see that

| Av k”L2 CBn/p 1—c ~ ||UkH cB"/P“ ¢ (4.61)
Thanks to Lemma 2.3 and Proposition A.2, we have
| (vr - Vg, (ak)./élvk)||L2 o1
S0l iy IVl s+ 0 g V20 1 (462)

LT= <B

Also, due to the embedding lS’"/2 b n/p — Bn/p ¢ and Proposition A.2, we arrive
at

H (Vak, VOk) Hi/oan/lpflfﬁ + ||(K(ak)Vak, OkVOk) ||Z/DOB7L/:lp717C
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S (14 ks Ol e ) s O e (163)
As above, we write
div(2fi(ay)D v? Vii(ay)Vuy.
1+ ar iv(2/i(ar) D(vk)) = Tra (ak) Ukt T fi(ar) Vo
Then by applying Lemma 2.3 and Proposmon A2, we get
||1+ e (2@ D) 2 oo
. ||7M(ak)v vkl 52 B/ +liz 1(ak) Vug| ;2 i
S O+ @) g oo (||u<ak>||mn/pHv%knm i
V@ g g IV 2 ) (4.64)
and g dlv()\(ak)divvkld) may be treated along the same way. Consequently,

combmlng (4.61) — (4.64), we conclude that

dyup € (leochn/p 1— C) ,
which implies that v is uniformly bounded in Cl (R+, B"/ pois C) Therefore the
claim (4.59) is proved. Furthermore, we see that (ak, Op; vk) is equicontinuous on

K n2 o )p—1—
R, valued in (B;f’/lpfl)1Jr X (Bp/lp "™, Let {¢;};en be a sequence of smooth
functions supported in the ball B(0,j+ 1) and equal to 1 in B(0, j). It follows from
(4.59) that (¢jak, $;O0%; ¢;vk) is uniformly bounded in

(01/2 (R_H Bn/p 1)) 14+n?

loc

x (025 Ry BP9

loc

Observe that the map (ag, Og;vr) — (@;ak, ¢;O0k; ¢jvk) is compact from
n 1 n 1+n? Sn/p—1— Sn/p—1\n
(B B s (e )
into

(Byr ) (B

By applying Ascoli’s theorem and Cantor’s diagonal process, there exist a (a, O;v)
such that for any smooth function ¢ € C§°(R"),

1+n2

(dar, 90k) = (60.60) in (L*(Ry; Byi"™ 1),
duk = g in (L=(Ry; BP0, (4.65)
when k — 400 (up to an extraction). Actually, by interpolation, we also have
(6ar, 60x) = (60,60) i (LR BIP )™ vo<s<1,
gup — dv in (L'Ry;BIPT))" V-1<s<L (4.66)

Then, using the so-called Fatou property in Besov spaces and the uniform bound
n (4.56), we conclude that (4.58) is fulfilled. It is a routine process to verify that
(a, O;v) satisfies the system (3.4) in the sense of distributions. Below is to check
the desired regularity of solutions. Noticing that

dua+v-Va=-V-v—aV-ve LbL(By2 ") n LBy P,



COMPRESSIBLE VISCOELASTIC FLOWS 2043

00 +v-VO = Vu+ Vo0 € L, (B3 "/%) n L' (B3 7).

2,p
. sn/2—1
since (ag,Op) € B;ﬁﬁ, /P

that

, the classical result for transport equations indicates

(a,0) € C(Ry; By 277,

On the other hand,
o — Av = —v-Vo—Va+V-0+ 09,0 — I(a)Av — K (a)Va,

1
14+a

€ Lioc (B30,

+ div(2fi(a)D(v) + Ma)diveld),

So the maximal regularity of heat equation enables us to get v € C(Ry;
B‘;/271,n/p71).

P
4.4. Uniqueness. Due to technical reasons, allow us to deal with the case 2 < p <
n in the present paper only. We shall work on the remaining interval with respect to
p in near future. Here, the proof of uniqueness depends on a logarithmic inequality,
which is given it by a lemma.

Lemma 4.2 ([10]). Let s € R. Then for any 1 < p,r < 400 and 0 < ¢ < 1, we
have

Iz | ( ||f||E:B;;z+|f”i:Bz,ti)
€ |

Assume that (p;, Fy;u;)(¢ = 1,2) are two solution to the system (1.1) with the
same initial data. Without loss of generality, we may assume that

(pi = 1, F; — I;u)||gnw < Mn. for i=1,2. (4.67)
Using embedding and (4.67), we have

||f||£;B;71 <C

f”L;‘B;oo

llpi — Ul Loy xrry < Cllpi — 1| gne < CMn <

| —

for n > 0 sufficiently small. Set
ai(t, x) = pi(Xgt, xor) — 1,
Oi(t,z) = Fi(xat, xox) — I,
vi(t, ) = xoui(Xpt, Xo),
for i = 1,2. and
da=ay — az,00 = 01 — Os;6v = v1 — va.
Thanks to (3.4), we find that (da,dv,5O) satisfies
0¢da + vy - Vda = O F,
0yov — Adv = 0G,
0100 4 vy - VOO = 0H,
(6a,60;6v) = (0,0,0),

(4.68)

with
0F = —6v-Va; —V-0v—a1V-6v—0daV - vy,
6H = 6v - VO + Vév + Vov0; + V80,
6G = —Vda + V- 60 — (v, - Vuy — vy - V) + (03%0;01% — 05F9;08%)
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71(&1)./41)1 + I(GQ)AUQ - K(al)Val + K(ag)Vag
+

o div(2fi(a1)D(v1) + a1 )dive;1d)

o div(2fi(az) D(v2) + Maz)dives1d). (4.69)

In the following, we denote
t
V;(t) = / ”vi(T)HB"/p‘HdT for i = 1,2 (470)
0 !

and we denote by A; a constant depending on ||a; /» for ¢ = 1,2. Due to the
1

|| f,;)o B;L
embedding £"/P C £ L(p < n), it suffices to prove the uniqueness in £'. Therefore,
we can take p = n in the subsequent process.

By Proposition A.3, we get

waaxao@»n@%oSecw“{éﬂuévaaﬂrﬂ)mgmdn (471)
where it follows from Lemma 2.3 that
|57 (7). 65 ()1 3y _
< lallg 1600,60)1 59+ (1+ a1, 00l )16l
Hence, by inserting the above inequality into (4.71), we arrive at

t
H@MﬂjO@»mﬁmgemﬂﬂé (Lt (@100l bell gy dr. (4.72)
Using Proposition A.4 to the second equation of (4.68) gives
180l 2385 _ + 180l 2230 < 16G() 17351, (4.73)
Furthermore, by Lemma 2.3 and Proposition A.2; it is shown that
18G (DI zr 5,1, S Nnsv2)llzzse N00llzepe | + Adllarllpe g 100l 22

t
+At/ (1 + [[o2ll 2 ,)I(9a, 60) [ gy _d- (4.74)
0 ' Pee
According to a prior estimates, by choosing n small, we have
Adllar]|zepr, + (01, v2) |2 | S My < 1.
Consequently, inserting (4.74) into (4.73) to implies that
t
160l + Uovlzzng | S Ar [ (14 lenllg G0, 60N gy _dr.  (475)
Combining (4.72) and (4.75), we get
t
ool . S [ (L Ivalgg ool g (4.76)

By applying Lemma 4.2 with s =r =¢ =1 and f = Jv, we obtain

160l z2p0  + lovliz1 g
S0l i < Clov]|7p 1 ( Dp.0 °°)
H UHL%B;1 —= || UHL%B;OO 0g e+ ||6U||E%Bé’m )
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which together with (4.75) and (4.72) indicates that

t
80Oy _ < <O [ (4 uall g ool
i 0 s N6vlysy

x log (e + CTH(SUHEllBl )dT,
where Cr = ||0v][71 50 +||6v||f1 52 - Noting [lva]| g2 | Is integrable on [0, 00] and
1B oo 1B oo 3
1
dr
—_ = 4.77
/0 rlog(r + Cyr—1) +oo, ( )

the Osgood lemma implies that (da,d0;0v) = 0 on [0,¢]. Hence, a continuity
argument ensures that (a1, O1;v1) = (a2, 02;v9) for any t € [0, 00).

5. The Proof of time-decay estimates. In this section, we aim at proving the
time-weighted energy inequality (1.6) taking for granted Theorem 1.2. We will
proceed the proof into three subsections, according to the three terms in G,(¢).
Subsection 5.1 is devoted to the low-frequency estimate. In the spirit of [7], we only
need to perform nonlinear estimates in terms of deformation tensor. In Subsection
5.2, in order to overcome the technical difficulty that there is loss of one derivative
for the density and deformation tensor at high frequencies, we develop “two effective
velocities” and obtain the upper bound for the second term in G,(t). To close the
high-frequency estimates, in Subsection 5.3, a crucial observation enables us to
establish gain of regularity and decay altogether for the velocity, which strongly
depends on Proposition A.4.
For simplicity, we define

X,(t) = [[(a, O;0) | gn/o- (5.1)
In what follows, we will use the two key lemmas repeatedly.

Lemma 5.1. Let 0 < 01 < g5 with o3 > 1. It holds that

/0 (t — ) (r) o S (1) (5.2)
and

/t<t AT < () i 0<0< 1. (5.3)
0

Lemma 5.2 ([7]). Let X : [0,T] — Ry be a continuous function such that XP? is a
differentiable for some p > 1 and satisfies

1
Ld g + BXP < AxP~!
pdt

for some constant B > 0 and measurable function A : [0,T] — R4. Define X5 =
(XP 4+ 6”)% for 6 > 0. Then it holds that

%Xg + BXs < A+ B6. (5.4)

For convenience, we denote by || - [|s.r» := (|| - ||}, + 6P)}/P for 1 < p < .
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5.1. Bounds for the low frequencies. From (4.12) and (4.13), we have

d .

= 1@k, Oks v [172) + 2l (ak, On; we)lIZ2 S ( Y IAGilL2) l(ak, Oxsvn) | e
i=0,1,3,4

It follows from Lemma 5.2 that

d .
7 (@, Ow; on)lls 2 + 2%\ (ar, O o)l S D, ARG L2 + 2756,
i=0,1,3,4

Then integrate the above inequality in time and let 6 — 0. There exists a constant
co > 0 such that

2k . . .
[(ar, Orivi)lle S e % !|[(Arao, AxOg; Agvo)|| 12

t
+/ e =0 N ALG | adr (5.5)
0

i=0,1,3,4

Regarding the first term in (5.5), we multiply the factor (t}H%QkS and sum up on
2k < Ry to get

()= Z 2kse=0Z | (Ayag, AyOo; Apuo)| 2

2F<Ro
S l@0. 0o w0l [y D7 (25(1)7) Froem0VAR,
- 2k<Ry
< a0, 003 w0}y (37 (@A) 0oV gatoren))
’ 2k<Ryq
S ||(a0700;vo)\|%;237 (5.6)
where we have used the fact > (2k\/f)3+s°e_00(2k‘/£)2 < C when s+ 59 > 0. So
we have e
> 2 o™ (Arao, AcOo; Avvo)llzx S ()75 (a0, Ovivo)lly o (5:7)
2k<Rq '

Furthermore, the corresponding nonlinear term in (5.5) can be estimated as

t
Sk [ S G e
0

2k <Ry i=0,1,3,4

t
_ s+s
S R D D [ (59)

i=0,1,3,4

We claim that if p fulfills the assumption as in Theorem 1.3, then we have for all
t >0,

/0 (t-n=F Y ||Gi||g;;2drs<t>—°‘*fo(gz<t>+»f§<t>), (5.9)

i=0,1,2,3

where G, (t) and X} (t) are defined by (1.7) and (5.1).
Since those quadratic terms containing a and v in G;(i = 0, 1,3, 4) have already
been done in [7], it suffices to give suitable decay estimates for some terms involving
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in O. Precisely, we need to hand the following integral
t
[
0

As far as we know, the regularity level remains the same between the density and de-
formation tensor. Hence, these terms 0;a0", ad;0", Ojkaj O, 0'9,0%, O%p,0%
can be treated along the same line. In principle, the above integral can be reduced
to

7 (9;(a0™), 9pv"O" v - VO,

07%9;0%,049,0™, 0" 9,07) %, ., dr.

t 513,
/(t—ﬂ‘ t‘oH(Va~O,VvO,v-VO)H%,SOdT. (5.10)
0 2,00

We decompose (5.10) as follows
(5.10) &£ 1° + 1",

where

t
ﬂ:/ (t—71)~ *z“H(O.Vaf,ovvf,wvd)ng,sodﬂ
0 2,00

and

t -3 El
" = / {t—m1)" En (O - Va",0vv", v - VO") H%w dr.
0 2,00
In order to handle I¢ in terms of with o, O and v*, we use the following Lemma.

Lemma 5.3. Let so =n(2/p —1/2) and p satisfy the assumption in Theorem 1.5.
It holds that

70,0 S 151 lgl gams (5.11)
and
1f9ll g e S ||f||B;/1p—1 gl 3o (5.12)

The reader is referred to [7] for the detailed proof. Owing to the embedding
theorem and the definition of G,(t), we shall often use the following inequalities

||(a,0;v)Z(T)IIB’1—% S ||(a,0;v)z(7)||3213so < (T)72G,(7), (5.13)
and .
I{a, O)]| & < (7)™ 7 Gp(7). (5.14)

Indeed, the above inequality is obvious for the high frequencies since a > %, and
we have

(@, 0) 2 < @Ol S (T2 F2G,(r) = (1) 77 Gp(). (5.15)
p,1 2,1
Notice that 1 — % < 7 and the definition of G,(t), we arrive at

1
2 _1 _a
< (W09 ) S G0 )
p;1 P,

In what follows, we estimate those nonlinear terms I¢ and I".

h h
v ||B:1% S v ||B§

p,1 1

Estimates for I*
Taking advantage of (5.11), (5.13), (5.14) and (5.16), we get

t
_s+250 Y] Y]
| =m0 von e
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1-n ||VOZ|| . %_1(17'
P B2,1

t
__s+sg
s [-n e,
0 p,1

< a0 [ -0

Due to the fact that 2 + 1 >1and 3£ <
implies that

Nl
N

+r 4 n) ")) " Ear.

% + % for all s < 14 %, Lemma (5.1)

t
e o et o
/0 (t =) (- VOO _ydr < (077G, (5.17)

The terms O - Va’ and OVv! can be treated along with the same lines, so we omit
details.

Estimates for 1"

For the term I" containing a”, O" and v", as in [7], we proceed differently depending
on whether p > n and p < n. Let’s first consider the case 2 < p < n. Applying
(2.4) with o = 2 — 1 yields

ML < 77(5 ML lg" L)< Ca|lg"|| . nos,(5.18
17971 5550 < Hf||B;1p [Sko+nog" [l o= + 1lg ||B:11 S ||f||B;,1p||9 HB:1 1,(5.18)
where we have used the Berstein inequality (p* = ;%2 > p) and the fact that only

finite middle frequencies of g are involving in S’ko+ Nog™t
Taking f = v and g = VO in (5.18), we get

t
/<t*T>*'+2'°IIU-VOhIIZ-—sodT
0 BQ,oo

t 5+
S [ a-n g 190"y ar (519)
It follows from (5.13) and (5.16) that
oll -z S ((1)72 +772(n)7 %) G,(7). (5.20)
p,1
The definition of G,(t) implies that
—a . n 1
||VOhHB§1_1 SAT)TYGp(T)  with a= » +tg e (5.21)

Inserting (5.20) and (5.21) into (5.19), we conclude that for —sp < s < 4 +1,

t
—2t0 hy
/O<t—7> z |jv- VO ”B;f,ng

S GO [-n T (b
S (BT GR). 52

Handling with the term O - Va” is similar. With aid of (5.18), we have

t t
[=n 5 10-9a ydr 5 [en) Ol g IV e
0 2,00 0 B, " B?,
"The limit case p = n follows from fg"I% ., < Ife"l, 3 S Ifleellg"ln <
2,00

. R .
I £llz0 g0 ,-
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A

G2(0) [ (=) h
< 0G0, (5.23)

Regarding the term OVu”, combining the embedding L% < 32 %0 and Holder
inequality, we obtain

t t .
| @=n 0wy ydr £ [ = n) 0 | 9o (7)o (5:24)
0 2,00 0

By embedding, the definition of Gy, (¢) and the fact that a > g for sufficiently small
€ > 0, we have

IOllze < 10%Lr +110"Ize SO’ 55 + 101" 5
2
B, P BP

S UnN)7F +(1)7NG (1) S (1) HGy(t). (5.25)
Arguing as for proving (5.16), it is easy to get for 2 < p < n,
Ivo" ()llee S "l 2 S 7 “E(r)EGy(7). (5.26)

Furthermore, together with (5.25)-(5.2 6), we have

/Ot<t7>

¢ 5TS 1 @ n s+so
g,%(t)/0 (t— ) ) e < @y (52)

h |l
,00

dr

A

Let’s end that step by considering I" involving a”, O" and v" in the case of p > n.
Applying Inequality (2.3) with o =1— % and the embedding BQ; 1 = LP* give that

Hfthg;g < (I 5oF + [|Sko+ 8o fl o) 5
< U 53 T (e %)th”Bg—u (5.28)
where p—l* s —=. Taking f = v and g = VO, and then using (5.13), (5.16) as well

as the deﬁnltlon of Gp(t), we arrive at

t
| a=n 1w vor i _yar

t
s+s
S [ =nT gy ol ey )ITOM p s
0 By p,l pl
t TS n n o
S 0 [ -n) (T E D ) e e
0

S WG, (5.20)
Next, by taking f = O and g = Va in (5.28), we obtain

/Ot<t—7>-

t
S /<t—T> |VahH 1 adr. (5.30)
0 pl

h|£
||B;50
,00

dr

(o] 53 +ol. l—ﬂ)
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It follows from (5.13) and (5.14) that
IO 5 + 100l son S ()™ H D 447) 72 4+ (1) 7)Gy(7).  (5:31)
By, B,

Consequently, we deduce that

t
_s+50 hnt
/O<t—7> = Ovat |y dr

s+sq

< g§<t>/0<t—r>— :

< G (5.32)

To bound the last term OVv", we need to take f = O and g = Vv in (5.28) and
get

t
_5+50
/0<t—7'> 2 ||OVvh||g2,’zng

t
stsg
< t—71)" Ol n _n . dr. .
S [e=n U0y 100 IV i (639)

2, » p,1

By interpolation, for all 7 > 0,

1
2 _1 _a
s S (ol V0l s ) S 73R TEG, (7).

p,1 p,1 p,1

Therefore, we are led to

t
/ (t — ) OV L ., dr
0 BQ,oc

Vo]
B

s+250 <T>_min(%’%_%’a)’r7%<T>77d7-

< g§<t>/0 (t—7)

_sts0
S G (5.34)
Putting together all the above estimates for those terms involving in O and those

computations with respect to a and v (see [7]), we can finish the proof of (5.9). Then
by combining (5.7) and (5.9), we deduce that

(077 (@, 0;0) (Ol | S Goo +95(1) + (1), (5.35)

5.2. Decay estimates for the high frequencies of (Va,VO;v). This part is
devoted to bounding the second term in G,(¢). The usual Duhamel principle is no
longer true, since there is a loss of one derivative for the density and deformation
tensor at high frequencies. To eliminate the technical difficulty, we need to perform a
suitable quasi-diagonalization (say, effective velocities), to handle high frequencies.
Let Ajw = wy, and AQ¥ = QZJ From (4.34) and (4.39), by employing the energy
methods of LP type, we obtain

s+sg
=

d _ - . _
S lonlly + e 2 fonlly < {27 (larllp + 1AkGallp) + [AeGallp}lwkll5™, (5.36)

d | i y _ i O i C s PP
S IWNE + 2 19717 < {27 0K llp + 1AkGE I1p) + 1ARGT I HIQYIE ™, (5.37)

d
ZplAarllp +cpllAaxli;
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< {IAAKGlp + 2% [wllp + Ildivollso [Aaklp + IRy kllp } [ Aaklh ™ (5.38)
and
@ inov e AOY |
Z IO IE + e [AO
SUAALGY [ + 22197l + [ldivelloo [AOY Il + [Rakllp HIAOY B~ (5.39)

with Ry x £ [0V, AAk]a and Rox £ [v-V, AAk}Oij, where we chosen Ry sufficiently
large such that 2¢ > R;. Furthermore, with aid of Lemma 5.2, it is shown that
there exists a constant ¢, > 0 such that

d
%(HA%H«S,LP + |ldills,r) + cp (|| Aarlls,ce + 2°%(|dills,.r)
S NAALG |, + | AkGallp + l|dive|so|[Aaklp + [|R1 k], +2%%6,  (5.40)

~

where we used the effective velocity in terms of a and d. Similar estimates for O%
and €% stems from (5.37) and (5.39):

d ij < ij ij
%(HAOkH&LF’ + ||€kj 57Lp) + Cp(||Aij||57Lp + 22k||€kj||57[1p)
S NAAGT [l + 1AKGT [l + 1dive oo [AOY I + IR 2.kl + 276 (5.41)
for some constant ¢, > 0. It’s easy to see that
1ALGT Ip < IARGT [l + 2 [ldillp + [[Aar]l,
SIARGY I + 2% ||dlls.ze + | Aak s, o (5.42)
Therefore, it follows from (5.40), (5.41) and (5.42) that

d
@(”(AakaAOkQUk)Hé,LP + col|(Aar, AOg; v) |5,
S divelleol[(Aak, AOK) I + [[R1kllp + IR2,klp
HIAAL(GL, Gs)llp + 1Ak (Ga, Ga)llp + 2276 (5.43)

for ¢ > 0. Integrating in time on both sides and letting § — 0, we eventually get

t
[(Aar, AOk; vi) (1)l < €'l (Aak(0), AOk(0), vk (0) [l + / eV gy(r)dr,
0

(5.44)
where

ge = |ldivo]| e ([ Aalp + |AOk )

9

+ | Ak (Ga, Gy, AG1, AGS) |,

9%

+ (R, Rak) [l -
—— ————

9i
Multiplying (5.44) by <t>a2k(%_1), taking the supremum on [0, 7] and summing up

over k satisfying 2F > Ry yields
[1{t)* (Aa, AO; v) 1

[ls
L 1

T
< |[(Aag, AOg; vo) || o,
BP

p,1

n
S P
P,
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+ > sup <<t>a /tec"('rt)2k(;_1)gk(7)d7'>. (5.45)

2k > Ry 0<t<T 0

Without loss of generality, we assume that 7' > 2 and first bound the the supremum
for 0 <t < 2. Notice that

t 2
sup <<t>°‘ / eCO(Tt)Qk(gl)gk(T)dT> < / > g (r)dr. (5.46)
0 0

2k > R, OSTS2 25> Ry

Furthermore, it will be shown that the right side of (5.46) can be bounded by X?(2).
Indeed, using Lemma 2.6 and the representation of G; (i =1,3) and G;(i = 2,4),
we get

2
/ Z 2*G Vg (r)dr
0

2k >Rg

2
< [ {haivelo= (1401 + a5 )
0 B B

p,1 p,1

coming from g},

+1/(div(aO), A(9pv' OFF), 0% 9,0, 0¥ 9,0, O 9,0, 07%9,0°%)||" » _,
B:D

p,1

coming from 92

1 ~ F
+ H (a -Vu,v-Vu,I(a)Av, K(a)Va, T adiv(2ﬂ(a)D(v) + )\(a)divad)) ;51,1
coming from gz
n n n . ~4
#1900 (1015 + el 3 ) far (5.47)

coming from g;z

In contrast with [7], we pay attention to those terms involving O only. For instance,
we have

2 2
[ (haivolle= 201" 5 o+ |90l 3 1013 Jar S HOl_ s [ ol zndr S 222
0 B:1 Bp,1 pr1 L 1 Jo prl

copg P
th,

Owing to Lemma 2.3 and interpolation inequalities, we obtain

2
div(aO), A(90' 0%, 0% §,0™ , 0Y 9,0, O 5,0% , 07%9.0%*||" . _,dr
J
0 B

p;1

2
S [Nl 3 1005 +lell 50100, +101, 5 VOl -vdr
0 p,1 p,1 p,1 p,1 p,1 p,1
S (lall, 5 +101 2 JION, 5+l salOll 5.
p,1 p,1 p,1 p,1 p,1
2
< X%2)
Hence, we infer that
t
Z sup (t}o‘/ eCO(T_t)Qk(%fl)gk(T)dT,SX;(Z). (5.48)
0<t<L2 0

2k >Rg
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Let us now bound the supremum for 2 < ¢ < T in the last term of (5.45). For that
end, we split the integral on [0, ¢] into integrals on [0, 1] and [1,¢]. The integral on
[0,1] is easy to handle: because e®(7=%) < e~ Ftfor2<t<Tand0<7<1,s0
one can write

1
sup <t>°‘/ eCO(T_f’)Qk(%fl)gk(T)dT
0

2k>R02§t§T
1
<Y swp <>ae-*t/ 2*G Vg (r)dr <> / PG =D g, (7)dr. (5.49)
2k>R, 25T 0 2k>Ry
0

Therefore, following the procedure leading to (5.48), we end up with

1
sup (£)° / e0lT=D9kE -V g, (1)dr < X2(1). (5.50)
2<t<T 0

2k>Rg “="—

In order to bound the integral on [1,¢] for 2 <t < T, we notice that
t
sup (t)o‘/ eCO(T_t)2k(%’1)gk(T)dT < Z 21 sup (t%gx ().
2<t<T 1 Moy 1<t<T
0
(5.51)

In nonlinear sources g}, g7 and g3, the calculations for those terms with respect to
O are totally similar, so we only bound div(aO) and A(dyv*O*7) for brevity. We
write

2k >R

div(aO) =aV -0+ Va- 0.

Due to the same regularity level, it suffices to estimate the term aV - O. By using
Lemma 2.3, we deduce that

fe h n < n fe h "
ItV -0,z s Slall,_y 150N, s < %(TG(T),  (552)

LF B, T Bp1
and
t*(aV - O n
(a5 - O]y
S ltzal, 5, 752OIIZ o
7By LFBJ,
S (Ifal g +letal" . )IeBON_y <GAT 5.53
S (Ietall s +IeSall s JIHEOIL o <G, (559
since the fact & < 22 + 2 — £ indicates that [|t2 z[|“ 2 S |2 sz 2. SG(T)
L’?‘OBQJ BQ 1
for z = a,0,v. Combining (r 52) and (5.53), we get
7@V - O)_ 5+ S X(TIG(T) + GA(T). (5.5
T p,1
In addition, it follows from (1.7) that
n < t). 5.55
790,55 Gol0) (5.55)
By Lemmas 2.1 and 2.3, we have
||t°‘A(3kvi0kj)||}f -
%OBpp,l
S 10||
LxBP
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S (e 10HE +EeTtolt )Vl (5.56)
LyBr, Ly

n
BP B

Ps

It is obvious that [[t*~ 1O||h _» < G,(T) according to the definition of G,(T"). On
B P

T
the other hand, we have the followmg estimates for z = a, O, v,

1 [ 5.57
e SITEL i S GO, (5.57)
as a — 1 = 3(sg +n/2 — 1 — 2¢) with enough small e. Consequently, we arrive at
[ A (O le'”)Hh i1 S Gp(T). (5.58)
FBY,

In a conclusion, by combining those estimates involving a and v in [7], we can
conclude that

12 (Aa, A0 )", S (Ao, Ao )%, + GAT) + XA(T).  (5.59)

5.3. Decay and gain of regularity for the high frequencies of v. In order to
bound the last term in G,(t), it is convenient to rewrite the velocity equation in the
following way. First, it follows from (3.4) that

O — Av F
~(1+ K(a))Va—v-Vo+V-0+0%9;0°% — I(a)Av  (5.60)

div(2(a)D(v) + Aa) divuld)

>l

+ 1+a
Hence, we have

O (tAv) — A(tAv) = Av + tAF. (5.61)

It follows from Proposition A.4 and the subsequent remark that

ITV20ll" W S ||«4v||h . 1+||TAFHh 2og
L?OBPPJ th1 L3 Bpp,l

S ol n+1+||TF||h -
Lthl L3 Bpp,l
S X()+HTFHh PERE (5.62)

LB,

where we used Theorem 1.2. Secondly, we turn to bound the norm ||7F|* . .
oo p
t p,1
Because a > 1, we have

IIT(V%V'O)HZWBgﬂ SN @O . (5.63)

g ! LocB:D

Product and composition estimates indicate that

Im(K ()Va, 0% 9;0%%)||_ 21 < |73 (a Ol _

2
Lsd <SG). (5.64)

LBy,
Together with those estimates for other nonlinear terms (see [7]), we can conclude
that
I7vol® s S X + G50 + N (@, 0" a (5.65)
LeBr, LyeBP,

where the last term on the right-side of (5.65) can be bounded by (5.59). Finally,
adding up (5.35), (5.59) and (5.65) yields for all t > 0

G(t) S Gpot ||(a0>007710)\|€. ot H(VGOWOOWO)H}CA +Go(t) + X (1)

pl
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S Gpo + &7+ GAE) + X2(L). (5.66)

It follows from Theorem 1.2 that X, (¢) < Mé’g/p < Mn < 1. On the other hand, it
is easy to check that ||(ao,00;vo)|\f;%71 < ||(ao,Oo;fuo)H%_S07 so we conclude that
2,00

2,1

(1.6) is fulfilled for all time if G, and |[(Vag, VOg;v0)||" »_, are small enough.
p,1

This finishes the proof of Theorem 1.3 eventually. O

Appendix: Some estimates in the hybrid Besov space.

Proposition A.1 ([5]). Let s1,s9,t1,t2,0,7 €R, 2<p<4dandl <rri,ro,rs,ry
< oo with % = Ti +L =214 L Then we have the following:
1 T2 T3 T4

o Ifo,7<n/pando+T1 >0, then

Z Qk(‘7+T_”/p)||Ak(fg)||L§,LP S CHfHE;lB';éan/era,aHg”E;ZB;éz—n/ernm (Al)
2k >R ' )

o Ifsi1,80 <n/pand sy +11 >n— 27" with s1 +t1 = sg +t2 and v € R, then
Z 2k(81+t17n/2)||Ak(fg)||L;L2
2k <Ro
< C("f||i;1 82_11;517"/2+"/” HgHz];; Bé1z;f1*n/2+n/p+'v

+||g||i/;38';?z;sz—n/2+n/p Hf||l~l;48';?z,)t2—n/2+n/p) . (AZ)

o Ifs1,82<n/2and s1 +t1 > %—% with s1 +t1 = s9 + to, then

> 2T DA (fg)|

keZ
< O(lIf]

Ly L?

LB —n/2bn/e g1l gz By T gl Lyppyzymemn/zmn/y 1Al zrs Bé?l)' (A.3)

Proposition A.2 ([5]). Let 2 <p <4, s,0>0,ands>c—n/2+n/p, r>1.
Assume that F € I/Vl[s]-m’Oo N V[/l[gc]-’_Q’OO with F(0) = 0. Then there haves

”F(f)H[_/}BQZ < C(l + Hf”i%ogg/ppn/p)max([s]’[d])Jrl ”f”[_,;B;g (A4)
For any s > 0 and p > 1, there haves
IE 25, < COH I llzer=) T 1 fll g5, (A5)

Proposition A.3 ([11]). Let s € (—mnmin(1/p,1/p"),1+n/p) and 1 < p,q < co.

Let v be a vector field such that Vv € LlTB;Ly/lp, Assume that fo € B;q,g € LlTB;q,
and f is a solution of the transport equation

hf+v-Vf=g, [fli=o= fo.
Then for t € [0,T], there holds

t ¢
”f”EtB;,q < exp (C/O ||VU(T)||B:/1pdT)(“fOHBzyq +/0 HQ(T)HB;,da).

For the heat equation, one has the following parabolic regularity estimate.
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Proposition A.4. Let p,r € [1,00], s € R, and 1 < ps < p1 < oo Assume that
uy € B;;l, fe i%zB;;g % Let u be a solution of the equation

Oou — pAu=f,  uli=o = uo.
Then for t € [0,T], there holds

1 —
i [ PPy < C(Jluoll gy + 172 1||me ,S,TH%). (A.6)

T

Remark A.1. The estimate (A.6) is still hold for the following equation
0w — pAu — (A + p)Vdive = f,  ufi—o = uo, (A.7)

where \ and p are constants such that 4 > 0 and A + g > O(up to the different
dependence on the viscous coefficients). Indeed, both Pu and PLu satisfy the heat
equation. We can apply P and P+ to (A.7) to get the heat estimate (A.6).
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