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Abstract. Two main results will be presented in our paper. First, we will

prove the regularity of solutions to axially symmetric Navier-Stokes equations

under a log supercritical assumption on the horizontally radial component ur

and vertical component uz , accompanied by a log subcritical assumption on the

horizontally angular component uθ of the velocity. Second, the precise Green

function for the operator −(∆ − 1
r2

) under the axially symmetric situation,

where r is the distance to the symmetric axis, and some weighted Lp estimates

of it will be given. This will serve as a tool for the study of axially symmetric
Navier-Stokes equations. As an application, we will prove the regularity of

solutions to axially symmetric Navier-Stokes equations under a critical (or a

subcritical) assumption on the angular component wθ of the vorticity.

1. Introduction. The 3D incompressible Navier-Stokes equations are given by{
∂tu+ u · ∇u+∇p−∆u = 0,

∇ · u = 0,
(1)

where u(x, t) ∈ R3, p(x, t) ∈ R represent the velocity vector and the scalar pressure
respectively. The Navier-Stokes equations, which describe the motion of viscous
fluid substances, are fundamental nonlinear partial differential equations in nature
but are far from being fully understood. The global regularity problem of solutions
for the 3D Navier-Stokes equations with smooth initial data remains open and is
viewed as one of the most important open questions in mathematics [10].

The Navier-Stokes equations have the following scaling property: if u(x, t), p(x, t)
are solutions of (1), then uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t) are also
solutions. By multiplying both sides of (1)1 with u and integrating the resulted
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equation on R3, we can see that smooth solutions, decaying fast enough at infinity,
satisfy the following energy identity:

1

2

∫
R3

|u(x, t)|2dx+

∫ t

0

∫
R3

|∇u(x, s)|2dxds =
1

2

∫
R3

|u(x, 0)|2dx.

This estimate seem to be the only useful a priori estimate for smooth solutions to
the Navier-Stokes equations (1). The main difficulty of proving the global regularity
of solutions for the 3D Navier-Stokes equations lies in the fact that the above a prior
estimate is supercritical with respect to the invariant scaling of the equations:∫

R3

|uλ(x, t)|2dx = λ−1
∫
R3

|u(x, t)|2dx,∫ ∞
0

∫
R3

|∇uλ(x, s)|2dxds = λ−1
∫ ∞
0

∫
R3

|∇u(x, s)|2dxds.

In the cylindrical coordinates (r, θ, z), we have x = (x1, x2, x3) = (r cos θ, r sin θ, z)
and the axi-symmetric solution of the incompressible Navier-Stokes equations is
given as

u = ur(r, z, t)er + uθ(r, z, t)eθ + uz(r, z, t)ez,

where the basis vectors er, eθ, ez are

er = (
x1
r
,
x2
r
, 0), eθ = (−x2

r
,
x1
r
, 0), ez = (0, 0, 1).

The components ur, uθ, uz satisfy

∂tu
r + (b · ∇)ur − (uθ)2

r
+ ∂rp = (∆− 1

r2
)ur,

∂tu
θ + (b · ∇)uθ +

uθur

r
= (∆− 1

r2
)uθ,

∂tu
z + (b · ∇)uz + ∂zp = ∆uz,

b = urer + uzez, ∇ · b = ∂ru
r +

ur

r
+ ∂zu

z = 0.

(2)

We can also compute the axi-symmetric vorticity w = ∇×u = wrer+wθeθ+wzez
as follows

wr = −∂zuθ, wθ = ∂zu
r − ∂ruz, wz = (∂r +

1

r
)uθ.

The equations for wr, wθ, wz are
∂tw

r + (b · ∇)wr − (∆− 1

r2
)wr − (wr∂r + wz∂z)u

r = 0,

∂tw
θ + (b · ∇)wθ − (∆− 1

r2
)wθ − ur

r
wθ − 1

r
∂z(u

θ)2 = 0,

∂tw
z + (b · ∇)wz −∆wz − (wr∂r + wz∂z)u

z = 0.

(3)

Our paper’s first aim is to study the regularity of axially symmetric Navier-Stokes
equations under a supercritical assumption on the drift term b and a subcritical
assumption on the angular component uθ, namely:

|b| . (1 + | ln r|)β

r
, |uθ| . (1 + | ln r|)−α

r
(4)

where 0 ≤ β < α/6 and without loss of generality, α ∈ (0, 1] is a small constant.
Here is the theorem:
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Theorem 1.1. Let (u, p) be a suitable weak solution of the axisymmetric Navier-
Stokes equation (2) in R3 × [−1, 0]. Assume that u satisfies (4). Then we have

sup
(x,t)∈R3×[−1,0)

|u| < +∞.

Readers can refer to [6] for the definition of suitable weak solutions.
Besides, from the Biot-Savart law, we have that −∆u = ∇×w. under the axially

symmetric situation, we can get

− (∆− 1

r2
)ur = −∂zwθ, −(∆− 1

r2
)uθ = ∂zw

r − ∂rwz, −∆uz =
1

r
∂r(rw

θ). (5)

We see that the operator −(∆− 1
r2 ) plays an important part in the relationship

between u and w, which also appears in (2) and (3). So a precise Green function of
the operator is necessary for us to study the axially Navier-Stokes equations.

Our second target is to calculate the precise formula of the Green function of the
following elliptic operator with a inverse-square potential:

L := −
(

∆− 1

r2

)
and give some weighted Lp estimates of it. Here is the result:

Theorem 1.2. The Green function of the operator L := −
(
∆− 1

r2

)
has the fol-

lowing representation formula

Γ(r, ρ, z − l) =

∫ ∞
0

G(t; r, ρ, z − l)dt, (6)

where

G(t; r, ρ, z − l) =
1

4
√
πt3/2

exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
(7)

is the heat kernel of the operator ∂t−(∆− 1
r2 ) and Iα is the modified Bessel function

of first kind with footnote α ∈ R.
Besides, we have the following weighted Lp estimates for Γ.(∫ ∞

−∞

∫ ∞
0

|Γ(r, ρ, z − l)|p 1

ρ
dρdl

)1/p

≤ Cr1/p−1, for 1 ≤ p < 2, (8)

(∫ ∞
−∞

∫ ∞
0

|Γ(r, ρ, z − l)|2ρdρdl
)1/2

≤ C
√
r, (9)

and ∫ ∞
−∞

∫ ∞
0

|∂zΓ(r, ρ, z − l)| 1

ρδ
dρdl ≤ Cr−δ, δ ∈ [0, 1). (10)

Remark 1.1. It seems that the 2-dimensional version of the heat kernel (7) was
firstly calculated by T. Gallay and V. Sverak in [13], by using a different approach.

Remark 1.2. Readers can see [1] for the definition of the modified Bessel function.
I1(s) have the following formula and asymptotic behavior.

I1(s) =

∞∑
m=0

1

m!(m+ 1)!

(s
2

)2m+1

. (11)

and

I1 (s) .

{
s , 0 < s ≤ 1;
es√
s

, s > 1.
(12)
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As a corollary of (8) and (10), we have the θ−direction of stream function is
bounded under the condition |ωθ(t, r, z)| . r−2 and |ur(t; r, z)| . 1

rδ
under the

condition |ωθ(t, r, z)| . 1
r1+δ

for δ ∈ [0, 1).

Corollary 1.1. Suppose ωθ = ωθ(t, r, z) satisfies |ωθ(t, r, z)| . r−2, then the stream
function Lθ of the velocity field b = urer+uzez, defined by b := ∇×(Lθeθ), satisfies

|Lθ| ≤ C. (13)

Moreover, the solution u of axially symmetric Navier-Stokes equations is regular.

Corollary 1.2. Suppose ωθ = ωθ(t, r, z) satisfies |ωθ(t, r, z)| . 1
r1+δ

for δ ∈ [0, 1),
then the horizontally radial component ur of the velocity satisfies

|ur| . 1

rδ
. (14)

Moreover, the solution u of axially symmetric Navier-Stokes equations is regular.

Remark 1.3. To the best of our knowledge, the result in Corollary 1.1 was firstly
realized by Zhen Lei and Qi S. Zhang [22], by using a heat kernel estimate derived
by Alexander Grigor’yan [11]. We proved here in an alternative way.

Before ending our introduction, we recall some regularity results on the ax-
isymmetric Navier-Stokes equations. Under the no swirl assumption, uθ = 0 ,
Ladyzhenskaya[19] and Ukhovskii-Iudovich [28] independently proved that weak
solutions are regular for all time. When the swirl uθ is non-trivial, some efforts
and progress have been made on the regularity of the axisymmetric solutions. In
[6, 7], Chen-Strain-Yau-Tsai proved that the suitable weak solutions are regular if
the solution satisfies r|u| . 1. Their method is based on the ones of De Giorgi,
Nash and Moser. Also, Koch-Nadirashvili-Seregin-Sverak in [18] proved the same
result, by using a Liouville theorem and scaling-invariant property. Lei-Zhang in
[20] proved regularity of the solution under a more general assumption on the drift
term b where b ∈ L∞

(
[−1, 0), BMO−1

)
. Seregin-Zhou [14] prove that any axi-

ally symmetric suitable weak solution u, belonging to L∞(0, T ; Ḃ−1∞,∞), is smooth.
Pan [25] proved the regularity of solutions under a slightly supercritical assumption
on the drift term b. Recently, Chen-Fang-Zhang in [8] proved that if ruθ satisfies
r|uθ| ≤ Crα, α > 0, then u is regular without any other a prior assumptions. As
a complementary of their work, Pan [26] proved the regularity of solutions by as-
suming r|ur| ≤ Crα or r|uz| ≤ Crα, α > 0. Later, Lei-Zhang in [23] improved the
result in [8] by assuming r|vθ| ≤ C| ln r|−2 for small r. Also Wei in [30] improved
the log power from −2 to − 3

2 .
When the initial data satisfies some integral conditions, Abidi-Zhang in [2] give

the global smooth axially symmetric solutions of 3-D inhomogeneous incompressible
Navier-Stokes equations. From the partial regularity theory of [9], any singular
points of the axis-symmetric suitable weak solution can only lie on the symmetric
axis. In [3], Burke-Zhang give a priori bounds for the vorticity of axially symmetric
solutions which indicates that the result of [9] can be applied to a large class of weak
solutions. Neustupa and Pokorny [24] proved certain regularity of one component
(either uθ or ur) imply regularity of the other components of the solutions. Chae-Lee
[4] proved regularity assuming a zero-dimensional integral norm on wθ: wθ ∈ LstLqx
with 3/q + 2/s = 2. Also regularity results come from the work of Jiu-Xin [17]
under the assumption that another zero-dimensional scaled norms

∫
QR

(R−1|wθ|2 +

R−3|uθ|2)dz is sufficiently small for R > 0 is small enough. On the other hand,
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Lei-Zhang [21] give a structure of singularity of 3D axis-symmetric equation near
a maximum point. Tian-Xin [27] constructed a family of singular axi-symmetric
solutions with singular initial data. Hou-Li [16] construct a special class of global
smooth solutions. See also a recent extension: Hou-Lei-Li [15].

Our paper is organized as follows. In section 2, we give the proof of Theorem
1.1, and section 3 is devoted to proving Theorem 1.2, Corollary 1.1 and Corol-
lary 1.2. Throughout the paper, we use C to denote a generic constant which may
be different from line to line. We also apply A . B to denote A ≤ CB.

2. Proof of Theorem 1.1. In this section we will prove Theorem 1.1 and
get the regularity of the solution under the assumption (4). The idea comes from
[Chen-Strain-Tsai-Yau]’s proof in [7] where they assume |u| ≤ Cr−1.

We divide the proof into 3 steps.
Step one: scaling of the solution and set up of an equation

Let m be the maxmium of |u| up to a fixed time t0 and we may assume m > 1 is
large. Define the scaled solution

um(x, t) = m−1u(
x

m
,

t

m2
), x = (x1, x2, z).

Denote x = (x1, x2, z) and x = (x1, x2, z), r =
√
x21 + x22 and r =

√
x21 + x21. We have

the following estimate for r and r for time t < t0 and t < m2t0:

|∇kum| ≤ Ck. (15)

This inequality follows from ‖um‖L∞ ≤ 1 for t < t0 and the standard regularity
theorem of Navier-Stokes equations. Its angular component (we omit the time
dependence below) uθm(r, z) satisfies uθm(0, z) = 0 = ∂zu

θ
m(0, z) for all z. By mean

value theorem and (15),

|uθm(r, z)| . r, |∂zuθm(r, z)| . r for r ≤ 1.

Together with (15) for r ≥ 1, we get

|uθm| .
r

1 + r
, |∂zuθm| .

r

1 + r
. (16)

Then uθm(r, z) satisfies the estimate

|uθm(r, z)| = m−1
∣∣∣uθ( x

m
,

t

m2
)
∣∣∣ . (1 + | ln r

m |)
−α

r
.

Combining this with (16), one has

|uθm(r, z)| . min
{ r

1 + r
,

(1 + | ln r
m |)
−α

r

}
.

Let r0 be such that r0
1+r0

=
(1+| ln r0

m |)
−α

r0
. It is not hard to see that there exists a

constant C > 1 such that

C−1(lnm)−α/2 ≤ r0 ≤ C(lnm)−α/2. (17)

Then we can rewrite the estimate of uθm as follows

uθm(r, z) .


r

1 + r
, 0 < r ≤ r0,

(1 + | ln r
m |)
−α

r
, r ≥ r0.

(18)
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Now consider the angular component of the rescaled vorticity. Recall Ω = wθ
r . Let

Ωm(x, t) =
wθm(x, t)

r
= m−2wθ(

x

m
,

t

m2
)
1

r
.

Note that wθm and ∇wθm are bounded by (15) and also wθm|r=0 = 0, so one has

|Ωm| .
1

1 + r
.

Ωm satisfies

(∂t − L)Ωm = f, L = ∆ +
2

r
∂r − bm · ∇,

where f = r−2∂z(u
θ
m)2 and bm = urmer + uzmez, |bm| ≤ 1.

Combining the estimates (16) and (18), one has

f =
2

r2
uθm∂zu

θ
m .


1, 0 < r ≤ r0,

(1 + | ln r
m |)
−α

(1 + r)r2
, r ≥ r0.

(19)

Let P (x, t; y, s) be the kernel of ∂t − L. By Duhamel’s formula

Ωm(x, t) =

∫
P (x, t; y, s)Ωm(y, s)dy +

∫ t

s

∫
P (x, t; y, τ)f(y, τ)dydτ

:= I1 + I2. (20)

Step two: bounding of Ωm

In the following ,we will estimate (20) and give a bound for Ωm(x, t).
The kernel P (x, t; y, s) satisfies P ≥ 0,

∫
P (x, t; y, s)dy ≤ 1 and

P (x, t; y, s) ≤ C(t− s)−3/2 exp

{
−C |x− y|2

t− s

(
1− t− s

|x− y|

)2

+

}
. (21)

The proof of estimate (21) is based on [5], but due to the singularity of the term
2
r∂r, the proof is more involved. See Theorem 3 in [25].

Now we give estimates of P in two cases.
From (21), it is easy to see that

P (x, t; y, s) . (t− s)−3/2

 exp
{
− c |x− y|2

t− s

}
, |x− y| > 2(t− s);

1, |x− y| ≤ 2(t− s).

(22)

With the estimate (22) and Hölder inequality, one gets, when t− s > 1,

|I1| ≤
[∫

P (x, t; y, s)|Ωm(y, s)|2+δdy
] 1

2+δ
[∫

P (x, t; y, τ)dy

] 1+δ
2+δ

.

[(∫
|x−y|>2(t−s)|

+

∫
|x−y|<2(t−s)

)
P (x, t; y, s)|Ωm(y, s)|2+δdy

] 1
2+δ

. (t− s)−
3

2(2+δ)

{∫
|x−y|>2(t−s)

e−c
|x3−y3|

2

t−s
r

(r + 1)2+δ
drdy3

+

∫
|x−y|<2(t−s)

r

(r + 1)2+δ
drdy3

} 1
2+δ
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. (t− s)−
3

2(2+δ)

{
(t− s)

1
2 + (t− s)

}1/(2+δ)

. (t− s)−
1

2(2+δ) . (23)

Next

|I2| ≤
∫ t

s

(t− τ)−
3
2

{∫
|x−y|≤2(t−τ)

|f |dy +

∫
|x−y|≥2(t−τ)

e−c
|x−y|2
t−τ |f |dy

}
dτ

:= I2,1 + I2,2. (24)

We deal with I2,1, I2,2 in (24) as follows,

I2,1 =

∫ t

s

(t− τ)−
3
2

∫
|x−y|≤2(t−τ)

|f |dydτ

.
∫ t

s

(t− τ)−
3
2

∫ +∞

0

sup
y3

|f |rdr
∫
|x3−y3|≤2(t−τ)

dy3dτ

. (t− s)1/2
∫ +∞

0

sup
τ,y3

|f |rdr

. (t− s)1/2
{∫ r0

0

rdr +

∫ ∞
r0

(1 + | ln r
m |)
−α

(1 + r)r
dr

}
. (t− s)1/2

{
r20 +

∫ 1

r0

(1 + ln m
r )−α

r
dr

+

∫ m/e

1

(1 + ln m
r )−α

r2
dr +

∫ ∞
m/e

(1 + ln r
m )−α

r2
dr

}
.

(25)

Now we make a brief estimate for the integral on the right hand of (25). Since
r0 ≈ (lnm)−α/2, we have

r20 . (lnm)−α.

Also ∫ 1

r0

(1 + ln m
r )−α

r
dr . (1 + lnm)−α

∫ 1

r0

1

r
dr . (lnm)−α+δ1 .

Since
(1+ln m

r )−α√
r

is decreasing when r ∈ [1,m/e], we have∫ m/e

1

(1 + ln m
r )−α

r2
dr . (1 + lnm)−α

∫ m/e

1

r−3/2dr . (lnm)−α. (26)

At last ∫ ∞
m/e

(1 + ln r
m )−α

r2
dr .

∫ ∞
m/e

1

r2
dr . m−1.

The above inequalities indicate that for δ1 > 0, which is sufficient small and inde-
pendent on m, we get

I2,1 . (t− s)1/2(lnm)−α+δ1 . (27)

I2,2 =

∫ t

s

(t− τ)−
3
2

∫
|x−y|≥2(t−τ)

e−c
|x−y|2
t−τ |f |dydτ

.
∫ t

s

(t− τ)−
3
2

(∫
e−c

|x−y|2
t−τ dy

) δ
1+δ

(28)
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·

(∫
|x−y|≥2(t−τ)

e−c
|x−y|2
t−τ |f |1+δdy

) 1
1+δ

dτ

.
∫ t

s

(t− τ)−
3
2 (t− τ)

3
2

δ
1+δ (t− τ)

1
2

1
1+δ dτ

(∫
sup
τ,y3

|f |1+δrdr
) 1

1+δ

. (t− s)
δ

1+δ

(∫
sup
τ,y3

|f |1+δrdr
) 1

1+δ

. (t− s)
δ

1+δ (lnm)−α+δ2 , (29)

where the computation of the integral
(∫

supτ,y3
|f |1+δrdr

) 1
1+δ is the same as that

of
∫

supτ,y3
|f |r dr in (25) and δ2 > 0 can be sufficient small and is independent on

m.
Now, let s = t − (lnm)

4
3α > −m2(hence Ωm is defined), From (23), (24), (27),

(28) and by choosing sufficiently small δ, δ1, δ2 > 0, we can get that for any small
ε1,

|Ωm(x, t)| . (lnm)−α/3+ε1 .

Step three: bounding the solution u from Ωm

First

|wθ(x, t)| = m2|wθm(rm, zm, tm2)| = |Ωm(rm, zm, tm2)|m2rm . m3r(lnm)−α/3+ε1 .
(30)

In the following, we bound b = urer + uzez.
Denote Bρ(x0) = {x : |x − x0| < ρ}, where ρ > 0 to be determined later. By
Biot-Savart law, b satisfies

−∆b = curl(wθeθ).

From the estimates of elliptic equation [12], for q > 1,

sup
Bρ(x0)

|b| ≤ C

(
ρ−

3
q ‖b‖Lq(B2ρ(x0)) + ρ sup

B2ρ(x0)

|wθ|

)
. (31)

For a fixed ρ� 1, to be determined later, set x0 ∈ {(r, θ, z) : r < ρ} and 1 < q < 2.
By the assumption (4) on b,

ρ−
3
q ‖b‖Lq(B2ρ(x0)) . ρ−

3
q

∥∥∥ (1 + | ln r|)β

r

∥∥∥
Lq(B2ρ(x0))

. ρ−
3
q

[∫ z0+2ρ

z0−2ρ
dz

∫ 3ρ

0

| ln r|qβ

rq
rdr

] 1
q

. ρ−
2
q

[∫ 3ρ

0

| ln r|qβ

rq−1
dr

] 1
q

. (32)

We compute
∫ 3ρ

0
| ln r|qβ
rq−1 dr as follows,∫ 3ρ

0

| ln r|qβ

rq−1
dr =

∫ +∞

1
3ρ

(ln r)qβrq−3dr

=

(∫ ρ−2

1
3ρ
−1

+

∫ +∞

ρ−2

)
(ln r)qβrq−3dr
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. (ln
1

ρ
)qβ
∫ ρ−2

ρ−1

rq−3dr +

∫ +∞

ρ−2

rq−3+δdr

. ρ2−q(ln
1

ρ
)qβ , (33)

where δ > 0 is chosen to be sufficiently small such that q − 3 + δ < −1. Inserting
(33) into (32), we can get

ρ−
3
q ‖b‖Lq(B2ρ(x0)) . ρ

−1( ln
1

ρ

)β
. (34)

Now we set ρ = m−1(lnm)β+ε2 , where 0 < ε2 <
α
2 . Then (34) implies that

ρ−
3
q ‖b‖Lq(B2ρ(x0)) . m(lnm)−ε2 . (35)

Also, By (30) and our choice of ρ, we have

ρ sup
B2ρ(x0)

|wθ| . m(lnm)2β−
α
3 +ε1+ε2 . (36)

Combining (31), (35) and (36), we can get that for a sufficiently small ε > 0,
when r ≤ m−1(lnm)β+ε,

|b(t, r, z)| . m(lnm)−ε.

From our assumption on b, we have
when r ≥ m−1(lnm)β+ε,

|b(t, r, z)| .
(1 + | ln r|)β

r
≤ m(lnm)−ε.

The above two inequalities implies that

|b(t, r, z)| ≤ m(lnm)−ε. (37)

In the following, we bound uθ. Recall the relationship between uθ(x, t) and
uθm(x, t) and the estimate of uθm in (18), then we have

uθ(r, z) = m|uθm(rm, zm)|

. m


rm

1 + rm
, r <

r0
m

;

(1 + | ln r|)−α

(1 + rm)rm
, r ≥ r0

m
,

.



mr0, r <
r0
m

;

(1 + | ln r|)−α

r
,

r0
m
≤ r ≤ 1

m
;

(1 + | ln r|)−α

r2m
,

1

m
≤ r ≤ 1;

m−1, r ≥ 1,

.



m(lnm)−α/2, r <
r0
m

;

m(lnm)−α/2,
r0
m
≤ r ≤ 1

m
;

m(lnm)−α,
1

m
≤ r ≤ 1;

m−1, r ≥ 1,
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which indicates that

|uθ(r, z)| . m(lnm)−α/2. (38)

Since m is the maximum of |u|, m = max{sup |b|, sup |uθ|}. the estimates (37)
and (38) together indicate that

m ≤ Cm(lnm)−ε.

This gives an upper bound for m which completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2, Corollary 1.1 and Corollary 1.2.

3.1. Calculation of the Green function and the heat kernel. This subsection
is devoted to deducing the precise formula (7) in Theorem 1.2. Consider the
parabolic equation with a inverse-square potential:

∆v − 1

r2
v − vt = 0. (39)

Here v = v(t, r, z) is axially symmetric. ∆ = ∂2r + 1
r∂r + ∂2z . Denoting v = r · f , it

follows that f = f(t, r, z) satisfies

∆f +
3

r
∂rf − ft = 0. (40)

Therefore, if we denote ∆5 := ∂2x1
+∂2x2

+∂2x3
+∂2x4

+∂2z the 5-dimensional Laplacian,

and r =
√
x21 + x2x + x23 + x24 the distance between x′ := (x1, x2, x3, x4) and origin

in R4 , then (40) is equivalent to

∆5f(t, x)− ft(t, x) = 0. (41)

Here x = (x1, x2, x3, x4, z). Since the 5-dimensional heat kernel is

G5(t, x, y) :=
1

(4πt)5/2
e−
|x−y|2

4t , (42)

the solution to equation (41) equipped with initial data f(0, x) = f0(x) has the
following representation

f(t, x) =
1

(4πt)5/2

∫
R5

e−
|x−y|2

4t f0(y)dy. (43)

Coming back to axial-symmetric case, we assume that

f0(y) = f0(ρ, l), (44)

where ρ =
√
y21 + y22 + y23 + y24 , l = y5, then we have

f(t, r, z) =
1

(4πt)5/2

∫
R5

e−
|x′−y′|2+(z−l)2

4t f0(ρ, l)dy′dl

=
1

(4πt)5/2

∫
R5

exp

(
−r

2 + ρ2 − 2rρ cos〈x′, y′〉
4t

)
· e−

(z−l)2
4t f0(ρ, l)dy′dl

=
1

(4πt)5/2

∫ +∞

−∞

∫ ∞
0

exp

(
−r

2 + ρ2

4t

)
· e−

(z−l)2
4t f0(ρ, l)

·

(∫
|ω|=1

exp

(
rρ cos〈x′, y′〉

2t

)
dω

)
ρ3dρdl.

(45)
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Here y′ = ρ · ω and 〈x′, y′〉 denotes the angle between vector x′ and y′. Now we
define

I :=

∫
|ω|=1

exp

(
rρ cos〈x′, y′〉

2t

)
dω. (46)

Since the integral above related only on the angle between x′ and y′, we assume
x′ = (r, 0, 0, 0) without loss of generality. In this case cos〈x′, y′〉 = y1

ρ and (46)

equals

I =

∫
|ω|=1

exp

(
rρ cos〈x′, ω〉

2t

)
dω

=

∫ 1

−1
exp

(rρs
2t

)
· 4π(1− s2)

ds√
1− s2

=4π

∫ 1

−1
exp

(rρs
2t

)√
1− s2ds

=4π2
(rρ

2t

)−1
I1
(rρ

2t

)
.

(47)

Here and below, Iα is the Modified Bessel function of first kind with footnote α ∈ R.
Last equality is due to the following lemma.

Lemma 3.1. For any A > 0, the following equation holds.

J :=

∫ 1

−1
eAs
√

1− s2ds =
1

A
I1(A). (48)

Proof. Let s = sin θ, then

J =

∫ π/2

−π/2
eA sin θ cos2 θdθ

=

∫ π/2

−π/2
eA cos(θ−π/2) cos2 θdθ

=

∫ 0

−π
eA cos θ sin2 θdθ

=

∫ π

0

eA cos θ sin2 θdθ.

Using integration by parts,

J =− 1

A

∫ π

0

sin θdeA cos θ

=
1

A

∫ π

0

eA cos θ cos θdθ =
1

A
I1(A).

The lase equality is due to equation (4) on pp. 181 [29]. �

Substituting (47) to (45), we have

f(t, r, z) =

∫ ∞
−∞

∫ +∞

0

1

4
√
πrt3/2

exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
ρ2f0(ρ, l)dρdl.

(49)
Thus the heat kernel to equation (40) is

G̃(t; r, ρ, z − l) :=
1

4
√
πrt3/2

exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
ρ. (50)
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Denoting G the heat kernel to (39), using the relation of v and f , it follows

G(t; r, ρ, z − l) =
r

ρ
G̃(t; r, ρ, z − l), (51)

we have

G(t; r, ρ, z − l) =
1

4
√
πt3/2

exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
. (52)

That is, if (39) is equipped with initial data v(0, r, z) = v0(r, z), we have

v(t, r, z) =

∫ +∞

−∞

∫ +∞

0

G(t; r, ρ, z − l) · v0(ρ, l)ρdρdl. (53)

This proves (7). By a direct integration on t, we can get (6).

3.2. Proof of the weighted Lp estimates.

Calculation for (8) and (10) for δ ∈ (0, 1). First, we come to calculate

I :=

(∫ +∞

−∞

∫ +∞

0

|Γ(r, ρ, z − l)|p 1

ρ
dρdl

)1/p

.

From the formula (6) and (7), we can get

I .

(∫ +∞

−∞

∫ +∞

0

∣∣∣ ∫ ∞
0

t−3/2 exp(−ρ
2 + r2 + |z − l|2

4t
)I1(

ρr

2t
)dt
∣∣∣p 1

ρ
dρdl

)1/p

.

Using the estimate (12), we decompose the integration on t into two parts: t ≥ ρr
2

and t < ρr
2 ,

I .

(∫ +∞

−∞

∫ +∞

0

∣∣∣ ∫ ∞
ρr
2

t−3/2 exp
(
− ρ2 + r2 + |z − l|2

4t

)ρr
2t
dt
∣∣∣p 1

ρ
dρdl

)1/p

+

(∫ +∞

−∞

∫ +∞

0

∣∣∣ ∫ ρr
2

0

t−3/2 exp
(
− |ρ− r|

2 + |z − l|2

4t

)√ 2t

ρr
dt
∣∣∣p 1

ρ
dρdl

)1/p

.
∫ ∞
0

(∫ +∞

−∞

∫ +∞

0

∣∣∣t−3/2 exp
(
− ρ2 + r2 + |z − l|2

4t

)ρr
2t

∣∣∣p 1

ρ
dρdl

)1/p

dt

+

(∫ +∞

−∞

∫ +∞

0

∣∣∣(ρr)−1/2 ∫ 2ρr

|ρ−r|2+|z−l|2

0

s−1 exp(−1

s
)ds
∣∣∣p 1

ρ
dρdl

)1/p

,

(54)
where we have used the Minkovski inequality for the first term and variable change
for the second term on the righthand side of (54). Continuing computations indicate
that

I . r
∫ ∞
0

t−5/2 exp
(
− r

2

4t

)(∫ +∞

−∞

∫ +∞

0

exp
(
− p(ρ2+|z−l|2)

4t

)
ρp−1dρdl

)1/p

dt

+

(∫ +∞

−∞

∫ +∞

0

(ρr)−p/2
( 2ρr

|ρ− r|2 + |z − l|2
)εp 1

ρ
dρdl

)1/p

, (ε > 0),
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where we have used the fact s−εe−
1
s . 1 for ε > 0. By integration on ρ and l, we

obtain

I . r
∫ ∞
0

t−5/2 exp
(
− r2

4t

)
t
p+1
2p dt

+ r−1/2+ε
(∫ +∞

−∞

∫ +∞

0

1

(|ρ− r|+ |z − l|)2εp
1

ρp/2−εp+1
dρdl

)1/p

. r
1
p−1

∫ ∞
0

e−ss−1/2pds

+ r−1/2+ε
(∫ +∞

0

1

|ρ− r|2εp−1
1

ρp/2−εp+1
dρ

)1/p

(assume 2εp− 1 > 0)

. r
1
p−1,

(55)
provided that 

1/2p < 1,

0 < 2εp− 1 < 1,

p/2− εp+ 1 < 1,

p/2− εp+ 1 + 2εp− 1 > 1,

which is equivalent to 
p > 1/2,

1

1/2 + ε
< p <

1

ε
,

ε >
1

2
.

(56)

For any 1 ≤ p < 2, we can choose an ε such that (56) is satisfied. �

From (7), we have

∂zG(t; r, ρ, z − l) = C
z − l
t5/2

· exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
.

Define J :=
∫ +∞
−∞

∫ +∞
0
|∂zΓ(r, ρ, z − l)| 1

ρδ
dρdl. The estimate of J will be essentially

the same as I by one more t−1/2 coming out. We give a brief review. First we see
that

|∂zG(t; r, ρ, z − l)| . t−2 · exp

(
−r

2 + ρ2

4t
− (z − l)2

8t

)
I1
(rρ

2t

)
. (57)

Then,

J .
∫ +∞

−∞

∫ +∞

0

∣∣∣ ∫ ∞
0

t−2 exp

(
−r

2 + ρ2

4t
− (z − l)2

8t

)
I1
(rρ

2t

)
dt
∣∣∣ 1

ρδ
dρdl.
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Almost the same as (54), we have

J .
∫ +∞

−∞

∫ +∞

0

∣∣∣∣∣
∫ ∞
ρr
2

t−2 exp

(
−r

2 + ρ2

4t
− (z − l)2

8t

)
ρr

2t
dt

∣∣∣∣∣ 1

ρδ
dρdl

+

∫ +∞

−∞

∫ +∞

0

∣∣∣∣∣
∫ ρr

2

0

t−2 exp
(
− |ρ− r|

2 + 1/2|z − l|2

4t

)√ 2t

ρr
dt

∣∣∣∣∣ 1

ρδ
dρdl

.
∫ ∞
0

∫ +∞

−∞

∫ +∞

0

∣∣∣∣t−2 exp
(
− ρ2 + r2 + 1/2|z − l|2

4t

)ρr
2t

∣∣∣∣ 1

ρδ
dρdldt

+

∫ +∞

−∞

∫ +∞

0

∣∣∣∣∣ 1√
ρr(|ρ− r|2 + 1/2|z − l|2)

·
∫ 2ρr

|ρ−r|2+1/2|z−l|2

0

s−3/2 exp(−1

s
)ds

∣∣∣∣∣ 1

ρδ
dρdl.

(58)
Continuing computations indicate that, for ε > 0,

J . r
∫ ∞
0

t−3 exp
(
− r2

4t

) ∫ +∞

−∞

∫ +∞

0

exp
(
− ρ2 + 1/2|z − l|2

4t

)
ρ1−δdρdldt

+

∫ +∞

−∞

∫ +∞

0

1√
ρr(|ρ− r|2 + 1/2|z − l|2)

( 2ρr

|ρ− r|2 + 1/2|z − l|2
)ε 1

ρδ
dρdl

. r
∫ ∞
0

t−3 exp
(
− r2

4t

)
t
3−δ
2 dt

+ r−1/2+ε
∫ +∞

−∞

∫ +∞

0

1

(|ρ− r|+ |z − l|)1+2ε

1

ρ1/2−ε+δ
dρdl

. r−δ
∫ ∞
0

e−ss
δ−1
2 ds

+ r−1/2+ε
∫ +∞

0

1

|ρ− r|2ε
1

ρ1/2+δ−ε
dρ

. r−δ,

provided that 
2ε < 1,

0 < 1/2 + δ − ε < 1,

2ε+ 1/2 + δ − ε > 1,

which is equal to

|δ − 1/2| < ε <
1

2
. (59)

When δ ∈ (0, 1), we can choose an ε such that (59) is satisfied. �

Calculation for (9) and (10) for δ = 0. Recall

Γ(r, ρ, z − l) =

∫ ∞
0

1

4
√
πt3/2

exp

(
−r

2 + ρ2 + (z − l)2

4t

)
I1
(rρ

2t

)
dt,
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and by using Minkovski inequality, it follows that(∫ ∞
−∞

∫ ∞
0

|Γ(r, ρ, z − l)|2ρdρdl
)1/2

≤
∫ ∞
0

(∫ ∞
−∞

∫ ∞
0

|G(t; r, ρ, z − l)|2ρdρdl
)1/2

dt

=

∫ ∞
0

(∫ ∞
−∞

∫ ∞
0

|G(t; r, ρ, z − l)|2dlρdρ
)1/2

dt

.
∫ ∞
0

(∫ ∞
−∞

∫ ∞
0

exp

(
−r

2 + ρ2

2t

)
I21
(rρ

2t

)
t−5/2ρdρ

)1/2

dt

=

∫ ∞
0

t−3/4 exp

(
−r

2

8t

)√
I1
(
r2

4t

)
dt

=
√
r ·
∫ ∞
0

s−3/4 exp

(
− 1

8s

)√
I1
(

1

4s

)
ds

.
√
r.

(60)

Here, we have applied identity (72) to prove the 5th line. The last line holds because
the asymptotic behavior of function I1 (see (12)) makes the the integral in this line
convergent. This finish the proof of (9).

Next, integrating ∂zG(t; r, ρ, z − l) with respect to l, it follows that∫ ∞
0

|∂zG(t; r, ρ, z − l)|dl ≤ C

t3/2
exp

(
−r

2 + ρ2

4t

)
I1
(rρ

2t

)
.

Therefore, using identity (71) in Appendix, integrating with respect to ρ to get∫ ∞
0

∫ ∞
−∞
|∂zG(t; r, ρ, z − l)|dldρ ≤ C

r
√
t

(
1− e− r

2

4t

)
.

When δ = 0, (10) is proved by integrating with t on (0,∞).

3.3. Proof of Corollary 1.1 and Corollary 1.2.

Proof of Corollary 1.1. Using the divergence free condition of axially symmetric
Navier-Stokes equation, it follows that

∂r(ru
r) + ∂z(ru

z) = 0. (61)

Then there exists a scaler function Lθ = Lθ(t, r, z) s.t.

− ∂zLθ = ur, and
1

r
∂r(rL

θ) = uz. (62)

Therefore, after substituting (62) in identity ωθ = ∂zu
r − ∂ruz, we have

wθ = ∂zu
r − ∂ruz = −∂2zLθ − ∂r

(
1

r
∂r(rL

θ)

)
= −

(
∆− 1

r2

)
Lθ. (63)

That is, Lθ satisfies

−
(

∆− 1

r2

)
Lθ = wθ. (64)
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By using the Green function in(45) elliptic equation (64) is solved by

Lθ(t, r, z) :=

∫ ∞
−∞

∫ ∞
0

Γ(r, ρ, z − l)wθ(t, ρ, l)ρdρdl. (65)

We claim that Lθ is uniformly bounded, the proof is: applying assumption

|wθ| . 1

r2
,

one has

|Lθ(t, r, z)| ≤
∫ ∞
−∞

∫ ∞
0

Γ(r, ρ, z − l) · |wθ(t, ρ, l)|ρdρdl

.
∫ ∞
0

∫ ∞
−∞

Γ(r, ρ, z − l)ρ−1dρdl.

. 1.

(66)

which is a direct consequence of (8) when we set p = 1. Therefore, Lθ belongs to
L∞t (BMO(R3)). This means

b = urer + uzez = ∇× (Lθ · eθ) ∈ L∞t (BMO−1(R3)). (67)

The conclusion in [20] implies the regularity of u. �

Proof of Corollary 1.2. Combining the first identity of (62) and (65), ur has the
following representation formula

ur = −
∫ ∞
−∞

∫ ∞
0

∂zΓ(r, ρ, z − l)wθ(t, ρ, l)ρdρdl. (68)

Therefore, as a direct consequence of (10) when we assume |wθ| . 1
r1+δ

, we have,

|ur| ≤
∫ ∞
−∞

∫ ∞
0

|∂zΓ(r, ρ, z − l)| 1

ρδ
dρdl .

1

rδ
.

The conclusion in [26] implies the regularity of u. �

4. Appendix.

4.1. A brief introduction of modified Bessel function Iα(x). Modified Bessel
functions Iα (first kind) and Kα (second kind) are two linearly independent solutions
of the modified Bessel equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0. (69)

In this article, we only consider I1, which satisfies the following asymptotic behavior

I1 (x) .

{
x , 0 < x ≤ 1;
ex√
x

, x > 1.
(70)

We refer readers to [1] for more details. The following lemma contains two identities
related to I1, which was applied in section 3.

Lemma 4.1. For any a > 0, the following identities hold∫ ∞
0

e−s
2

I1(as)ds =
1

a

(
e
a2

4 − 1
)

; (71)∫ ∞
0

e−s
2

· I21 (as) · sds =
1

2
e
a2

2 · I1
(
a2

2

)
. (72)
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Proof. We only prove identity (71), while the method of the proof of (72) is essen-
tially the same. Consider the definition of modified Bessel function (see [1] p. 375
for details)

I1(s) =

∞∑
m=0

1

m!(m+ 1)!

(s
2

)2m+1

. (73)

It follows that∫ ∞
0

e−s
2

I1(as)ds =

∞∑
m=0

1

m!(m+ 1)!

∫ ∞
0

(as
2

)2m+1

e−s
2

ds

=
1

2

∞∑
m=0

(
a
2

)2m+1

(m+ 1)(m!)2

∫ ∞
0

e−ssmds

=
1

a

∞∑
m=0

1

(m+ 1)!

(a
2

)2m+2

=
1

a

∞∑
m=0

1

(m+ 1)!

(
a2

4

)m+1

=
1

a

(
e
a2

4 − 1
)
.

(74)
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